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2 Chapter 1. First Order Equations

1

Problem Set 1.1, page 3

1 Draw the graph ofy = et by hand, for−1 ≤ t ≤ 1. What is its slopedy/dt at
t = 0? Add the straight line graph ofy = et. Where do those two graphs cross ?

Solution The derivative ofet has slope1 at t = 0. The graphs meet att = 1 where
their value ise. They don’t actually “cross” because the line is tangent to the curve :
both have slopey ′ = e at t = 1.

2 Draw the graph ofy1 = e2t on top ofy2 = 2et. Which function is larger att = 0?
Which function is larger att = 1 ?

Solution From the graphs we see that att = 0, the function2et is larger whereas at
t = 1, e2t is larger. (e timese is larger than2 timese).

3 What is the slope ofy = e−t at t = 0? Find the slopedy/dt at t = 1.

Solution The slope ofe−t is −e−t. At t = 0 this is−1. The slope att = 1 is−e−1.

4 What “logarithm” do we use for the numbert (the exponent) whenet = 4?

Solution We use the natural logarithm to findt from the equationet = 4. We get that
t = ln 4 ≈ 1.386.

5 State the chain rule for the derivativedy/dt if y(t) = f(u(t)) (chain off andu).

Solution The chain rule gives:

dy

dt
=

df(u(t))

du(t)

du(t)

dt

6 The secondderivative ofet is againet. So y = et solvesd2y/dt2 = y. A sec-
ond order differential equation should have another solution, different fromy = Cet.
What is that second solution ?

Solution The second solution isy = e−t. The second derivative is−(−e−t) = e−t.

7 Show that the nonlinear exampledy/dt = y2 is solved byy = C/(1 − Ct)
for every constantC. The choiceC = 1 gavey = 1/(1− t), starting fromy(0) = 1.

Solution Given thaty = C/(1− Ct), we have:

y2 = C2/(1− Ct)2

dy
dt = C · (−1) · (−C)1/(1− Ct)2 = C2/(1− Ct)2

8 Why will the solution tody/dt = y2 grow faster than the solution tody/dt = y
(if we start them both fromy = 1 at t = 0) ? The first solution blows up att = 1.
The second solutionet grows exponentially fast but it never blows up.

Solution The solution of the equationdy/dt = y2 for y(0) = 1 is y = 1/(1−t), while
the solution tody/dt = y for y(0) = 1 is y = et. Notice that the first solution blows
up att = 1 while the second solutionet grows exponentially fast but never blows up.
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9 Find a solution tody/dt = −y2 starting fromy(0) = 1. Integratedy/y2 and−dt.
(Or work with z = 1/y. Thendz/dt = (dz/dy) (dy/dt) = (−1/y2)(−y2) = 1.
Fromdz/dt = 1 you will know z(t) andy = 1/z.)

Solution The first method has
dy

y2
= −dt

y∫

y(0)

du

u2
= −

t∫

0

dv (u, v are integration variables)

−1

y
+

1

y(0)
= −t

−1

y
= −t− 1

y =
1

1 + t

The approach usingz = 1/y leads todz/dt = 1 andz(0) = 1/1.

Thenz(t) = 1 + t andy = 1/z = 1
1+t .

10 Which of these differential equations are linear (iny) ?

(a)y ′ + siny = t (b) y ′ = t2(y − t) (c) y ′ + ety = t10.

Solution (a) Since this equation solves asin y term, it is not linear iny.

(b) and (c) Since these equations have no nonlinear terms iny, they are linear.
11 The product rule gives what derivative forete−t ? This function is constant. Att = 0

this constant is1. Thenete−t = 1 for all t.

Solution (ete−t) ′ = ete−t − ete−t = 0 so ete−t is a constant(1).
12 dy/dt = y + 1 is not solved byy = et + t. Substitute thaty to show it fails. We can’t

just add the solutions toy ′ = y andy ′ = 1. What numberc makesy = et + c into a
correct solution ?

Solution
dy
dt = y + 1 d(et+c)

dt = et + c+ 1

Wrong d(et+t)
dt 6= et + t+ 1 Correct c= −1

Problem Set 1.3, page 15

1 Set t = 2 in the infinite series fore2. The sum must bee times e, close to7.39.
How many terms in the series to reach a sum of7 ? How many terms to pass7.3 ?

Solution The series fore2 hast = 2 : e2 = 1 + 2 +
22

2!
+

23

3!
+

24

4!
+ · · ·

If we include five terms we get:e2 ≈ 1 + 2 + 2 +
8

6
+

16

24
= 7.0

If we include seven terms we get:e2 ≈ 1+2+
22

2!
+
23

3!
+
24

4!
+

25

120
+

26

720
= 7.35556.
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2 Starting fromy(0) = 1, find the solution tody/dt = y at timet = 1. Starting from
that y(1), solve dy/dt = −y to time t = 2. Draw a rough graph ofy(t) from
t = 0 to t = 2. What does this say aboute−1 timese ?

Solution y = et up to t = 1, so thaty(1) = e. Then for t > 1 the equation
dy/dt = −y hasy = Ce−t. At t = 1, this becomese = Ce−1 so thatC = e2.
The solution ofdy/dt = −y up to t = 2 is y = e2−t. At t = 2 we have returned to
y(2) = y(0) = 1. Then(e−1)(e) = 1.

3 Start withy(0) = $5000. If this grows bydy/dt = .02y until t = 5 and then jumps to
a = .04 per year untilt = 10, what is the account balance att = 10 ?

Solution
t ≤ 5 :

dy

dt
= .02y 5 ≤ t ≤ 10 :

dy

dt
= .04y gives y = Ce.04t

y = 5000e.02t y(5) = Ce−2 = 5000e.1 gives C = 5000e−.1

y(5) = 5000e.1 y(t) = 5000(e.04t−0.1)
y(10) = 5000e.3

4 Change Problem 3 to start with$5000 growing atdy/dt = .04y for the first five years.
Then drop toa = .02 per year until yeart = 10. What is the account balance att = 10?

Solution
dy

dt
= .04y

dy

dt
= .02y for 5 ≤ t ≤ 10

y = C1e
.04t y = C2e

.02t

y(0) = C1 = 5000 y(5) = C2e
.1 = 5000e.2

y(t) = 5000e.04t for t ≤ 5 C2 = 5000e.1

y(5) = 5000e.2 y(t) = 5000(e.02t+0.1)
y(10) = 5000e.3 = same as in 1.3.3.

Problems 5–8 are abouty = eat and its infinite series.
5 Replacet by at in the exponential series to findeat :

eat = 1 + at+
1

2
(at)2 + · · ·+ 1

n !
(at)n + · · ·

Take the derivative of every term (keep five terms). Factor out a to show that
the derivative ofeat equalsaeat. At what timeT doeseat reach2 ?

Solution The derivative of this series is obtained by differentiating the terms individ-
ually:

dy

dt
= a+ at+ · · ·+ 1

(n− 1)!
antn−1 + · · ·

= a

(
1 + at+

1

2
(at)2 + · · ·+ 1

(n− 1)!
an−1tn−1 + · · ·

)
= aeat

.If eaT = 2 then aT = ln2 andT =
ln2
a

.

6 Start fromy′ = ay. Take the derivative of that equation. Take thenth derivative.
Construct the Taylor series that matches all these derivatives att = 0, starting from
1 + at + 1

2 (at)
2. Confirm that this series fory(t) is exactly the exponential series for

eat.

Solution The derivative ofy ′ = ay is y ′′ = ay ′ = a2y. The next derivative is
y ′′′ = ay ′′ which isa3y. Wheny(0) = 1, the derivatives att = 0 area, a2, a3, . . . so

the Taylor series isy(t) = 1 + at+
1

2
a2t2 + · · · = eat.
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7 At what timest do these events happen ?
(a) eat = e (b) eat = e2 (c) ea(t+2) = eate2a.

Solution

(a)eat = e at t = 1/a.

(b) eat = e2 at t = 2/a.

(c) ea(t+2) = eate2a at all t.

8 If you multiply the series foreat in Problem5 by itself you should get the series for
e2at. Multiply the first 3 terms by the same3 terms to see the first3 terms ine2at.

Solution (1 + at+
1

2
a2t2)(1 + at+

1

2
a2t2) = 1 + 2at+

(
1 +

1

2
+

1

2

)
a2t2 + · · ·

This agrees withe2at = 1 + 2at+
1

2
(2at)2 + · · ·

9 (recommended) Findy(t) if dy/dt = ay and y(T ) = 1 (instead ofy(0) = 1).

Solution
dt

dt
= ay gives y(t) = Ceat. When CeaT = 1 at t = T, this gives

C = e−aT and y(t) = ea(t−T).

10 (a) If dy/dt = (ln 2)y, explain whyy(1) = 2y(0).

(b) If dy/dt = −(ln 2)y, how isy(1) related toy(0) ?

Solution

(a)
dy

dt
= (ln 2)y → y(t) = y(0)et(ln 2) → y(1) = y(0)eln 2 = 2y(0).

(b)
dy

dt
= −(ln 2)y → y(t) = y(0)e−t(ln 2) → y(1) = y(0)e−ln 2 =

1

2
y(0).

11 In a one-year investment ofy(0) = $100, suppose the interest rate jumps from
6% to 10% after six months. Does the equivalent rate for a whole year equal 8%,
or more than8%, or less than8% ?

Solution We solve the equation in two steps, first fromt = 0 to t = 6 months, and
then fromt = 6 months tot = 12 months.
y(t) = y(0)eat y(t) = y(0.5)eat

y(0.5) = $100e0.06×0.5 = $100e.03 y(1) = $103.05e0.1×0.5 = $103.05e.05

= $103.05 = $108.33
If the money was invested for one year at 8% the amount att = 1 would be:

y(1) = $100e0.08×1 = $108.33.

The equivalent rate for the whole year is indeed exactly 8%.
12 If you invest y(0) = $100 at 4% interest compounded continuously, then

dy/dt = .04y. Why do you have more than$104 at the end of the year ?

Solution The quantitative reason for why this is happening is obtained from solving
the equation:

dy

dt
= 0.04y → y(t) = y(0)e.04t

y(1) = 100e0.04 ≈ $104.08.
.The intuitive reason is thatthe interest accumulates interest.
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13 What linear differential equationdy/dt = a(t)y is satisfied byy(t) = ecos t ?

Solution The chain rule forf(u(t)) hasy(t) = f(u) = eu andu(t) = sin t :
dy

dt
=

df(u(t))

dt
=

df

dt

du

dt
= eu cos t = y cos t. Thena(t) = cos(t).

14 If the interest rate isa = 0.1 per year iny′ = ay, how many years does it take for
your investment to be multiplied bye ? How many years to be multiplied bye2 ?

Solution If the interest rate isa = 0.1, theny(t) = y(0)e0.1t. For t = 10, the value is
y(t) = y(0) e. For t = 20, the value isy(t) = y(0) e2.

15 Write the first four terms in the series fory = et
2

. Check thatdy/dt = 2ty.

Solution
y = et

2

= 1 + t2 +
1

2
t4 +

1

6
t6 + · · ·

dy

dt
= 2t+ 2t3 + t5 + · · · = 2t

(
1 + t2 +

1

2
t4 + · · ·

)
= 2tet

2

.

16 Find the derivative ofY (t) =
(
1 + t

n

)n
. If n is large, thisdY/dt is close toY !

Solution The derivative ofY (t) =
(
1 + t

n

)n
with respect tot is n( 1n )

(
1 + t

n

)n−1
=(

1 + t
n

)n−1
. For largen the extra factor1 + t

n is nearly1, anddY/dt is nearY .

17 (Key to future sections). Suppose the exponent iny = eu(t) is u(t) = integral ofa(t).
What equationdy/dt = y does this solve ? Ifu(0) = 0 what is the starting
valuey(0) ?

Solution Differentiatingy = e
∫
a(t) dt with respect tot by the chain rule yieldsy ′ =

a(t)e
∫
a(t) dt. Thereforedy/dt = a(t)y. If u(0) = 0 we havey(0) = eu(0) = 1.

18 The Taylor series comes fromed/dxf(x), when you write outed/dx = 1 + d/dx +
1
2 (d/dx)

2 + · · · as a sum of higher and higher derivatives. Applying the series tof(x)
atx = 0 would give the valuef + f ′ + 1

2f
′′ + · · · atx = 0.

The Taylor series says : This is equal tof(x) atx = .

Solution
f(1) = f(0) + 1f ′(0) +

1

2
12f ′′(0) + · · · This is exactly

f(1) =

(
1 +

d

dx
+

1

2

(
d

dx

)2

+ · · ·
)
f(x) at x = 0.

19 (Computer or calculator, 2.xx is close enough) Find the timet when et = 10.
The initial y(0) has increased by an order of magnitude—a factor of10. The
exact statement of the answer ist = . At what timet doeset reach100?

Solution The exact time whenet = 10 is t = ln 10. This ist ≈ 2.30 or 2.3026.

Then the time wheneT = 100 isT = ln 100 = ln 102 = 2 ln 10 ≈ 4.605.

Note that the time whenet = 1
10 is t = − ln 10 and not t = 1

ln 10 .

20 The most important curve in probability is the bell-shaped graph of e−t2/2.
With a calculator or computer find this function att = −2,−1, 0, 1, 2. Sketch
the graph ofe−t2/2 from t = −∞ to t = ∞. It never goes below zero.

Solution At t = 1 andt = −1, we havee−t2/2 = e−1/2 = 1/
√
e ≈ .606

At t = 2 andt = −2, we havee−t2/2 = e−2 ≈ .13.
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21 Explain why y1 = e(a+b+c)t is the same asy2 = eatebtect. They both start at
y(0) = 1. They both solve what differential equation ?

Solution The exponent rule is used twice to finde(a+b+c) t = eat+bt+ct = eat+btect =
eatebtect.

This function must solvedy
dt

= (a + b + c)y. The product rule confirms this.

22 For y ′ = y with a = 1, Euler’s first step choosesY1 = (1 + ∆t)Y0. Backward
Euler choosesY1 = Y0/(1 −∆t). Explain why1 + ∆t is smaller than the exacte∆t

and1/(1−∆t) is larger thane∆t. (Compare the series for1/(1− x) with ex.)

Solution 1 + ∆t is certainly smaller thane∆t = 1 +∆t+ 1
2 (∆t)2 + 1

6 (∆t)3 + · · ·
1

1−∆t = 1+∆t+(∆t)2+(∆t)3+ · · · is larger thane∆t, because the coefficients drop
below1 in e∆t.

Problem Set 1.4, page 27

1 All solutions tody/dt = −y + 2 approach the steady state wheredy/dt is zero and
y = y∞ = . That constanty = y∞ is a particular solutionyp.

Which yn = Ce−t combines with this steady stateyp to start fromy(0) = 4?
This question choseyp + yn to bey∞+ transient(decaying to zero).

Solution y∞ = 2 = yp at the steady state whendydt = 0. Thenyn = 2e−t gives
y = yn + yp = 2 + 2e−t = 4 at t = 0.

2 For the same equationdy/dt = −y + 2, choose the null solutionyn that starts from
y(0) = 4. Find the particular solutionyp that starts fromy(0) = 0.
This splitting choosesyn andyp aseaty(0) + integral ofea(t−T )q in equation (4).

Solution For the same equation as 11.4.1,yn = 4e−t has the correcty(0) = 4. Now
yp must be2− 2e−t to start atyp(0) = 0. Of courseyn + yp is still 2 + 2e−t.

3 The equationdy/dt = −2y+8 also has two natural splittingsyS + yT = yN + yP :

1. Steady (yS = y∞) + Transient (yT → 0). What are those parts ify(0) = 6?

2. (y ′

N = −2yN from yN(0) = 6) + (y ′

P = −2yP + 8 starting fromyP (0) = 0).

Solution 1. yS = 4 (when dy
dt = 0: steady state) andyT = 2e−2t.

2. yN = 6e−2t andyP = 4− 4e−2t starts atyP (0) = 0.

AgainyS + yT = yN + yP : two splittings ofy.
4 All null solutions tou− 2v = 0 have the form(u, v) = (c, ).

One particular solution tou− 2v = 3 has the form(u, v) = (7, ).

Every solution tou− 2v = 3 has the form(7, ) + c(1, ).

But also every solution has the form(3, ) + C(1, ) for C = c+ 4.

Solution All null solutions tou− 2v = 0 have the form(u, v) = (c, 1
2
c).

One particular solution tou− 2v = 3 has the form(u, v) = (7, 2).

Every solution tou− 2v = 3 has the form(7, 2) + c(1, 1
2
).

But also every solution has the form(3, 0) + C(1, 1
2
). HereC = c+ 4.
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5 The equationdy/dt = 5 with y(0) = 2 is solved byy = . A natural split-
ting yn(t) = andyp(t) = comes fromyn = eaty(0) andyp =

∫
ea(t−T )5 dT .

This small example hasa = 0 (soay is absent) andc = 0 (the source isq = 5e0t).
Whena = c we have “resonance.” A factort will appear in the solutiony.

Solution dy/dt = 5 with y(0) = 2 is solved byy = 2+5t. A natural splittingyn(t) =
2 andyp(t) = 5t comes fromyn(0) = y(0) andyp =

∫
ea(t−s)5ds = 5t(sincea = 0).

Starting with Problem 6, choose the very particularyp that starts from yp(0) = 0.

6 For these equations starting aty(0) = 1, find yn(t) andyp(t) andy(t) = yn + yp.
(a) y′ − 9y = 90 (b) y′ + 9y = 90

Solution (a) Since the forcing function isa we use equation 6:

yn(t) = e9t

yp(t) = 90
9 (e9t − 1) = 10(e9t − 1)

y(t) = yn(t) + yp(t) = e9t + 10(e9t − 1) = 11e9t − 10.
.(b) We again use equation 6, noting thata = −9. The steady state will bey∞ = 10.

yn(t) = e−9t

yp(t) = 90
−9 (e

−9t − 1)

y(t) = yn(t) + yp(t) = e−9t − 10(e−9t − 1) = 10− 9e−9t.

7 Find a linear differential equation that producesyn(t) = e2t andyp(t) = 5(e8t − 1).

Solution yn = e2t needsa = 2. Thenyp = 5(e8t − 1) starts fromyp(0) = 0,
telling us thaty(0) = yn(0) = 1. Thisyp is a response to the forcing term(e8t + 1).
So the equation fory = e2t + 5e8t − 5 must bedy

dt = 2y + (e8t + 1). Substitutey :

2e2t + 40e8t = 2e2t + 10e8t − 10 + (e8t + 1).
Comparing the two sides,C = 30 andD = 10. Harder than expected.

8 Find a resonant equation(a = c) that producesyn(t) = e2t andyp(t) = 3te2t.

Solution Clearlya = c = 2. The equation must bedy/dt = 2y +Be2t. Substituting
y = e2t + 3te2t gives2e2t + 3e2t + 6te2t = 2(e2t + 3te2t) +Be2t and thenB = 3.

9 y ′ = 3y + e3t hasyn = e3ty(0). Find the resonantyp with yp(0) = 0.

Solution The resonantyp has the formCte3t starting fromyp(0) = 0. Substitute in
the equation:
dy

dt
= 3y + e3t is Ce3t + 3Cte3t = 3Cte3t + e3t and thenC = 1.

Problems 10–13 are abouty′ − ay = constant sourceq.

10 Solve these linear equations in the formy = yn + yp with yn = y(0)eat.

(a) y′ − 4y = −8 (b) y′ + 4y = 8 Which one has a steady state ?

Solution (a) y ′ − 4y = −8 has a = 4 and yp = 2. But 2 is not a steady state at
t = ∞ because the solutionyn = y(0)e4t is exploding.

(b) y ′ + 4y = 8 has a = −4 and againyp = 2. This 2 is a steady state because
a < 0 andyn → 0.
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11 Find a formula fory(t) with y(0) = 1 and draw its graph. What isy∞ ?

(a) y′ + 2y = 6 (b) y′ + 2y = −6

Solution (a) y′ + 2y = 6 has a = −2 and y∞ = 3 and y = y(0)e−2t + 3.

(b) y′ + 2y = −6 has a = −2 and y∞ = −3 and y = y(0)e−2t − 3.
12 Write the equations in Problem 11 asY ′ = −2Y with Y = y − y∞. What isY (0)?

Solution With Y = y − y∞ andY (0) = y(0) − y∞, the equations in 1.4.11 are
Y ′ = −2Y . (The solutions areY (t) = Y (0)e−2t which is y(t) − y∞ = (y(0) −
y∞)e−2t or y(t) = y(0)e−2t + y∞(1− e−2t).

13 If a drip feedsq = 0.3 grams per minute into your arm, and your body eliminates the
drug at the rate6y grams per minute, what is the steady state concentrationy∞ ? Then
in = out andy∞ is constant. Write a differential equation forY = y − y∞.

Solution The steady state hasyin = yout or 0.3 = 6y∞ or y∞ = 0.05. The equa-
tion for Y = y − y∞ is Y ′ = aY = −6Y . The solution isY (t) = Y (0)e−6t or
y(t) = y∞ + (y(0)− y∞)e−6t.

Problems 14–18 are abouty′ − ay = step functionH(t − T ) :
14 Why isy∞ the same fory′ + y = H(t− 2) andy′ + y = H(t− 10)?

Solution Noticea = −1. The steady states are the same because the step functions
H(t− 2) andH(t− 10) are the same after timet = 10.

15 Draw the ramp function that solvesy ′ = H(t− T ) with y(0) = 2.

Solution The solution is a ramp withy(t) = y(0) = 2 up to timeT and then
y(t) = 2 + t− T beyond timeT .

16 Findyn(t) andyp(t) as in equation (10), with step function inputs starting atT = 4.

(a) y′ − 5y = 3H(t− 4) (b) y′ + y = 7H(t− 4) (What isy∞ ? )

Solution (a) yp(t) =
3
5 (e

5(t−4) − 1) for t ≥ 4 with no steady state.

(b) yp(t) =
7
−1 (e

−(t−4) − 1) for t ≥ 4 with a = −1 and y∞ = 7.

17 Suppose the step function turns on atT = 4 and off atT = 6. Then q(t) =
H(t − 4) − H(t − 6). Starting fromy(0) = 0, solvey′ + 2y = q(t). What is
y∞ ?

Solution The solution has 3 parts. Firsty(t) = y(0) = 0 up tot = 4. ThenH(t− 4)
turns on andy(t) = 1

−2 (e
−2(t−4) − 1). This reachesy(6) = − 1

2 (e
−4 − 1) at time

t = 6. After t = 6, the source is turned off and the solution decays to zero:y(t) =
y(6)e−2(t−6).

Method 2: We use the same steps as in equations (8) - (10), noting thaty(0) = 0.

(e2ty) ′ = e2tH(t− 4)− e2tH(t− 6)

e2ty(t)− e2ty(0) =

t∫

4

e2xdx−
t∫

6

e2xdx

e2ty(t) = − 1
2 (e

2·4 − e2t)H(t− 4) + 1
2 (e

2·6−e2t)H(t− 6)

y(t) = − 1
2 (e

8−2t − 1)H(t− 4) + 1
2 (e

12−2t − 1)H(t− 6)
.
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For t → ∞, we have:

y∞ =
1

2
(e8−2·∞ − 1)H(t− 4) +

1

2
(e12−2·∞ − 1)H(t− 6) = 0.

18 Supposey′ = H(t− 1) +H(t− 2) +H(t− 3), starting aty(0) = 0. Findy(t).

Solution We integrate both sides of the equation.
t∫

0

y ′(t)dt =

t∫

0

(H(t− 1) +H(t− 2) +H(t− 3))dt

y(t)− y(0) = R(t− 1) +R(t− 2) +R(t− 3)

y(t) = R(t− 1) +R(t− 2) +R(t− 3)

.R(t) is the unit ramp function= max(0, t).

Problems 19–25 are about delta functions and solutions toy′ − ay = q δ(t − T ).

19 For all t > 0 find these integralsa(t), b(t), c(t) of point sources and graphb(t) :

(a)

t∫

0

δ(T −2) dT (b)

t∫

0

(δ(T − 2)− δ(T − 3)) dT (c)

t∫

0

δ(T −2)δ(T −3)dT

Solution For t < 2, the spike inδ(t− 2) does not appear in the integral from0 to t :

(a)

t∫

0

δ(T − 2)dT =

{
0 if t < 2
1 if t ≥ 2

The integral (b) equals1 for 2 ≤ t < 3. This is the differenceH(t− 2)−H(t− 3).
The integral (c) iszerobecauseδ(T − 2)δ(T − 3) is everywhere zero.

20 Why are these answers reasonable ? (They are all correct.)

(a)

∞∫

−∞

etδ(t)dt = 1 (b)

∞∫

−∞

(δ(t))2dt = ∞ (c)

∞∫

−∞

eT δ(t− T )dT = et

Solution (a) The differenceetδ(t)−δ(t) is everywhere zero (notice it is zero att = 0).
So etδ(t) andδ(t) have the same integral (from−∞ to ∞ that integral is1). This
reasoning can be made more precise.

(b) This is the difference between the step functionsH(t − 2) andH(t − 3). So it
equals1 for 2 ≤ t ≤ 3 and otherwise zero.

(c) As in part (a), the difference betweeneT δ(t − T ) andetδ(t− T ) is zero att = T
(and also zero at every othert). So∞∫

−∞

eT δ(t− T )dT = et
∞∫

−∞

δ(t− T )dT = et.

21 The solution toy ′ = 2y + δ(t − 3) jumps up by1 at t = 3. Before and aftert = 3,
the delta function is zero andy grows like e2t. Draw the graph ofy(t) when
(a) y(0) = 0 and (b) y(0) = 1. Write formulas fory(t) before and aftert = 3.
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Solution (a) y(0) = 0 givesy(t) = 0 until t = 3. Theny(3) = 1 from the jump.
After the jump we are solvingy ′ = 2y andy grows exponentially fromy(3) = 1. So
y(t) = e2(t−3).

(b) y(0) = 1 givesy(t) = e2t until t = 3. The jump producesy(3) = e6 + 1. Then
exponential growth givesy(t) = e2(t−3)(e6 + 1) = e2t + e2(t−3). One part grows
from t = 0, one part grows fromt = 3 as before.

22 Solve these differential equations starting aty(0) = 2 :

(a)y′ − y = δ(t− 2) (b) y′ + y = δ(t− 2). (What isy∞ ?)

Solution (a) y ′ − y = δ(t − 2) starts withy(t) = y(0)et = 2et up to the jump at
t = 2. The jump brings another term intoy(t) = 2et + et−2 for t ≥ 2. Note the jump
of et−2 = 1 at t = 2.

(b) y ′ + y = δ(t − 2) starts withy(t) = y(0)e−t = 2e−t up to t = 2. The jump
of 1 at t = 2 starts another exponentiale−(t−2) (decaying becausea = −1). Then
y(t) = 2e−t + e−(t−2).

23 Solvedy/dt = H(t− 1) + δ(t− 1) starting fromy(0) = 0 : jump and ramp.

Solution Nothing happens andy(t) = 0 until t = 1. ThenH(t − 1) starts a ramp
in y(t) and there is a jump fromδ(t − 1). So y(t) = ramp + constant =
max(0, t− 1) + 1.

24 (My small favorite) What is the steady statey∞ for y ′ = −y + δ(t− 1) +H(t− 3)?

Solution dy/dt = 0 at the steady stateyss. Then−y + δ(t − 1) + H(t − 3) is
−y∞ + 0+ 1 andy∞ = 1.

25 Which q andy(0) in y′ − 3y = q(t) produce the step solutiony(t) = H(t− 1)?

Solution We simply substitute the particular solutiony(t) = H(t−1) into the original
differential equation withy(0) = 0) :

δ(t− 1)− 3H(t− 1) = q(t)

Notice howδ(t− 1) in q(t) produces the jumpH(t− 1) in y, and then−3H(t− 1) in
q(t) cancels the−3y and keepsdy/dt = 0 aftert = 1.

Problems 26–31 are about exponential sourcesq(t) = Qect and resonance.
26 Solve these equationsy′ − ay = Qect as in (19), starting from y(0) = 2 :

(a) y′ − y = 8e3t (b) y′ + y = 8e−3t (What isy∞ ?)

Solution
(a) a = 1, c = 3 and y(0) = 2 (b) a = −1, c = −3 and y(0) = 2

y(t) = y(0)eat + 8
ect − eat

c− a
y(t) = y(0)eat + 8

e−3t − e−t

c− a

y(t) = 2et + 8
e3t − et

3− 1
y(t) = 2e−t + 8

e−3t − e−t

−3− (−1)

y(t) = 2et + 4(e3t − et) y(t) = 2e−t − 4(e−3t − e−t)

y(t) = 4e3t − 2et y(t) = −4e−3t + 2e−t

y goes to∞ as t → ∞ y goes to0 as t → ∞
.
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27 Whenc = 2.01 is very close toa = 2, solvey′ − 2y = ect starting fromy(0) = 1. By
hand or by computer, draw the graph ofy(t) : near resonance.

Solution We substitute the valuesa = 2, c = 2.01 and y(0) = 1 into equation (18) :

y(t) = y(0)eat +
ect − eat

c− a

y(t) = 2eat +
e2t − e2.01t

2.01− 2

y(t) = 2e2t + 100(e2t − e2.01t)

y(t) = 101e2t − 100e2.01t

The graph of this function shows the “near resonance” whenc ≈ a.

28 Whenc = 2 is exactly equal toa = 2, solvey′ − 2y = e2t starting fromy(0) = 1.
This is resonance as in equation (20). By hand or computer, draw the graph ofy(t).

Solution We substitutea = 2, c = 2 (resonance) andy(0) = 1 into equation (19) :
y(t) = y(0)eat + teat = e2t + te2t.

29 Solvey′ + 4y = 8e−4t + 20 starting fromy(0) = 0. What isy∞ ?

Solution We havea = −4, c = −4 and y(0) = 0. Equation (19) with resonance
leads to8te−4t. The constant source20 leads to20(e−4t − 1). By linearity
y(t) = 8te−4t + 20(e−4t − 1). The steady state isy∞ = −20.

30 The solution toy′ − ay = ect didn’t come from the main formula (4), but it could.
Integratee−asecs in (4) to reach the very particular solution(ect − eat)/(c− a).
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Solution
y(t) = eaty(0) + eat

t∫

0

e−aT q(T )dT

= eaty(0) + eat
t∫

0

e−aT ecTdT

= eaty(0) + eat
t∫

0

e(c−a)TdT

= eaty(0) + eat
(
e(c−a)t − e0

c− a

)

= eaty(0) +
ect − eat

c− a
= yn + yvp

.31 The easiest possible equationy′ = 1 has resonance! The solutiony = t shows the
factort. What number is the growth ratea and also the exponentc in the source ?

Solution The growth rate iny ′ = 1 or dy/dt = e0t is a = 0. The source isect

with c = 0. Resonancea = c. The resonant solutiony(t) = teat is y = t, certainly
correct for the equationdy/dt = 1.

32 Suppose you know two solutionsy1 andy2 to the equationy ′ − a(t)y = q(t).

(a) Find a null solution toy ′ − a(t)y = 0.
(b) Find all null solutionsyn. Find all particular solutionsyp.

Solution (a) y = y1 − y2 will be a null solution by linearity.

(b) y = C(y1−y2) will give all null solutions. Theny = C(y1−y2)+y1 will give all
particular solutions. (Alsoy = c(y1 − y2) + y2 will also give all particular solutions.)

33 Turn back to the first page of this Section 1.4. Without looking, can you write down a
solution toy ′ − ay = q(t) for all four source functionsq,H(t), δ(t), ect ?

Solution Equations (5), (7), (14), (19).

34 Three of those sources in Problem33 are actually the same, if you choose the right
values forq andc andy(0). What are those values ?

Solution The sourcesq = 1 andq = H(t) andq = e0t are all the same fort ≥ 0.

35 What differential equationsy ′ = ay+q(t)would be solved byy1(t) andy2(t) ? Jumps,
ramps, corners—maybe harder than expected (math.mit.edu/dela/Pset1.4).

a

0 1 2

y1(t) y2(t)

e
t
− 1 e

2−t
− 1

0 1 2



14 Chapter 1. First Order Equations

Solution (a)
dy1
dt

= 1− δ(t− 1)− δ(t− 2) with a = 0.

(b)
dy2
dt

= y2 + 1 up tot = 1. Add in−2e δ(t− 1) to drop the slope frome to −e at

t = 1. After t = 1 we needdy2/dt = −y2 − 1 to keepy2 = e2−t − 1.

Problem Set 1.5, page 37

Problems 1-6 are about the sinusoidal identity (9). It is stated again in Problem 1.

1 These steps lead again to the sinusoidal identity. This approach doesn’t start with
the usual formula cos(ωt − φ) = cos ωt cos φ + sin ωt sin φ from trigonometry.
The identity says :

If A + iB = Reiφ then A cosωt + B sinωt = R cos(ωt − φ).

Here are the four steps to find that real part ofRei(ωt−φ). Explain Step3 whereRe−iφ

equalsA− iB:

R cos (ωt − φ) = Re
[
Rei(ωt−φ)

]
= Re

[
eiωt(Re−iφ)

]
= (what isRe−iφ ?)

= Re[(cos ωt+ i sin ωt) (A− iB)] = A cosωt+ B sinωt.

Solution The key point is that ifA+ iB = Reiφ thenA− iB = Re−iφ (the complex
conjugate).

2 To expresssin 5t+ cos 5t asR cos (ωt− φ), what areR andφ?

Solution The sinusoidal identity hasA = 1, B = 1, and ω = 5. Therefore:

R2 = A2+B2 = 2 → R =
√
2 and tanφ =

1

1
→ φ =

π

4
. Answer

√
2 cos

(
5t− π

4

)
.

3 To express6 cos 2t+ 8 sin 2t asR cos (2t− φ), what areR and tanφ andφ ?

Solution Use the Sinusoidal Identity withA = 6, B = 8 and ω = 2.

R2 = A2 +B2 = 62 + 82 = 100 and R = 10

tanφ = B
A = 8

6 = 4
3 and φ is in the positive quadrant0 to π

2

(
not π to 3π

2

)

6 cos(2t) + 8 sin(2t) = 10 cos

(
2t− arctan

(
4

3

))

4 Integratecos ωt to find (sin ωt)/ω in this complex way.

(i) dyreal/dt = cosωt is the real part ofdycomplex/dt = eiωt.

(ii) Take the real part of the complex solution.

Solution (i) The complex equationy ′ = eiωt leads toy =
eiωt

iω
.

(ii) Take the real part of that solution (since the real part of the right side iscosωt).

Re
eiωt

iω
= Re

[
cosωt

iω
+

sinωt

ω

]
=

sinωt

ω
.
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5 The sinusoidal identity forA = 0 andB = −1 says that− sinωt = R cos(ωt − φ).
FindR andφ.

SolutionR2 = A2 +B2 = 02 + 12 = 1 → R = 1

tanφ = 1
0 = ∞ → φ = π

2 or 3π
2 : Here it is 3π

2 , since A+ iB = −i

Therefore we have
SOLUTION: − sinωt = cos(ωt− 3π

2 )

CHECK: t = 0 gives 0 = 0, ωt = π
2 gives − 1 = −1.

6 Why is the sinusoidal identity useless for the sourceq(t) = cos t+ sin 2t?

Solution The sinusoidal identity needs the sameω in all terms. But the first term has
ω = 1 while the second term hasω = 2.

7 Write 2+3i asreiφ, so that 1
2+3i =

1
r e

−iφ. Then writey = eiωt/(2+3i) in polar form.
Then find the real and imaginary parts ofy. And also find those real and imaginary parts
directly from(2− 3i)eiωt/(2− 3i)(2 + 3i).

Solution r =
√
22 + 32 =

√
13 and φ = arctan(3/2)

2 + 3i =
√
13 ei arctan(3/2)

y = eiωt/(2 + 3i) =
√
13 ei arctan(3/2)+iωt

Writing this in cartesian (rectangular) form gives
real part=

√
13 cos(arctan(3/2) + ωt) = 2 cos(ωt)− 3 sin(ωt)

imag part=
√
13 sin(arctan(3/2) + ωt) = 3 cos(ωt) + 2 sin(ωt)

.We can also find the real and imaginary parts from:
(2− 3i)eiωt

(2− 3i)(2 + 3i)
=

2− 3i

13
eiωt =

2− 3i

13
(cos(ωt) + i sin(ωt)).

8 Write these functionsA cosωt + B sinωt in the formR cos(ωt − φ) : Right triangle
with sidesA, B, R and angleφ.

(1) cos 3t− sin 3t (2)
√
3 cosπt− sinπt (3) 3 cos(t− φ) + 4 sin(t− φ)

Solution (1) cos 3t− sin 3t =
√
2 cos(3t− 7π

4 ) =
√
2 cos(3t+ π

4 ).

Checkt = 0 : 1 =
√
2 cos(− 7π

4 ) =
√
2 cos(π4 ).

(2)
√
3 cosπt− sinπt = 2 cos(πt+ π

6 ).

Check:(
√
3)2 + (−1)2 = 22 At t = 0 :

√
3 = 2 cos 30 ◦.

(3) 3 cos(t− φ) + 4 sin(t− φ) = 5 cos(t− φ− tan−1 4
3 ).

Problems 9-15 solve real equations using the real formula (3) for M andN .
9 Solvedy/dt = 2y + 3 cos t+ 4 sin t after recognizinga andω. Null solutionsCe2t.

Solution dy
dt = 2y + 3 cos t+ 4 sin t = 2y + 5 cos(t− φ) with tanφ = 4

3 .

Method 1: Look fory = M cos t+N sin t.

Method 2: SolvedYdt = 2Y + 5ei(t−φ) and theny = real part ofY .

Y = 5
i−2e

i(t−φ) = 5
5 (−i− 2)ei(t−φ) and y = −2 cos(t− φ) + sin(t− φ).
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10 Find a particular solution tody/dt = −y − cos 2t.

Solution Substitutey = M cos t+N sin t into the equation to findM andN

−M sin t+N cos t = −M cos t−N sin t− cos 2t

Match coefficients ofcos t andsin t separately to findM andN .

N = −M − 1 and −M = −N give M = N = −1

2
Note: This is called the “method of undetermined coefficients” in Section 2.6.

11 What equationy ′ − ay = A cosωt+B sinωt is solved byy = 3 cos 2t+ 4 sin 2t ?

Solution Clearlyω = 2. Substitutey into the equation:
−6 sin 2t+ 8 cos 2t− 3a cos 2t− 4a sin 2t = A cos 2t+B sin 2t.

Match separately the coefficients ofcos 2t andsin 2t:
A = 8− 3a and B = −6− 4a

.
12 The particular solution toy ′ = y + cos t in Section 4 isyp = et

∫
e−s cos s ds. Look

this up or integrate by parts, froms = 0 to t. Compare thisyp to formula (3).

Solution That integral goes from0 to t, and it leads toyp = 1
2 (sin t− cos t+ et)

If we use formula (3) witha = 1, ω = 1, A = 1, B = 0 we get

M = −aA+ ωB

ω2 + a2
=

−1

2
N =

ωA− aB

ω2 + a2
=

1

2

This solutiony = M cos t+N sin t =
− cos t+ sin t

2
is a different particular solution

(not starting fromy(0) = 0). The difference is a null solution12e
t.

13 Find a solutiony = M cos ωt+N sin ωt to y ′ − 4y = cos 3t+ sin 3t.

Solution Formula (3) witha = 4, ω = 3, A = B = 1 gives

M = − 4 + 3

9 + 16
= − 7

25
N =

3− 4

9 + 16
= − 1

25
.

14 Find the solution toy ′ − ay = A cos ωt+B sin ωt starting from y(0) = 0.

Solution One particular solutionM cosωt + N sinωt comes from formula (3). But
this starts fromyp(0) = M . So subtract off the null solutionyn = Meat to get the very
particular solutionyvp = yp − yn that starts fromyvp(0) = 0.

15 If a = 0 show thatM andN in equation (3) still solvey ′ = A cos ωt+B sin ωt.

Solution Formula (3) still applies witha = 0 and it gives

M = −ωB

ω2
N =

ωA

ω2
y = −B

ω
cosωt+

A

ω
sinωt.

This is the correct integral ofA cosωt+B sinωt in the differential equation.
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Problems 16-20 solve the complex equationy ′ − ay = Rei(ωt−φ).

16 Write down complex solutionsyp = Y eiωt to these three equations :
(a) y ′ − 3y = 5e2it (b) y ′ = Rei(ωt−φ) (c) y ′ = 2y − eit

Solution (a) y ′ − 3y = 5e2it hasiω Y eiωt − 3Y eiωt = 5e2it.

Soω = 2 andY = 5
2i−3 .

(b) y ′ = Rei(ωt−φ) has iωY eiωt = Rei(ωt−φ). SoY = R
iω e

−iφ and the solution is
y = Y eiωt = R

iω e
i(ωt−φ).

(c) y ′ = 2y − eit has ω = 1 and iY eit = 2Y eit − e−it.

ThenY = −1
i−2 = 1

2−i =
2+i
5 andy = Y eit.

17 Find complex solutionszp = Zeiωt to these complex equations :
(a)z ′ + 4z = e8it (b) z ′ + 4iz = e8it (c) z ′ + 4iz = e8t

Solution (a) z ′ + 4z = e8it has z = Ze8it with 8iZ + 4Z = 1 and Z = 1
4+8i =

4−8i
16+64 = 1

20 (1− 2i).

(b) z ′ + 4iz = e8it is like part (a) but4 changes to4i. ThenZ = 1
4i+8i =

1
12i = − i

12 .

(c) z ′ + 4iz = e8t has z = Ze8t. Then 8Ze8t + 4iZe8t gives Z = 1
8+4i =

8−4i
82+42 .

18 Start with the real equationy ′−ay = R cos (ωt−φ). Change to the complex equation
z ′ − az = Rei(ωt−φ). Solve forz(t). Then take its real partyp = Rez.

Solution Putz = Zei(ωt−φ) in the complex equation to findZ:

iωZ − aZ = R givesZ =
R

−a+ iω
=

R(−a− iω)

a2 + ω2
.

The real part ofz = Z(cos(ωt− φ) + i sin(ωt− φ)) is
R

a2+ω2 (−a cos(ωt− φ) + ω sin(ωt− φ)).

19 What is the initial valueyp(0) of the particular solutionyp from Problem 18 ?
If the desired initial value isy(0), how much of the null solutionyn = Ceat

would you add toyp ?

Solution That solution to 18 starts fromyp(0) = R
a2+ω2 (−a cos(−φ)+ω sin(−φ)) at

t = 0. So subtract that number timeseat to get the very particular solution that starts
from yvp(0) = 0.

20 Find the real solution toy ′−2y = cos ωt starting fromy(0) = 0, in three steps : Solve
the complex equationz ′ − 2z = eiωt, take yp = Rez, and add the null
solutionyn = Ce2t with the rightC.

Solution Step 1.z ′ − 2Z = eiωt is solved byz = Zeiωt with iωZ − 2Z = 1 and
Z = 1

−2+iω = −2−iω
4+ω2 .

Step 2. The real part ofZeiωt is yp = 1
4+ω2 (−2 cosωt+ ω sinωt).

Step 3. yp(0) = −2
4+ω2 so yvp = yp + 2

4+ω2 e
2t includes the rightyn = Ce2t for

yvp(0) = 0.
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Problems 21-27 solve real equations by making them complex.First a note onα.

Example 4 wasy ′ − y = cos t − sin t, with growth ratea = 1 and frequencyω = 1.
The magnitude ofiω − a is

√
2 and the polar angle hastanα = −ω/a = −1. Notice :

Bothα = 3π/4 andα = −π/4 have that tangent! How to choose the correct angleα ?
The complex numberiω − a = i− 1 is in thesecond quadrant. Its angle isα = 3π/4.

We had to look at the actual number and not just the tangent of its angle.

21 Find r andα to write eachiω − a asreiα. Then write1/reiα asGe−iα.
(a)

√
3 i+ 1 (b)

√
3 i− 1 (c) i−

√
3

Solution (a)
√
3i + 1 is in the first quadrant (positive quarter0 ≤ θ ≤ π/2) of the

complex plane. The angle with tangent
√
3/1 is 60 ◦ = π/3. The magnitude of

√
3i+1

is r = 2. Then
√
3i+ 1 = 2eiπ/3.

(b)
√
3i − 1 is in the second quadrantπ/2 ≤ θ ≤ π. The tangent is−

√
3, the angle is

θ = 2π/3, the number is2e2πi/3.

(c) i −
√
3 is also in the second quadrant (left from zero and up). Now thetangent

is −1/
√
3, the angle isθ = 150 ◦ = 5π/6. The magnitude is still2, the number is

2e5πi/6.

22 UseG andα from Problem 21 to solve (a)-(b)-(c). Then take the real partof each
equation and the real part of each solution.
(a) y ′ + y = ei

√
3t (b) y ′ − y = ei

√
3t (c) y ′ −

√
3y = eit

Solution (a) y ′ + y = ei
√
3t is solved byy = Y ei

√
3t wheni

√
3Y + Y = 1. Then

Y = 1√
3i+1

= 1
2e

−iπ/3 from Problem 21(a). The real partyreal = 1
2 cos(

√
3t − π/3)

of Y ei
√
3t solves the real equationy ′

real + yreal = cos(
√
3t).

(b) y ′−y = ei
√
3t is solved byy = Y ei

√
3t wheni

√
3Y −Y = 1. ThenY = 1

2e
−2πi/3

from Problem 21(b). the real partyreal = 1
2 cos(

√
3t − 2π/3) solves the real equation

y ′

real − yreal = cos(
√
3t).

(c) y ′ −
√
3y = eit is solved byy = Y eit when iY −

√
3Y = 1. ThenY =

1
2e

−5πi/6 from Problem 21(c). The real partyreal = 1
2 cos(t − 5π/6) of Y eit solves

yreal −
√
3yreal = cos t.

23 Solvey ′ − y = cos ωt + sin ωt in three steps : real to complex, solve complex, take
real part. This is an important example.

Solution Note: I intended to chooseω = 1. Theny ′ − y = cos t + sin t has the
simple solutiony = − sin t. I will apply the 3 steps to this case and then to the harder
problem for anyω.

(1) FindR andφ in the sinusoidal identity to write cosωt + sin ωt as the real part of
Rei(ωt−φ). This is easy for anyω.

[
tanφ =

1

1
so φ =

π

4

]
cosωt+ sinωt =

√
2 cos

(
ωt − π

4

)

(2) Solve y ′ − y = eiωt by y = Ge−iαeiωt. Multiply by Re−iφ to solve
z ′ − z = Rei(ωt−φ).
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ω = 1 y ′ − y = eit hasy = Y eit with iY − Y = 1. ThenY = 1
i−1 = 1√

2
e3πi/4 =

Ge−iα.

z =
(√

2ei(t−π/4)
) (

1√
2
e3πi/4

)
= eiteπi/2 = ieit. The real part ofz is y = − sin t.

Any ω y ′ − y = eiωt leads toiωY − Y = 1 andY =
1

iω − 1
=

1
√
1 + ω2

e−iα

with tanα = ω. Thenz(t) =
(

1
1+ω2 e

−iα
) (√

2ei(ωt−π/4)
)
.

(3) Take the real party(t) = Rez(t). Check thaty ′ − y = cos ωt+ sin ωt.

y(t) = Rez(t) =
√
2

1+ω2 cos(ωt − α − π
4 ). Now we needtanα = ω, cosα = 1√

1+ω2
,

sinα = ω√
1+ω2

. Finally y =
√
2

1+ω2 [cos(ωt− π
4 ) cosα+ sin(ωt− π

4 ) sinα].

24 Solvey ′ −
√
3y = cos t+ sin t by the same three steps witha =

√
3 andω = 1.

Solution (1) cos t+ sin t =
√
2 cos(t− π

4 ).

(2) y = Y eit with iY −
√
3Y = 1 and Y = 1

i−
√
3
= 1

2e
−5πi/6 from 1.5.21(c).

Thenz(t) = (
√
2ei(t−π/4))(12e

−5πi/6).

(3) The real part ofz(t) is y(t) = 1√
2
cos(t− 13π

12 ).

25 (Challenge) Solve y ′ − ay = A cos ωt + B sin ωt in two ways. First, find
R andφ on the right side andG andα on the left. Show that the final real solution
RG cos (ωt− φ− α) agrees withM cos ωt+N sin ωt in equation (3).

Solution The first way hasR =
√
A2 +B2 andtanφ = B/A from the sinusoidal

identity. On the left side1/(iω−a) = Ge−iα from equation (8) withG = 1/
√
ω2 + a2

andtanα = −ω/a. Combining, the real solution isy = RG cos(ωt− φ− α).

This agrees withy = M cosωt+N sinωt (equation (3) givesM andN ).

26 We don’t have resonance fory ′ − ay = Reiωt whena andω 6= 0 are real.Why not?
(Resonance appears whenyn = Ceat andyp = Y ect share the exponenta = c.)

Solution Resonance requires the exponentsa andiω to be equal. For reala this only
happens ifa = ω = 0.

27 If you took the imaginary party = Im z of the complex solution toz ′−az = Rei(ωt−φ),
what equation wouldy(t) solve ? Answer first withφ = 0.

Solution Assuminga is real, the imaginary part ofz ′−az = Rei(ωt−φ) is the equation
y ′ − ay = R sin(ωt− φ). With φ = 0 this isy ′ − ay = R sinωt.

Problems 28-31 solve first order circuit equations : not RLC but RL and RC.

+-

V cosωt L R

currentI(t)

+- (+ -

V cosωt R C

q(t) = integral ofI(t)
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28 SolveLdI/dt+ RI(t) = V cos ωt for the currentI(t) = In+ Ip in the RL loop.

Solution Divide the equation byL to producedI/dt−aI = X cosωt with a = −R/L
andX = V/L. In this standard form, equation (3) gives the real solution:

I = M cosωt+N sinωt with M = − aX

ω2 + a2
and N =

ωX

ω2 + a2
.

29 With L = 0 andω = 0, that equation is Ohm’s LawV = IR for direct current.
Thecomplex impedanceZ = R+ iωL replacesR whenL 6= 0 andI(t) = Ieiωt.

LdI/dt+RI(t) = (iωL + R)Ieiωt = V eiωt gives Z I = V .

What is the magnitude|Z| = |R + iωL|? What is the phase angle inZ = |Z|eiθ ?
Is the current|I| larger or smaller because ofL ?

Solution |Z| =
√
R2 + ω2L2 and tan θ = ωL

R .

Since|Z| increases withL, the current|I| must decrease.

30 SolveR
dq

dt
+

1

C
q(t) = V cos ωt for the chargeq(t) = qn + qp in the RC loop.

Solution Dividing byR producesdqdt −aq = X cosωt with a = − 1
RC and X = V

R .

As in Problem 28, equation (3) givesM andN fromω and this a.

31 Why is the complex impedance nowZ = R + 1
iωC ? Find its magnitude|Z|.

Note that mathematics prefersi =
√
−1, we are not conceding yet toj =

√
−1 !

Solution The physicalRC equation for the currentI = dq
dt is RI + 1

C

∫
Idt =

V cosωt = Re(V eiωt).

The solutionI has the same frequency factorXeiωt, and the integral has the factor
eiωt/iω. Substitute into the equation and match coefficients ofeiωt :

RX + 1
iωCX = V isZX = V with impedanceZ = R+ 1

iωC .

Problem Set 1.6, page 50

1 Solve the equationdy/dt = y + 1 up to timet, starting fromy(0) = 4.

Solution We use the formulay(t) = y(0)eat + s
a (e

at − 1) with a = 1 ands = 1 and
y(0) = 4 :

y(t) = 4et + et − 1 = 5et − 1

2 You have$1000 to invest at ratea = 1 = 100%. Compare after one year the result of
depositingy(0) = 1000 immediately with no source (s = 0), or choosingy(0) = 0 and
s = 1000/year to deposit continually during the year. In both casesdy/dt = y + q.

Solution We substitute the values for the different scenarios into the solution formula :

y(t) = 1000et = 1000e at one year

y(t) = 1000et − 1000 = 1000(e− 1) at one year

You get more for depositing immediately rather than during the year.
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3 If dy/dt = y − 1, when does your original deposity(0) = 1
2 drop to zero?

Solution Again we use the equationy(t) = y(0)eat+ s
a (e

at−1) with a = 1 and s =
−1. We sety(t) = 0 and find the timet :

y(t) = y(0)et − et + 1 = et(y(0)− 1) + 1 = 0

et =
1

1− y(0)
= 2 and t = ln 2.

Notice! If y(0) > 1, the balance never drops to zero. Interest exceeds spending.

4 Solve
dy

dt
= y + t2 from y(0) = 1 with increasing source termt2.

Solution Solution formula (12) witha = 1 andy(0) = 1 gives

y(t) = et +

t∫

0

et−ss2ds = et − t(t+ 2) + 2et − 2 = 3et − t(t+ 2)− 2

Check:
dy

dt
= 3et + 2t− 2 equalsy + t2.

5 Solve
dy

dt
=y + et (resonancea = c !) from y(0)=1 with exponential sourceet.

Solution The solution formula witha = 1 and sourceet (resonance!) gives :

y(t) = et +

t∫

0

et−sesds = et +

t∫

0

etds = et(1 + t)

Check by the product rule :
dy

dt
= et(1 + t) + et = y + et.

6 Solve
dy

dt
= y − t2 from an initial deposity(0) = 1. The spendingq(t) = −t2 is

growing. When (if ever) doesy(t) drop to zero ?

Solution

y(t) = et −
t∫

0

et−ss2ds = et + t(t+ 2)− 2et + 2 = −et + t(t+ 2). This definitely

drops to zero (I regret there is no nice formula for that timet).

Check:
dy

dt
= −et + 2t+ 2 = y − t2.

7 Solve
dy

dt
= y − et from an initial deposity(0) = 1. This spending term−et grows at

the sameet rate as the initial deposit (resonance). When (if ever) doesy drop to zero ?

Solution y(t) = et −
t∫

0

et−sesds = et −
t∫

0

etds = et(1− t) (this is zero att = 1)

Check by the product rule :dydt = et(1 − t)− et = y − et.
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8 Solve
dy

dt
= y − e2t from y(0) = 1. At what timeT is y(T ) = 0 ?

Solution y(t) = et −
t∫

0

et−se2sds = et −
t∫

0

et+sds = et + et(1− et) = 2et − e2t

This solution is zero when2et = e2t and2 = et andt = ln 2.

Check thaty = 2et − e2t solves the equation :dydt = 2et − 2e2t = y − e2t.
9 Which solution (y or Y ) is eventually larger ify(0) = 0 andY (0) = 0 ?

dy

dt
= y + 2t or

dY

dt
= 2Y + t.

Solution
dy

dt
= y + 2t

dY

dt
= 2Y + t

y(t) =

t∫

0

et−s · 2sds Y (t) =

t∫

0

e2t−2s · sds

y(t) = 2(−t+ et − 1) Y (t) =
e2t − 1

2
In the long runY (t) is larger thany(t), since the exponent2t is larger thant.

10 Compare the linear equationy ′ = y to the separable equationy ′ = y2 starting from
y(0) = 1. Which solutiony(t) must grow faster ? It grows so fast that it blows up to
y(T ) = ∞ at what timeT ?

Solution
dy

dt
= y

dy

dt
= y2

dy

y
= dt

dy

y2
= dt

y(t)∫

y(0)

du

u
=

t∫

0

dt

y(t)∫

y(0)

du

u2
=

t∫

0

dt

ln(y(t))− ln(y(0)) = t − 1

y(t)
+

1

y(0)
= t

y(t)

y(0)
= et y(t) =

1
1

y(0) − t
=

1

1 − t

y(t) = y(0)et = et

The second solution grows much faster, and reaches a vertical asymptote atT = 1.
11 Y ′ = 2Y has a larger growth factor (becausea = 2) than y ′ = y + q(t).

What sourceq(t) would be needed to keepy(t) = Y (t) for all time ?

Solution dY
dt = 2Y + 1 with for exampleY (0) = y(0) = 0

Y (t) =

t∫

0

e2t−2sds =
e2t − 1

2
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Put this solution intodydt = y + q(t) :

e2t =
e2t − 1

2
+ q(t)

e2t + 1

2
= q(t)

12 Starting fromy(0) = Y (0) = 1, doesy(t) or Y (t) eventually become larger ?
dy

dt
= 2y + et

dY

dt
= Y + e2t.

Solution dy

dt
= 2y + et

y(t) = e2t +

t∫

0

e2t−2sesds = e2t + e2t − et = 2e2t − et

Solving the second equation:
dY

dt
= Y + e2t

Y (t) = et +

t∫

0

et−se2sds = et + e2t − et = e2t is always smaller thany(t).

Questions 13-18 are about the growth factorG(s, t) from time s to time t.

13 What is the factorG(s, s) in zero time ? FindG(s,∞) if a = −1 and ifa = 1.

Solution The solution doesn’t change in zero time soG(s, s) = 1. (Note that the
integral ofa(t) from t = s to t = s is zero. ThenG(s, s) = e0 = 1. We are talking
about change in the null solution, withy ′ = a(t)y. A source term with a delta function
does produce instant change.)

If a = −1, the solution drops to zero att = ∞. SoG(s,∞) = 0.

If a = 1, the solution grows infinitely large ast → ∞. SoG(s,∞) = ∞.
14 Explain the important statement after equation (13) :The growth factorG(s, t) is the

solution toy ′ = a(t)y + δ(t− s). The sourceδ(t− s) deposits$1 at times.

Solution When the source termδ(t − s) deposits $1 at times, that deposit will grow
or decay toy(t) = G(s, t) at timet > s. This is consistent with the main solution
formula (13).

15 Now explain this meaning ofG(s, t) whent is less thans. We go backwards in time.
For t < s, G(s, t) is the value at timet that will grow to equal1 at times.

Whent = 0,G(s, 0) is the “present value” of a promise to pay$1 at times. If the inter-
est rate isa = 0.1 = 10% per year, what is the present valueG(s, 0) of
a million dollar inheritance promised ins = 10 years ?

Solution In fact G(t, s) = 1/G(s, t). In the simplest casey ′ = y of exponential
growth,G(s, t) is the growth factoret−s from s to t. ThenG(t, s) is es−t = 1/et−s.

That numberG(t, s) would be the “present value” at the earlier timet of a promise to
pay $1 at the later times. You wouldn’t need to deposit the full $1 because your deposit
will grow by the factorG(s, t). All you need to have at the earlier time is1/G(s, t),
which then grows to1.
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16 (a) What is the growth factorG(s, t) for the equationy ′ = (sin t)y +Q sin t ?

(b) What is the null solutionyn = G(0, t) to y ′ = (sin t)y wheny(0) = 1 ?

(c) What is the particular solutionyp =
t∫
0

G(s, t) Q sin s ds ?

Solution (a) Growth factor:G(s, t) = exp




t∫

s

sinTdT


 = exp(cos s− cos t).

(b) Null solution:yn = G(0, t) y(0) = e1−cos t.

(c) Particular solution:yp =

t∫

0

ecos s−cos tQ sin s ds

= Qe− cos t [−ecos s]
t
0 = Q

(
e1−cos t − 1

)
. Check yp(0) = Q(e0 − 1) = 0.

17 (a) What is the growth factorG(s, t) for the equationy ′ = y/(t+ 1) + 10 ?

(b) What is the null solutionyn = G(0, t) to y ′ = y/(t+ 1) with y(0) = 1 ?

(c) What is the particular solutionyp = 10
t∫
0

G(s, t) ds ?

Solution (a) G(s, t) = exp




t∫

s

dT

T + 1


 = exp [ln(t+ 1)− ln(s+ 1)] =

t+ 1

s+ 1
.

Null solutionyn = G(0, t) y(0) = exp [ln(t + 1)] = t + 1 since ln(0 + 1) = 0.

Particular solutionyp = 10

t∫

0

exp [ln(t+ 1)− ln(s+ 1)] ds = 10(t+ 1)

t∫

0

ds

s+ 1
=

10(t+ 1) ln(t+ 1).

18 Why isG(t, s) = 1/G(s, t) ? Why isG(s, t) = G(s, S)G(S, t) ?

Solution Multiplying G(s, t)G(t, s) gives the growth factorG(s, s) from going up
to time t and back to times. This factor isG(s, s) = 1. SoG(t, s) = 1/G(s, t).
Multiplying G(s, S)G(S, t) gives the growth factorG(s, t) from going up froms to S
and continuing fromS to t. In the exampley ′ = y, this iseS−set−S = et−s = G(s, t).

Problems 19–22 are about the “units” or “dimensions” in differential equations.

19 (recommended) Ifdy/dt = ay + qeiωt, with t in seconds andy in meters, what are
the units fora andq andω ?

Solution a is in “inverse seconds”—for examplea = .01 per second.

q is in meters.

ω is in “inverse seconds” or 1/seconds—for exampleω = 2π radians per second.
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20 The logistic equationdy/dt = ay − by2 often measures the timet in years (andy
counts people). What are the units ofa andb ?

Solution a is in “inverse years”—for examplea = 1 percent per year.

b is in “inverse people-years” as inb = 1 percent per person per year.

21 Newton’s Law ismd2y/dt2 + ky = F . If the massm is in grams,y is in meters,
andt is in seconds, what are the units of the stiffnessk and the forceF ?

Solution ky has the same units asmd2y/dt2 sok is in grams per (second)2.

F is in gram-meters per (second)2—the units of force.

22 Why is our favorite exampley ′ = y + 1 very unsatisfactory dimensionally ? Solve it
anyway starting fromy(0) = −1 and fromy(0) = 0.

The three terms iny ′ = y + 1 seem to have different units. The ratea = 1 is hidden
(with its units of 1/time). Also hidden are the units of the source term1.

Solution y(t) = y(0)et+ 1
1 (e

t−1). This is et−1 if y(0) = 0. The solution stays at
steady state ify(0) = −1.

23 The difference equationYn+1 = cYn + Qn producesY1 = cY0 + Q0. Show that the
next step producesY2 = c2Y0 + cQ0+Q1. After N steps, the solution formula forYN

is like the solution formula fory ′ = ay + q(t). Exponentials ofa change to powers of
c, the null solutioneaty(0) becomescNY0. The particular solution

YN = cN−1Q0 + · · ·+QN−1 is like y(t) =

t∫

0

ea(t−s)q(s)ds.

Solution Y2 = cY1 +Q1 = c(cY0 +Q0) +Q1 = c2Y0 + cQ0 +Q1.

The particular solutioncQ0 + Q1 agrees with the general formula whenN = 2. The
null solutionc2Y0 is Step 2 inY0, cY0, c

2Y0, c
3Y0, . . . like eaty(0).

24 Suppose a fungus doubles in size every day, and it weighs a pound after10 days. If
another fungus was twice as large at the start, would it weigha pound in5 days ?

Solution This is an ancient puzzle and the answer is9 days. Starting twice as large
cuts off1 day.

Problem Set 1.7, page 61

1 If y(0) = a/2b, the halfway point on theS-curve is att = 0. Show thatd = b and

y(t) =
a

d e−at + b
=

a

b

1

e−at + 1
. Sketch the classicS-curve — graph of1(e−at + 1)

from y−∞ = 0 to y∞ =
a

b
. Mark the inflection point.

Solution
d =

a

y(0)
− b and y(0) =

a

2b
lead to d =

a
a
2b

− b = 2b− b = b

Thereforey(t) =
a

d e−at + b
=

a

b e−at + b
=

a

b

1

e−at + 1
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2 If the carrying capacity of the Earth isK = a/b = 14 billion people, what will be the
population at the inflection point ? What isdy/dt at that point ? The actual population
was7.14 billion on January1, 2014.

Solution The inflection point comes wherey = a/2b = 7 million. The slopedy/dt is

dy

dt
= ay − by2 = a

a

2b
− b

( a

2b

)2
=

a2

4b
. This is b

( a

2b

)2
= 49b.

3 Equation (18) must give the same formula for the solutiony(t) as equation (16).
If the right side of (18) is calledR, we can solve that equation fory :

y = R

(
1− b

a
y

)
→

(
1 +R

b

a

)
y = R → y =

R(
1 +R b

a

) .

Simplify that answer by algebra to recover equation (16) fory(t).

Solution This problem asks us to complete the partial fractions method which inte-
grateddy/(y − b

ay
2) = adt. The result in equation (18) can be solved fory(t). The

right side of (18) is calledR :

R = eat
y(0)

1− b
ay(0)

= eata
y(0)

a− by(0)
= eat

a

d
.

Then the algebra in the problem statement gives

y =
R

1 +R b
a

=
eat ad

1 + eat bd
= multiply by

de−at

de−at
=

a

de−at + b
.

4 Change the logistic equation toy′ = y + y2. Now the nonlinear term is positive,
andcooperation ofy with y promotes growth. Usez = 1/y to find and solve a linear
equation forz, starting fromz(0) = y(0) = 1. Show thaty(T ) = ∞ whene−T = 1/2.
Cooperation looks bad, the population will explode att = T .

Solution Puty = 1/z and the chain ruledydt = −1
z2

dz
dt into the cooperation equation

y ′ = y + y2 :

− 1

z2
dz

dt
=

1

z
+

1

z2
gives

dz

dt
= −z − 1.

The solution starting fromz(0) = 1 is z(t) = 2e−t − 1. This is zero when2e−T = 1
or eT = 2 orT = ln 2.

At that timez(T ) = 0 meansy(T ) = 1/z(T ) is infinite: blow-up at timeT = ln 2.

5 The US population grew from313, 873, 685 in 2012 to 316, 128, 839 in 2014. If it were
following a logisticS-curve, what equations would give youa, b, d in the formula (4) ?
Is the logistic equation reasonable and how to account for immigration ?

Solution We need a third data point to find all three numbersa, b, d. See Problem
(23). There seems to be no simple formula for those numbers. Certainly the logistic
equation is too simple for serious science. Immigration would give a negative value for
h in the harvesting equationy ′ = ay − by2 − h.
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6 The Bernoulli equation y′ = ay − byn has competition termbyn. Introduce
z = y1−n which matches the logistic case whenn = 2. Follow equation (4) to
show thatz′ = (n− 1)(−az + b). Write z(t) as in(5)-(6). Then you havey(t).

Solution We make the suggested transformation:

z = y1−n

z ′ = (1− n)y−ny ′

dz
dt = (1− n)y−n(ay − byn) = (1− n)(ay1−n − b)

dz
dt = (1− n)(az − b)

z(t) = e(1−n)atz(0)− b

a
(e(1−n)at − 1) =

de(1−n)at + b

a
d = az(0)− b =

a

y(0)
− b

y(t) =
a

de(1−n)at + b

Problems 7–13 develop better pictures of the logistic and harvesting equations.

7 y ′ = y − y2 is solved byy(t) = 1/(de−t + 1). This is anS-curve wheny(0) = 1/2
andd = 1. But show thaty(t) is very different ify(0) > 1 or if y(0) < 0.

If y(0) = 2 thend = 1
2 − 1 = − 1

2 . Show thaty(t) → 1 from above.

If y(0) = −1 thend = 1
−1 − 1 = −2. At what timeT is y(T ) = −∞?

Solution First, y(0) = 2 is abovethe steady-state valuey∞ = a/b = 1/1. Then
d = − 1

2 andy(t) = 1/(1 − 1
2e

−t) is larger than1 and approachesy(∞) = 1/1 from
above ase−t goes to zero.

Second,y(0) = −1 is below theS−curve growing fromy(−∞) = 0 to y(∞) = 1.
The valued = −2 givesy(t) = 1/(−2e−t +1). Whene−t equals12 this isy(t) = 1/0
and the solution blows up. That blowup time ist = ln 2.

8 (recommended) Show those3 solutions toy ′ = y − y2 in one graph ! They start from
y(0) = 1/2 and 2 and −1. The S-curve climbs from 1

2 to 1. Above that,
y(t) descends from2 to 1. Below theS-curve,y(t) drops from−1 to−∞.

Can you see3 regions in the picture ?Dropin curves abovey = 1 and S-curves
sandwiched between0 and 1 and dropoff curves belowy = 0.

Solution The three curves are drawn in Figure 3.3 on page 157. The uppercurves and
middle curves approachy∞ = a/b. The lowest curves reachy = −∞ in finite time:
blow-up.

9 Graphf(y) = y − y2 to see the unstable steady stateY = 0 and the stableY = 1.
Then graphf(y) = y − y2 − 2/9 with harvestingh = 2/9. What are the steady
statesY1 andY2 ? The3 regions in Problem 8 now haveZ-curves abovey = 2/3,
S-curves sandwiched between1/3 and2/3, dropoff curves belowy = 1/3.

Solution The steady states are the points whereY − Y 2 = 0 (logistic) andY − Y 2 −
2
9 = 0 (harvesting). That second equation factors into(Y − 1

3 )(Y − 2
3 ) to show the

steady states13 and 2
3 .
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10 What equation produces anS-curve climbing toy∞ = K from y−∞ = L?

Solution We can choosey ′ = ay − by2 − h with steady statesK andL. Then
aK − bK2 − h = 0 andaL − bL2 − h = 0. If we divide byh, these two linear
equations give

a

h
=

K + L

KL
=

1

K
+

1

L
and

b

h
=

1

KL

Check :
a

h
K − b

h
K2 − 1 =

K

L
− K

L
= 0 and

a

h
L− b

h
L2 − 1 =

L

K
− L

K
= 0

11 y ′ = y − y2 − 1
4 = −(y − 1

2 )
2 showscritical harvestingwith a double steady state

at y = Y = 1
2 . The layer ofS-curves shrinks to that single line. Sketch a dropin

curve that starts abovey(0) = 1
2 and a dropoff curve that starts belowy(0) = 1

2 .

Solution The solution toy ′ = −(y− 1
2 )

2 comes from integrating−dy/(y− 1
2 )

2 = dt

to get1/(y − 1
2 ) = t + C. Theny(t) = 1

2
+ 1

t+C
. If y(0) > 1

2 thenC > 0 and

this curve approachesy(∞) = 1
2 ; it is a hyperbola coming down toward that horizontal

line. If y(0) < 1
2 thenC is negative and the above solutiony = 1

2 + 1
t+C blows up

(or blows down! sincey is negative) at the positive timet = −C. This is a dropoff
curve below the horizontal liney = 1

2 . (If y(0) = 1
2 the equation isdy/dt = 0 and the

solution stays at that steady state.)

12 Solve the equationy ′ = −(y − 1
2 )

2 by substitutingv = y − 1
2 and solvingv ′ = −v2.

Solution This approach uses the solutions we know todv/dt = −v2. Those solutions
arev(t) = 1

t+C . Thenv = y − 1
2 gives the samey = 1

2 + 1
t+C as in Problem 11.

13 With overharvesting, every curvey(t) drops to−∞. There are no steady states.
SolveY − Y 2 − h = 0 (quadratic formula) to find only complex roots if4h > 1.

The solutions forh = 5
4 arey(t) = 1

2 − tan(t+ C). Sketch that dropoff ifC = 0.
Animal populations don’t normally collapse like this from overharvesting.

Solution Overharvesting isy ′ = y− y2−h with h larger than14 (Problems 11 and 12
hadh = 1

4 and critical harvesting). The fixed points come fromY − Y 2 − h = 0. The
quadratic formula givesY = 1

2 (1 ±
√
1− 4h). These roots are complex forh > 1

4 :
No fixed points.

For h = 5
4 the equation isy ′ = y − y2 − 5

4 = −(y − 1
2 )

2 − 1. Thenv = y − 1
2

hasv ′ = −v2 − 1. Integratingdv/(1 + v2) = −dt gives tan−1 v = −t − C or
v = − tan(t+ C). y = v + 1

2 = 1
2 − tan(t+ C). The graph of− tan t starts at zero

and drops to−∞ at t = π/2.

14 With two partial fractions , this is my preferred way to findA =
1

r − s
, B =

1

s− r

PF2
1

(y − r)(y − s)
=

1

(y − r)(r − s)
+

1

(y − s)(s − r)

Check that equation : The common denominator on the right is(y − r)(y − s)(r − s).
The numerator should cancel ther − s when you combine the two fractions.
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Separate
1

y2 − 1
and

1

y2 − y
into two fractions

A

y − r
+

B

y − s
.

Note When y approachesr, the left side ofPF2 has a blowup factor1/(y − r).
The other factor1/(y − s) correctly approachesA = 1/(r − s). So the right side
of PF2needs the same blowup aty = r. The first termA/(y − r) fits the bill.

Solution
1

y2 − 1
=

1

(y − 1)(y + 1)
=

A

y − 1
+

B

y + 1
=

1/2

y − 1
− 1/2

y + 1

The constants areA =
1

r − s
=

1

1− (−1)
= −1

2
= −B

1

y2 − y
=

1

(y − 1)y
=

A

y − 1
+

B

y
=

1

y − 1
− 1

y
, A =

1

r − s
=

1

1− 0
= −B

15 Thethreshold equation is the logistic equation backward in time :

−dy

dt
= ay − by2 is the same as

dy

dt
= −ay + by2.

Now Y = 0 is the stable steady state.Y = a/b is the unstable state (why ?).
If y(0) is below the thresholda/b then y(t) → 0 and the species will die out.

Graphy(t) with y(0) < a/b (reverseS-curve). Then graphy(t) with y(0) > a/b.

Solution The steady states ofdy/dt = −ay + by2 come from−aY + bY 2 = 0 so
againY = 0 or Y = a/b. The stability is controlled by thesign ofdf/dy at y = Y :

f = −ay + by2 tells how y grows
df

dy
= −a+ 2by tells how∆y grows

Y = 0 has
df

dy
= −a (STABLE) Y =

a

b
has

df

dy
= −a+2b

(a
b

)
= a (UNSTABLE)

TheS-curves go downward fromY = a/b toward the lineY = 0 (never touch).

16 (Cubic nonlinearity) The equationy ′ = y(1 − y)(2 − y) hasthree steady states:
Y = 0, 1, 2. By computing the derivativedf/dy at y = 0, 1, 2, decide whether
each of these states is stable or unstable.

Draw thestability linefor this equation, to showy(t) leaving the unstableY ’s.

Sketch a graph that showsy(t) starting fromy(0) = 1
2 and 3

2 and 5
2 .

Solution y ′ = f(y) = y(1−y)(2−y) = 2y−3y2+y3 has slopedfdy = 2−6y+3y2.

Y = 0 has df
dy = 2 (unstable)

S−curves go up fromY = 0 toward Y = 1
Y = 1 has df

dy = −1 (stable)
S−curves fromY = 2 go down towardY = 1

Y = 2 has df
dy = 2 (unstable)

< | > | < | >
0 1 2

Y
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17 (a) Find the steady states of theGompertz equationdy/dt = y(1− ln y).

Solution (a) Y (1 − lnY ) = 0 at steady statesY = 0 andY = e.

(b) Show thatz = ln y satisfies the linear equationdz/dt = 1− z.

Solution (b) z = ln y hasdz
dt = 1

y
dy
dt = y(1− ln y)/y = 1− ln y = 1− z.

(c) The solutionz(t) = 1 + e−t(z(0)− 1) gives what formula fory(t) from y(0)?

Solution (c) z ′ = 1/z gives thatz(t). Then sety(t) = 1/z(t):

y(t) =
[
1 + e−t(z(0)− 1)

]−1
=

[
1 + e−t

(
1

y(0)
− 1

)]−1

.

18 Decide stability or instability for the steady states of

(a) dy/dt = 2(1− y)(1− ey) (b) dy/dt = (1− y2)(4− y2)

Solution (a) f(y) = 2(1− y)(1− ey) = 0 atY = 1 andY = 0
df
dy = −2ey(1− y)− 2(1− eY )

At Y = 1 df
dy = −2(1− e) > 0 (UNSTABLE) At Y = 0 df

dy = −2 (STABLE)

(b) f(y) = (1 − y2)(4 − y2) = 0 atY = 1,−1, 2,−2 df
dy = −10y + 4y3

Y = 1 gives df
dy = −6 (STABLE) Y = −1 gives df

dy = 6 (UNSTABLE)

Y = 2 gives df
dy = 12 (UNSTABLE) Y = −2 gives df

dy = −12 (STABLE)

19 Stefan’s Law of Radiation isdy/dt = K(M4 − y4). It is unusual to see fourth powers.
Find all real steady states and their stability. Starting fromy(0) = M/2, sketch a graph
of y(t).

Solution f(Y ) = K(M4 − Y 4) equals0 atY = M andY = −M (alsoY = ±iM ).
df
dy = −4KY 3 = −4KM3(Y = M is STABLE) df

dy = 4KM3(Y = −M is UNSTABLE)

The graph starting aty(0) = M/2 must go upwards to approachy(∞) = M .
20 dy/dt = ay − y3 has how many steady statesY for a < 0 and thena > 0?

Graph those valuesY (a) to see apitchfork bifurcation—new steady states suddenly
appear asa passes zero. The graph ofY (a) looks like a pitchfork.

Solution f(Y ) = aY − Y 3 = Y (a− Y 2) has 3 steady statesY = 0,
√
a,−√

a.
df
dy = a− 3y2 equalsa atY = 0, df

dy = −2a atY =
√
a andY = −√

a.

ThenY = 0 is UNSTABLE andY = ±√
a are STABLE.

21 (Recommended) The equationdy/dt = sin y has infinitely many steady states.
What are they and which ones are stable ? Draw the stability line to show whether
y(t) increases or decreases wheny(0) is between two of the steady states.

Solution f(Y ) = sinY is zero at every steady stateY = nπ (0, π,−π, 2π,−2π, . . .)
df
dy = cosY = 1 (UNSTABLE for Y = 0, 2π,−2π, 4π, . . .)

= cosY = −1 (STABLE for Y = π,−π, 3π,−3π, . . .)

Stability line < | > | < | > | < | >
−2π −π 0 π 2π
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22 Change Problem 21 tody/dt = (sin y)2. The steady states are the same, but now the
derivative off(y) = (sin y)2 is zero at all those states (becausesin y is zero). What
will the solution actually do ify(0) is between two steady states ?

Solution f(y) = (sin y)2 hasδf
δy = 2 sin y cos y = sin 2y.

Now df
dy = 0 at ALL THE STEADY STATESY = nπ.

Since dy
dt = (sin y)2 is always positive, the solutiony(t) will always increase toward

the next larger steady state.

We have an infinite stack ofS−curves.

23 (Research project) Find actual data on the US population in the years 1950, 1980, and
2010. What values ofa, b, d in the solution formula (7) will fit these values ? Is the
formula accurate at 2000, and what population does it predict for 2020 and 2100 ?

You could resett = 0 to the year 1950 and rescale time so thatt = 3 is 1980.

Solution Resetting time givesT = c(t− 1950). Rescaling givesc(1980− 1950) = 3
soc = 1

10 . Thena, b, d depend on your data.

The graphs fromt = 1950 to 1980 will show T = 1
10 (t− 1950) from T = 0 to 3.

24 If dy/dt = f(y), what is the limity(∞) starting from each pointy(0)?

Solution
dy

dt
=

{
y for y ≤ 1 has fixed pointsY = 0 and 2
2− y for y ≥ 1

Slopedf
dy = 1 atY = 0 (UNSTABLE). Slopedf

dy = −1 atY = 2 (STABLE),y(∞) = 2.

1

0 2
y

f(y)

0 2 4
y

f(y)

Fixed pointsY = 0,2,4. Slopesdfdy = −1, 1,−1.

0, 2, 4 = STABLE, UNSTABLE, STABLE y(∞) = 0 if y(0) < 2 andy(∞) = 4 if
y(0) > 2.

25 (a) Draw a functionf(y) so thaty(t) approachesy(∞) = 3 from everyy(0).

Solution The right sidef(y) must be zero only atY = 3 which is STABLE.

Example:dydt = f(y) = 3 − y has solutionsy = 3 + Ce−t.

(b) Drawf(y) so thaty(∞) = 4 if y(0) > 0 andy(∞) = −2 if y(0) < 0.

Solution This requiresY = 4,−2 to be stable andY = 0 to be unstable.

Example:dydt = f(y) = −y(y − 4)(y + 2) Notice df
dy = 8 at Y = 0.

26 Which exponentsn in dy/dt = yn produce blowupy(T ) = ∞ in a finite time ?
You could separate the equation intody/yn = dt and integrate fromy(0) = 1.
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Solution
∫

dy

yn
=

∫
dt gives

y1−n

1− n
= t + C. The right side is zero at a finite time

t = −C. Theny blows up at that timeif n > 1.

If n = 1 the integrals giveln y = t+ C andy = et+C : NO BLOWUP in finite time.
27 Find the steady states ofdy/dt = y2− y4 and decide whether they are stable, unstable,

or one-sided stable. Draw a stability line to show the final valuey(∞) from each initial
valuey(0).

Solution f(y) = y2 − y4 = 0 atY = 0, 1,−1

0 at Y = 0 (Double root off )
df
dy = 2y − 4y3 = −2 at Y = 1 (STABLE)

2 at Y = −1 (UNSTABLE)

SinceY = −1 is unstable,y(t) must go towardY = 0 if −1 < y(0) < 0.

SinceY = 1 is stable,y(t) must go towardY = 1 if 0 < y(0) < 1.

< | > | > | < >
−1 0 1

Y

28 For an autonomous equationy ′ = f(y), why is it impossible fory(t) to be increasing
at one timet1 and decreasing at another timet2 ?

Solution Reason: The stability line shows a movement ofy in one direction, away
from one (unstable) steady stateY and toward another (stable) steady state. “One
direction” means thaty(t) is steadily increasing or steadily decreasing.

Problem Set 1.8, page 69

1 Finally we can solve the exampledy/dt = y2 in Section 1.1 of this book.

Start from y(0) = 1. Then

y∫

1

dy

y2
=

t∫

0

dt. Notice the limits ony andt. Findy(t).

Solution With those limits, integration gives− 1
y + 1 = t. Then 1

y = 1 − t and

y(t) = 1
1−t

.

2 Start the same equationdy/dt = y2 from any valuey(0). At what timet does the
solution blow up ? For which starting valuesy(0) does it never blow up ?

Solution −1

y
+

1

y(0)
= t gives

1

y
=

1

y(0)
− t and y =

y(0)

1 − ty(0)
.

If y(0) is negative, then1− ty(0) never touches zero fort > 0 : No blowup.
3 Solvedy/dt = a(t)y as a separable equation starting fromy(0) = 1, by choosing

f(y) = 1/y. This equation gave the growth factorG(0, t) in Section 1.6.

Solution y∫

y(0)

dy

y
=

t∫

0

a(t)dt gives ln y(t)− ln y(0) =

t∫

0

a(t)dt
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y(t) = y(0) exp




t∫

0

a(t)dt


 = G(0, t) y(0)

4 Solve these separable equations starting fromy(0) = 0 :

(a)
dy

dt
= ty (b)

dy

dt
= tm yn

Solution (a)

y∫

y(0)

dy

y
=

t∫

0

t dt and ln y−ln y(0) = t2/2 : Theny(t) = y(0) exp(t2/2).

(b) dy
dt = tmyn has

∫
dy

yn
=

∫
tm dt andy1−n

1−n = tm+1

m+1 . Theny =
(

1−n
m+1 t

m+1
)1/(1−n)

for n 6= 1.

5 Solve
dy

dt
= a(t)y2 =

a(t)

1/y2
as a separable equation starting fromy(0) = 1.

Solution dy

dt
= a(t)y2

y∫

1

du

u2
=

t∫

0

a(x) dx (u and x are just integration variables)

−1

y
+ 1 =

t∫

0

a(x) dx gives y =
1

1−
t∫

0

a(x) dx

6 The equation
dy

dt
= y + t is not separable or exact. But it is linear andy = .

Solution We solve the equation by taking advantage of its linearity:

Givena = 1, the growth factor iset. The source term ist. Therefore using equation
(14) gives:

y(t) = ety(0) +

t∫

0

et−ss ds = ety(0)− t+ et − 1.

Check :dy/dt = ety(0)− 1 + et does equaly + t.

7 The equation
dy

dt
=

y

t
has the solutiony = At for every constantA. Find this solution

by separatingf = 1/y from g = 1/t. Then integratedy/y = dt/t. Where does the
constantA come from ?

Solution We use separation of variables to find the constantA
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dy

y
=

dt

t
t∫

y(1)

du

u
=

t∫

1

dx

x

ln(y)− ln(y(1)) = ln t

y

y(1)
= t

y = y(1) t

Therefore we find that the constantA is equal toy(1), the initial value.

8 For which numberA is
dy

dt
=

ct− ay

At+ by
an exact equation ? For thisA, solve the

equation by finding a suitable functionF (y, t) + C(t).

Solution f(y, t) = At+ by andg(y, t) = ct− ay

The equation is exact if :∂f∂t = − ∂g
∂y andA = a.

We follow the three solution steps for exact equations.

1 Integratef with respect toy :∫
f(y, t) dy =

∫
(At+ by) dy = Aty +

1

2
by2 = F (y, t)

2 ChooseC(t) so that ∂∂t (F (y, t) + C(t)) = −g(y, t)

∂

∂t
(Aty +

1

2
by2 + C(t)) = Ay + C ′(t) = −ct+ ay

C ′(t) = −ct and C(t) = −1

2
ct2

3 We therefore have that :

dy

dt
=

g(y, t)

f(y, t)
is solved byF (y, t) + C(t) = constant

Aty +
1

2
by2 − 1

2
ct2 = constant

9 Find a functiony(t) different fromy = t that hasdy/dt = y2/t2.

Solution Using separation of variables :

dy/dt = y2/t2

dy/y2 = dt/t2

y∫

y(t0)

du

u2
=

t∫

t0

dx

x2

− 1
y(t) +

1
y(t0)

= − 1
t +

1
t0

t0 = 1 andy(t0) = 2 give− 1
y(t) +

1
2 = − 1

t + 1 andy(t) =
(
1
t − 1

2

)−1
= 2t

2−t
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10 These equations are separable after factoring the right hand sides :

Solve
dy

dt
= ey+t and

dy

dt
= yt+ y + t+ 1.

Solution (a)
dy

dt
= eyet and

y∫

y0

e−ydy =

t∫

t0

etdt

−e−y + e−y0 = et − et0

e−y = e−y0 − et + et0

y = − ln [e−y0 − et + et0 ]

(b) dy/dt = (y + 1)(t+ 1)

y∫

y0

dy

y + 1
=

t∫

t0

(t+ 1) dt

ln(y + 1)− ln(y0 + 1) =
1

2
(t2 − t20) + (t− t0) = G

y + 1 = (y0 + 1) eG

11 These equations are linear and separable : Solve
dy

dt
= (y + 4) cos t and

dy

dt
= yet.

Solution (a)

y∫

y0

dy

y + 4
=

t∫

t0

cos t dt

ln(y + 4)− ln(y0 + 4) = sin t− sin t0

y + 4 = (y0 + 4) exp(sin t− sin t0)

(b)

y∫

y0

dy

y
=

t∫

t0

et dt

ln y − ln y0 = et − et0

y = y0 exp(e
t − et0)

12 Solve these three separable equations starting fromy(0) = 1 :

Solution (a)
dy

dt
= −4ty has

y∫

1

dy

y
=

t∫

0

−4t dt

ln y = −2t2 and y = exp(−2t2)

(b)
dy

dt
= ty3 has

y∫

1

dy

y3
=

t∫

0

t dt and − 1

2y2
+

1

2y20
=

1

2
t2
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1

y2
=

1

y20
− t2

y =

(
1

y20
− t2

)−1/2

= y0
(
1− t2y20

)−1/2

(c) (1 + t)
dy

dt
= 4y has

y∫

1

dy

y
=

t∫

0

4 dt

1 + t

ln y = 4 ln(1 + t)− 4 ln(1) = 4 ln(1 + t)

y = (1 + t)4

Check (1 + t)dydt = 4(1 + t)(1 + t)3 = 4y

Test the exactness condition∂g/∂y = −∂f/∂t and solve Problems 13-14.

13 Test the exactness condition∂g/∂y = −∂f/∂t.

Solution (a) g = −3t2 − 2y2 has ∂g/∂y = −4y

f = 4ty + by2 has − ∂f/∂y = −4y : EXACT

Step 1 :
∫

f dy =

∫ (
4ty + 6y2

)
dy = 2ty2 + 2y3 + C(t)

Step 2 : ∂
∂t

(
2ty2 + 2y3 + C(t)

)
= 2y2 + C ′(t).

This equals−g whenC ′(t) = 3t2 andC(t) = t3.

Step 3 : Solution2ty2 + 2y3 + t3 = constant

Solution (b) g = −1− yety has∂g/∂y = −ytety − ety

f = 2y + tety has−∂f/∂t = −ytety − ety : EXACT

Step 1 :
∫

f dy =

∫ (
2y + tety

)
dy = y2 + ety + C(t) = F (y, t)

Step 2 : ∂
∂t

(
y2 + ety + C(t)

)
= yety + C ′(t) = −g whereC ′(t) = 1

Step 3 :C ′(t) = 1 givesC(t) = t and the solution is

F (y, t) + C(t) = −ytety − ety + t = constant

14 Test the exactness condition∂g/∂y = −∂f/∂t.

Solution (a)g = 4t− y and f = t− 6y have ∂g
∂y = −1 = ∂f

∂t : EXACT

Step 1 :
∫

f dy = ty − 3y2 + C(t)

Step 2 : ∂
∂t

(
ty − 3y2 + C(t)

)
= y + C ′(t) = −g = y − 4t when C(t) = −2t2

Step 3 : Solutionty − 3y2 − 2t2 = constant

Solution (b) g = −3t2−2y2 and f = 4ty+6y2 have ∂g
∂y = −4y = −∂f

∂t : EXACT

Step 1 :
∫

f dy =

∫ (
4ty + 6y2

)
dy = 2ty2 + 2y3 + C(t)



1.8. Separable Equations and Exact Equations 37

Step 2 : ∂
∂t

(
2ty2 + 2y3 + C(t)

)
= 2y2 + C ′(t) = −g = 3t2 + 2y2 when C ′ = 3t2

and C = t3

Step 3 : Solution2ty2 + 2y3 + t3 = constant

15 Show that
dy

dt
= − y2

2ty
is exact but the same equation

dy

dt
= − y

2t
is not exact. Solve

both equations. (This problem suggests that many equationsbecome exact when mul-
tiplied by an integrating factor.)

Solution g = −y2 and f = 2ty have ∂g
∂y = −2y = −∂f

∂t : EXACT

g = −y andf = 2t have ∂g
∂y NOT EQUAL TO−∂f

∂t

Solve the second form which is SEPARABLE∫
dy

y
=

∫
−dt

2t
gives ln y = −1

2
ln t+ C

Theny = eCt−1/2 is the same asy = ct−1/2.

The same solution must come from Steps 1, 2, 3 using the exact form.

16 Exactness is really the condition to solve two equations with the same functionH(t, y) :
∂H

∂y
= f(t, y) and

∂H

∂t
= −g(t, y) can be solved if

∂f

∂t
= −∂g

∂y
.

Take thet derivative of∂H/∂y and they derivative of∂H/∂t to show that exactness
is necessary. It is alsosufficientto guarantee that a solutionH will exist.

Solution The point is to see the underlying idea of exactness.

If
∂H

∂y
= f(t, y) then

∂2H

∂t ∂y
=

∂f

∂t

If
∂H

∂t
= −g(t, y) then

∂2H

∂y ∂t
= −∂g

∂y

The cross derivatives ofH are always equal.IF a functionH solves both equations
then ∂f

∂t must equal− ∂g
∂y . So behind every exact equation is a functionH : exactness is

a necessary and also sufficient to findH with ∂H/∂y = f and ∂H/∂t = −g.

17 The linear equation
dy

dt
= aty+ q is not exact or separable. Multiply by the integrating

factore−
∫
at dt and solve the equation starting fromy(0).

Solution This problem just recalls the idea of an integrating factor :

For
dy

dt
= aty + q the factor isP = exp

(
−
∫

at dt

)
= exp

(
−1

2
at2
)

.

ThenP
(

dy
dt − aty

)
agrees with(Py) ′ = P dy

dt +
dP
dt y

So the original equation multiplied byP is d
dt (Py) = Pq.

Integrate both sidesP (t)y(t)− P (0)y(0) =

t∫

0

P (t)q dt. Divide byP (t) to findy(t).
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Second order equationsF (t, y, y ′, y ′′) = 0 involve the second derivativey ′′.
This reduces to a first order equation for y ′ (not y) in two important cases:

I. Wheny is missing inF , sety ′ = v andy ′′ = v ′. ThenF (t, v, v ′) = 0.

II. Whent is missing inF , sety ′′ =
dv

dt
=

dv

dy

dy

dt
= v

dv

dy
. ThenF

(
y, v, v

dv

dy

)
= 0.

See the website forreduction of order when one solutiony(t) is known.

18 (y is missing) Solve these differential equations forv = y ′ with v(0) = 1. Then
solve fory with y(0) = 0.

Solution (a)y ′′ + y ′ = 0. Sety ′ = v. Thenv ′ + v = 0 givesv(t) = Ce−t.

Now solvey ′ = v = Ce−t to find y = −Ce−t + D.

Solution (b) 2ty ′′ − y ′ = 0. Sety ′ = v. Then2tv ′ − v = 0 is solved by∫
dv

v
=

∫
dt

2t
andln v = ln

√
t+ C andv = c

√
t. Now solvey ′ = v = c

√
t to find

y = c1t
3/2 + c2.

19 Bothy andt are missing iny ′′ = (y ′)2. Setv = y ′ and go two ways :

I. Solve
dv

dt
= v2 to findv =

1

1− t
as in Section 1.1.

Then solve
dy

dt
= v =

1

1− t
to findy = − (1− t)−2

2
+

1

2
with y(0) = 0.

II. Solvev
dv

dy
= v2 or

dv

dy
= v to findv = ey .

Then
dy

dt
= v(y) = ey gives

∫
e−y dy =

∫
dt satisfyingv(0) = 1, y(0) = 0

and−e−y = t− 1 : not the same solution as part I (??)

20 An autonomous equationy ′ = f(y) has no terms that containt (t is missing).

Explain why every autonomous equation is separable. A non-autonomous equation
could be separable or not. For a linear equation we usually say LTI ( linear time-
invariant ) when it is autonomous: coefficients are constant, not varying with t.

Solution Every autonomous equation separates into
∫

dy

f(y)
=

∫
dt.

Linear equations can bedydt = a(t)y : Non-autonomous

LTI equations aredydt = ay (linear and alsoa is time-invariant⇒ autonomous).

21 my ′′ + ky = 0 is a highly important LTI equation. Two solutions arecosωt and
sinωt whenω2 = k/m. Solve differently by reducing to a first order equation for
y ′ = dy/dt = v with y ′′ = v dv/dy as above :

mv
dv

dy
+ ky = 0 integrates to

1

2
mv2 +

1

2
ky2 = constantE.
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For a mass on a spring, kinetic energy1
2mv2 plus potential energy12ky

2 is a con-
stant energyE. What isE wheny = cosωt ? What integral solves the separable
m(y ′)2 = 2E − ky2 ? I would not solve the linear oscillation equation this way.

Solution With y ′ = v andy ′′ = v dv
dy , the equationmy ′′ + ky = 0 becomes

mv dv
dy + ky = 0. This isnonlinearbutseparable. Integratemv dv = −ky dy to get

1

2
mv2 +

1

2
ky2 = constantE [Conservation of Energy].

If y = cos(ωt) thenv = y ′ = −ω sin(ωt) andE is 1
2m cos2(ωt) + 1

2Kω2 sin2(ωt).

The separable equationm(y ′)2 = 2E−ky2 could be solved by

(
m

2E −Ky2

)1/2

dy =

dt. The integral could lead tocos−1 y = ωt andy = cosωt.

22 my ′′ + k sin y = 0 is thenonlinearoscillation equation : not so simple. Reduce to a
first order equation as in Problem21 :

mv
dv

dy
+ k sin y = 0 integrates to

1

2
mv2 − k cos y = constantE.

With v = dy/dt what impossible integral is needed for this first order separable equa-
tion ? Actually that integral gives the period of a nonlinearpendulum—this
integral is extremely important and well studied even if impossible.

Solution Take square roots in12m
(

dy
dt

)2
= K cos y + E.

Then separate into

[
m/2

K cos y + E

]1/2
dy = dt.

An unpleasant integral but important for nonlinear oscillation. Chapter 1 is ending
with an example that shows the reality of nonlinear differential equations : Numerical
solutions possible, elementary formulas are often impossible.
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2

Problem Set 2.1, page 79

1 Find a cosine and a sine that solved2y/dt2 = −9y. This is a second order equation
so we expecttwo constantsC andD (from integrating twice) :

Simple harmonic motion y(t) = C cos ωt+D sin ωt. What isω ?

If the system starts from rest (this meansdy/dt = 0 at t = 0), which constantC or D
will be zero ?

Solution Lettingy(t) = C cos(ωt) +D sin(ωt) :

d2y

dt2
+ 9y = −ω2C cos(ωt) + 9C cos(ωt)− ω2 sin(ωt) + 9 sin(ωt) = 0

ω = 3

Differentiatingy(t) and equating to zero at timet = 0 gives us :

y ′(t) = −Cω sin(ωt) +Dω cos(ωt) = 0

At t = 0 : Dω = 0 → D = 0

2 In Problem 1, whichC andD will give the starting valuesy(0) = 0 andy′(0) = 1?

Solution y(0) = C cos(ω0) +D sin(ω0) = 0 givesC = 0

Differentiatingy(t) and equating to1 at timet = 0 gives us :

y ′(0) = Dω = 1 and D =
1

ω
=

1

3

3 Draw Figure 2.3 to show simple harmonic motiony = A cos (ωt − α) with phases
α = π/3 andα = −π/2.

Solution Notice thatA is the maximum heightymax. At t = 0 we seey = A cos(−α) =
A cosα.

4 Suppose the circle in Figure 2.4 has radius3 and circular frequencyf = 60 Hertz.
If the moving point starts at the angle−45◦, find itsx-coordinateA cos (ωt− α). The
phase lag isα = 45◦. When does the point first hit thex axis ?

Solution f = ω/2π = 60 Hertz is equivalent toω = 120π radians per second.
With magnitudeA = 3 andα = −45 ◦ = −π/4 radians,A cos(ωt − α) becomes
3 cos(120πt+ π/4). The point going around the circle hits thex-axis when that angle
is a multiple ofπ. The first hit occurs at120πt + π/4 = π and120 t = 3/4 and
t = 3/480 = 1/160.

5 If you drive at60 miles per hour on a circular track with radiusR = 3 miles, what is
the timeT for one complete circuit ? Your circular frequency isf = and your
angular frequency isω = (with what units ?). The period isT .

Solution The distance around a circle of radiusR = 3 miles is2πR = 6π miles.
The timeT for a complete circuit at60 miles per hour isT = 6π/60 = π/10 hours.
From T = 1/f = 2π/ω the circular frequency isf = 10/π cycles per hour and
ω = 2πf = 2π/T = 20 radians per hour.
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6 The total energyE in the oscillating spring-mass system is

E = kinetic energy in mass+ potential energy in spring=
m

2

(
dy

dt

)2

+
k

2
y2.

ComputeE wheny = C cos ωt+D sin ωt. The energy is constant !

Solution y = C cosωt + D sinωt has dy/dt = −ωC sinωt + ωD cosωt.

The total energy isE = 1
2mω2(C2 sin2 ωt− 2CD sinωt cosωt+D2 cos2 ωt)

+ 1
2k(C

2 cos2 ωt+ 2CD sinωt cosωt+D2 sin2 ωt).

Whenω =
√
k/m andmω2 = k, usesin2 ωt+ cos2 ωt = 1 to find

E =
1

2
k
(
C2 +D2

)
(sin2 ωt+ cos2 ωt) =

1

2
k(C2 +D2) = constant.

7 Another way to show that the total energyE is constant :

Multiply my′′ + ky = 0 by y′. Then integratemy ′y ′′ and kyy ′.

Solution (my ′′ + ky) y ′ = 0 is the same asddt(
1
2my ′2 + 1

2ky
2) = 0.

This says thatE = 1
2my ′2 + 1

2ky
2 is constant.

8 A forced oscillationhas another term in the equation andA cosωt in the solution :

d2y

dt2
+ 4y = F cos ωt has y = C cos 2t+D sin 2t+A cos ωt.

(a) Substitutey into the equation to see howC andD disappear (they giveyn). Find
the forced amplitudeA in the particular solutionyp = A cos ωt.

(b) In caseω = 2 (forcing frequency= natural frequency), what answer does your
formula give forA? The solution formula fory breaks down in this case.

Solution (a) The frequencyω = 2 gives the null solutionsy = C cos 2t +D sin 2t :
y ′′

n + 4yn = 0.

The choice ofA gives a particular solutionyp = A cosωt. Substitute thisyp :
y ′′
p + 4yp = (−ω2 + 4)A cosωt = F cosωt and A = F

4−ω2
.

(b) ω = 2 leads toA = ∞ and that solutionyp breaks down :resonance. (The correct
yp will include a factort)

9 Following Problem8, write down the complete solutionyn + yp to the equation

m
d2y

dt2
+ ky = F cos ωt with ω 6= ωn =

√
k/m (no resonance).

The answery has free constantsC andD to matchy(0) andy′(0) (A is fixedbyF ).

Solution y = yn + yp = C cos

(√
k
m t

)
+D sin

(√
k
m t

)
+ A

k−mω2 cosωt.

10 Suppose Newton’s LawF = ma has the forceF in thesamedirection asa :
my ′′ = + ky including y ′′ = 4y.

Find two possible choices ofs in the exponential solutionsy = est. The solution is not
sinusoidal ands is real and the oscillations are gone. Nowy is unstable.

Solution The exponents inyn = Cet
√

k/m+De−t
√

k/m are now real. Those numbers
±
√
k/m come from substitutingy = est into the differential equation :

my ′′ − ky = (ms2 − k)est = 0 when s =
√
k/m and s = −

√
k/m.
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11 Here is afourth order equation : d4y/dt4 = 16y. Find four values ofs that give
exponential solutionsy = est. You could expect four initial conditions ony :
y(0) is given along with what three other conditions ?

Solution Substitutey = est in the differential equation to finds4 = 16. This has four
solutions :s = 2,−2, 2i,−2i. The constants iny = c1e

2t + c2e
−2t + c3e

2it + c4e
−2it

are determined by the initial valuesy(0), y ′(0), y ′′(0), y ′′′(0).

12 To find a particular solution toy ′′ + 9y = ect, I would look for a multiple
yp(t) = Y ect of the forcing function. What is that numberY ? When does your
formula giveY = ∞ ? (Resonance needs a new formula forY .)

Solution Substituteyp = Y ect to find (c2 + 9)Y ect = ect andY = 1/(c2 + 9). This
is called the “exponential response function” in Section 2.4. The resonant caseY = ∞
occurrs whenc2 + 9 = 0 or c = ±3i. Then a new formula fory(t) involvestect as
well asect.

13 In a particular solutiony = Aeiωt to y′′ + 9y = eiωt, what is the amplitudeA?
The formula blows up when the forcing frequencyω = what natural frequency?

Solution Substituteyp = Aeiωt to find i2ω2Aeiωt + 9Aeiωt = eiωt. With i2 = −1
this givesA = 1/(9 − ω2). This blows up when9 − ω2 = 0 at the natural frequency
ωn = 3.

14 If y(0) > 0 andy′(0) < 0, doesα fall betweenπ/2 andπ or between3π/2 and2π ?
If you plot the vector from(0, 0) to (y(0), y ′(0)/ω), its angle isα.

Solution If y(0) > 0 andy ′(0) < 0 thenα falls between3π/2 and2π. This occurs
because the vector from(0, 0) to (y(0), y ′(0)/ω) is in the fourth quadrant.

15 Find a point on the sine curve in Figure 2.1 wherey > 0 but v = y′ < 0 and also
a = y′′ < 0. The curve is sloping down and bending down.

Find a point wherey < 0 buty′ > 0 andy′′ > 0. The point is below thex-axis but the
curve is slopingUP and bendingUP.

Solution For π
2 < t < π (90 ◦ to 180 ◦), y(t) = sin t > 0 but y ′(t) < 0 and

y ′′(t) < 0.

Note that for3π2 < t < 2π, y(t) < 0 buty ′(t) > 0 andy ′′(t) > 0. The point is below
thex-axis but the bold sine curve is sloping upwards and bending upwards.

16 (a) Solvey′′ + 100y = 0 starting fromy(0) = 1 andy′(0) = 10. (This is yn.)

(b) Solvey′′ + 100y = cosωt with y(0) = 0 andy′(0) = 0. (This can beyp.)

Solution (a) Substitutey = ect

y ′′ + 100y = 0

c2ect + 100ect = 0

c2 = −100

c = ±10i

y = ce10it + de−10it

This can be rewritten in terms of sines and cosines of10t. Introducing the initial con-
ditions we have :
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y(t) = A cos(10t) +B sin(10t)

y(0) = A = 1

y ′(0) = 10B = 10 → B = 1

y(t) = sin(10t) + cos(10t)

(b) As in equation (11) we assume the particular solution is

y(t) =
1

100− ω2
cos(ωt)

Adding in the null solution and substituting in the initial conditions gives :

y(t) = B sin(10t) +A cos(10t) +
1

100− ω2
cos(ωt)

y(0) = B sin(0) +A cos(0) +
1

100− ω2
cos(0) = 0

A =
1

ω2 − 100

y ′(0) = 10B cos(0)− 10A sin(0)− ω

100− ω2
sin(0)

= 10B = 0 → B = 0

Therefore the solution is:

y(t) =
1

100− ω2
(cos(ωt)− cos(10t))

17 Find a particular solutionyp = R cos(ωt − α) to y′′ + 100y = cosωt − sinωt.

Solution

Right side : cosωt− sinωt =
√
2 cos

(
ωt+

π

4

)

Diff. Eqn : −ω2R cos(ωt− α) + 100R cos(ωt− α) =
√
2 cos

(
ωt+

π

4

)

(100− ω2)R cos(ωt− α) =
√
2 cos

(
ωt+

π

4

)

Then α = −π

4
and R =

√
2

100− ω2

18 Simple harmonic motion also comes from a linear pendulum (like a grandfather
clock). At time t, the height isA cos ωt. What is the frequencyω if the pendulum
comes back to the start after1 second ? The period does not depend on the amplitude
(a large clock or a small metronome or the movement in a watch can all haveT = 1).

Solution The equation describing Simple Harmonic Motion is :

x(t) = A cos(ωt− φ)

If the period isT = 1 second, the frequency isf = 1 Hertz orω = 2π radians per
second.
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19 If the phase lag isα, what is the time lag in graphingcos(ωt− α)?

Solution
cos(ωt− α) = cos

(
ω
(
t− α

ω

))

Therefore the time lag isα/ω.

20 What is the responsey(t) to a delayed impulse ifmy ′′ + ky = δ(t− T )?

Solution Similar to equation (15) we have

yp(t) =
sin(ωn(t− T ))

mωn

The conditions at timeT are:

yp(T ) = 0 and y ′

p(T ) =
1

m

Note thatyp starts from timet = T . We haveyp = 0.

21 (Good challenge) Show thaty =
t∫
0

g(t− s)f(s) ds has my ′′ + ky = f(t).

1 Why is y ′ =
t∫
0

g ′(t− s)f(s) ds+ g(0)f(t) ? Notice the twot’s in y.

Solution 1 The variablet appears twice in the formula fory, so the derivativedy/dt
hastwo terms (called the Leibniz rule). One term is the value ofg(t − s)f(s) at the
upper limit s = t; this is from the Fundamental Theorem of Calculus. Sincet also
appears in the quantityg(t− s)f(s), its derivativeg ′(t− s)f(s) also appears iny ′.
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2 Usingg(0) = 0, explain whyy ′′ =
t∫
0

g ′′(t− s)f(s) ds+ g ′(0)f(t).

Solution 2 Sinceg(0) = 0, part 1 producedy ′ =
t∫
0

g ′(t − s)f(s)ds. Using the

Leibniz rule again (now ony ′), we get the two terms iny ′′.

3 Now useg ′(0) = 1/m andmg ′′ + kg = 0 to confirmmy ′′ + ky = f(t).

Solution 3 my ′′+ky = m

(
t∫
0

g ′′(t− s)f(s) ds+ g ′(0)f(t)

)
+k

(
t∫
0

g(t− s)f(s) ds

)
=

m(1/m)f(t). The integrals cancelled becausemg ′′ + kg = 0.
22 With f = 1 (direct current hasω = 0) verify thatmy ′′ + ky = 1 for thisy :

Step response y(t) =

t∫

0

sinωn(t− s)

mωn
1 ds = yp + yn equals

1

k
− 1

k
cosωnt.

Solution This y(t) certainly solvesmy ′′ + ky = 1. Comment: That formula for
y(t) fits with the usual

∫
g(t − s)f(s) ds whenf = 1 and the impulse response is

g(t) = (sinωnt)/mωn in equation (15). And always thisstep response should be the
integral of the impulse response. The natural frequency isωn = k/m :

y(t) =

t∫

0

sin(ωn(t− s))

mωn
ds = − cos(ωn(t− s))

mω2
n

]t

0

=
1

k
− cos(ωnt)

k
.

Notice that without damping resistance, the step response oscillates forever—not
approaching the steady statey∞ = 1/k.

23 (Recommended) For the equationd2y/dt2 = 0 find the null solution. Then for
d2g/dt2 = δ(t) find the fundamental solution (start the null solution withg(0) = 0
andg ′(0) = 1). Fory ′′ = f(t) find the particular solution using formula (16).

Solution
d2y

dt2
= 0 gives yn = A+Bt.

We get the fundamental solutiong(t) = t for t ≥ 0 by starting the null solution with
g(0) = 0 andg ′(0) = 1. Theng(t) = t andg(t− s) = t− s. This gives the particular
solution ford2y/dt2 = f(t) using formula (16) :

y(t) =

∫ t

0

(t− s)f(s) ds.

24 For the equationd2y/dt2 = eiωt find a particular solutiony = Y (ω)eiωt. ThenY (ω)
is the frequency response. Note the “resonance” whenω = 0 with the null solution
yn = 1.

Solution Substitutey = Y eiωt :

−Y (ω)ω2eiωt = eiωt

Y (ω) = −1/ω2

yp(t)p = eiωt/ω2
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The null solution toy ′′ = 0 is y(t)n = At+B.

WhenA = 0 andB = 1, we getyn = 1. This causes resonance atω = 0, the solution
formulayp = eiωt/ω2 breaks down.

25 Find a particular solutionY eiωt to my ′′ − ky = eiωt. The equation has−ky
instead ofky. What is the frequency responseY (ω)? For whichω is Y infinite ?

Solution Substitutey(t) = Y eiωt in my ′′ − ky = eiωt

Then − Y mω2eiωt − kY eiωt = eiωt

−Ymω2 − Y k = 1

Y (ω) =
1

k +mω2

Y is infinite forω = i
√

k
m . No resonance at real frequenciesω, because the equation

has−ky instead ofky.

Problem Set 2.2, page 87

1 Mark the numberss1 = 2+i ands2 = 1−2i as points in the complex plane. (The plane
has a real axis and an imaginary axis.) Then mark the sums1 + s2 and the difference
s1 − s2.

Solution The sum iss1 + s2 = 3− i. The difference iss1 − s2 = 1 + 3i.

2 Multiply s1 = 2 + i timess2 = 1− 2i. Check absolute values :|s1||s2| = |s1s2|.
Solution The product(2 + i)(1 − 2i) is 2 + i − 4i − 2i2 = 4 − 3i. The absolute
values of2 + i and1− 2i are

√
22 + 12 =

√
5. The product4− 3i has absolute value√

42 + 32 = 5, agreeing with(
√
5)(

√
5).

3 Find the real and imaginary parts of1/(2 + i). Multiply by (2− i)/(2− i) :

1

2 + i

2− i

2− i
=

2− i

|2 + i|2 = ?

Solution 1

2 + i

2− i

2− i
=

2− i

5
In general

1

z
=

z

|z|2 becausezz = |z|2.

4 Triple angles Multiply equation (2.10) by anothereiθ = cos θ + i sin θ to find
formulas forcos 3θ andsin 3θ.

Solution Equation (10) is(cos θ + i sin θ)2 = cos 2θ + i sin 2θ. Multiply by another
cos θ + i sin θ :

(cos θ + i sin θ)3 = cos θ cos 2θ + i sin θ cos 2θ + i cos θ sin 2θ − sin θ sin 2θ

= cos(θ + 2θ) + i sin(θ + 2θ) by sum formulas

= cos 3θ + i sin 3θ

Real part cos 3θ = cos3 θ − 3 cos θ sin2 θ Imaginary part sin 3θ = 3 cos2 θ sin θ −
sin3θ.
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5 Addition formulas Multiply eiθ = cos θ+i sin θ timeseiφ = cos φ+i sin φ to get
ei(θ+φ). Its real part iscos (θ + φ) = cos θ cos φ− sin θ sin φ. What is its imaginary
partsin (θ + φ) ?

Solution The imaginary part of(cos θ+ i sin θ)(cosφ+ i sinφ) is the coeffieient ofi :

sin θ cosφ+ cos θ sinφ must equalsin(θ + φ).
6 Find the real part and the imaginary part of each cube root of1. Show directly that the

three roots add to zero, as equation (2.11) predicts.

Solution The cube roots of1 are at angles0, 2π/3, 4π/3 (or 0 ◦, 120 ◦, 240 ◦). They
are equally spaced on the unit circle (absolute value1). The three roots are1 and

e2πi/3 = cos 2π
3 + i sin 2π

3 = −1
2
+ i

√
3

2

e4πi/3 = cos 4π
3 + i sin 4π

3 = −1
2
− i

√
3

2

The sum1− 1
2 + i

√
3
2 − 1

2 − i
√
3
2 equalszero. Always :n roots of2n = 1 add to zero.

7 The three cube roots of1 arez andz2 and1, whenz = e2πi/3. What are the three
cube roots of8 and the three cube roots ofi? (The angle fori is 90◦ or π/2, so
the angle for one of its cube roots will be . The roots are spaced by120◦.)

Solution The three cube roots of8 are2 and2e2πi/3 = −1 +
√
3i and2e4πi/3 =

−1−
√
3i. (They also add to zero.)

The three cube roots ofi = eπi/2 areeπi/6 ande5πi/6 ande9πi/6 still add to zero.
8 (a) The numberi is equal toeπi/2. Then its ith power ii comes out equal to

a real number, using the fact that(es)t = est. What is that real numberii ?

(b) eiπ/2 is also equal toe5πi/2. Increasing the angle by2π does not
changeeiθ — it comes around a full circle and back toi. Thenii has another real
value(e5πi/2)i = e−5π/2. What are all the possible values ofii ?

Solution (a) Theith power ofi = eπi/2 is ii = (eπi/2)i = e−π/2 by the ordinary rule
for exponents. Surprising thatii is a real number.

(b) i also equalse5πi/2 since5π
2 is a full rotation fromπ

2 . Soii also equals(e5πi/2)i =
e−5π/2—and infinitely many other possibilitiese−(2π+1)π/2 for every whole number
n. We are on a “Riemann surface” with an infinity of layers.

9 The numberss = 3 + i and s = 3 − i are complex conjugates. Find their sum
s + s = −B and their product(s)(s) = C. Then show thats2 + Bs + C = 0
and alsos2 + Bs + C = 0. Those numberss ands are the two roots of the quadratic
equationx2 +Bx+ C = 0.

Solution −B = s+ s = (3 + i) + (3− i) = 6. C = (s)(s) = (3 + i)(3− i) = 10.

Thens ands are the two roots ofx2 − Bx + C = x2 − 6x + 10 = 0. The usual
quadratic formula gives6±

√
36−40
2 = 6±2i

2 = 3± i.
10 The numberss = a + iω ands = a − iω are complex conjugates. Find their sum

s+ s = −B and their product(s)(s) = C. Then show thats2 +Bs+C = 0. The two
solutions ofx2 +Bx+ C = 0 ares ands.

Solution −B = (a+ iω) + (a− iω) = 2a C = (a+ iω)(a− iω) = a2 + iω2.

Then the roots ofx2 − 2ax+ a2 + ω2 = 0 arex = 2a±
√
−4ω2

2 = a± iω.



48 Chapter 2. Second Order Equations

11 (a) Find the numbers(1 + i)4 and(1 + i)8.

(b) Find the polar formreiθ of (1 + i
√
3)/(

√
3 + i).

Solution (a) (1 + i)4 = (
√
2eiπ/4)4 = (

√
2)4eiπ = −4

(1 + i)8 = square of(1 + i)4 = (square of−4) = 16.

(b) (1 + i
√
3)(

√
3 + i) =

√
3 + 3i+ i−

√
3 = 4i. Dividing by (2)(2) = 4 this is

(cos θ + i sin θ)(sin θ + i cos θ) = i(cos2 θ + sin2 θ) = i.

The unexpected part issin θ + i cos θ = cos(π2 − θ) + i sin(π2 − θ) = ei(π/2−θ).

Then the product ofeiθ andei(π/2−θ) is eiπ/2 which equalsi as above.

12 The numberz = e2πi/n solveszn = 1. The numberZ = e2πi/2n solvesZ2n = 1.
How isz related toZ ? (This plays a big part in the Fast Fourier Transform.)

Solution If Z = e2πi/2n thenZ2 = e2πi/n = z. The square of the2n th root is the
n th root. The angle forZ is half the angle forz.

The Fast Fourier Transform connects the transform at level2n to the transform at level
n (and on down ton/2 andn/4 and eventually to1, if these numbers are powers of2).

13 (a) If you knoweiθ ande−iθ, how can you findsin θ ?

(b) Find all anglesθ with eiθ = −1, and all anglesφ with eiφ = i.

Solution (a) sin θ = 1
2i [(cos θ + i sin θ)− (cos θ − i sin θ)] = 1

2i
(eiθ − e−iθ).

(b) The angles witheiθ = −1 areθ = π + (any multiple of 2π) = (2n + 1)π.

The angles witheiφ = 1 areφ = any multiple of 2π = 2nπ.

14 Locate all these points on one complex plane :

(a) 2 + i (b) (2 + i)2 (c)
1

2 + i
(d) |2 + i|

Solution 2 + i is in quadrant1. (2 + i)2 is in quadrant2. 1
2+i is in quadrant4.

|2 + i| =
√
5 is on the positive real axis.

15 Find the absolute valuesr = |z| of these four numbers. Ifθ is the angle for6+8i, what
are the angles for these four numbers?

(a) 6− 8i (b) (6 − 8i)2 (c)
1

6− 8i
(d) 8i+ 6

Solution The absolute values are10 and100 and 1
10 and10.

The angles are2π − θ (or just−θ), 2π − 2θ (or just−2θ), θ, andθ.

16 What are the real and imaginary parts ofea+ iπ andea+ iω ?

Solution ea+iπ = eaeiπ = −e−a(real) ea+iω = ea cosω + iea sinω

17 (a) If |s| = 2 and|z| = 3, what are the absolute values ofsz ands/z ?

(b) Find upper and lower bounds inL ≤ |s+ z| ≤ U . When does|s+ z| = U ?

Solution (a) |sz| = |s| |z| = 6 |s/z| = |s|/|z| = 2/3.

(b) The best bounds areL = 1 andU = 5 : 1 ≤ |s+ z| ≤ 5.

That bound5 is reached whens andz have thesame angleθ.
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18 (a) Where is the product(sin θ + i cos θ)(cos θ + i sin θ) in the complex plane ?

(b) Find the absolute value|S| and the polar angleφ for S = sin θ + i cos θ.

This is my favorite problem, becauseS combinescos θ and sin θ in a new way.
To findφ, you could plotS or add angles in the multiplication of part (a).

Solution (sin θ+i cos θ)(cos θ+i sin θ) = sin θ cos θ+i(sin2 θ+cos2 θ)−cos θ sin θ =
i. The product is imaginary. The angles must add to90 ◦.

Sincecos θ + i sin θ is at angleθ and the producti is at angleπ/2, the first factor
sin θ + i cos θ must beeiφ at angleφ = π

2
− θ. The absolute value is1. See also

Problem 2.2.11.

19 Draw the spiralse(1− i)t ande(2− 2i)t. Do those follow the same curves ? Do they
go clockwise or anticlockwise ? When the first one reaches thenegativex-axis, what is
the timeT ? What point has the second one reached at that time ?

Solution The spirale(1−i)t = ete−it starts at1 whent = 0. As t increases, it goes
outward (absolute valueet) and clockwise (the angle is−t). It reaches the negativeX
axis whent = π. The second spirale(2−2i)t is the same curvebut traveled twice as
fast. Its angle−2t reaches−π (theX-axis) at timet = π/2.

20 The solution tod2y/dt2 = −y is y = cos t if the initial conditions arey(0) =
andy′(0) = . The solution isy = sin t wheny(0) = andy′(0) =

. Write each of those solutions in the formc1 eit + c2 e
−it, to see that real

solutions can come from complexc1 andc2.

Solution y = cos t hasy(0) = 1 and y ′(0) = 0. y = sin t hasy(0) = 0 and
y ′(0) = 1. Those solutions arecos t = (eit + e−it)/2 andsin t = (eit − e−it)/2i.

The complete solution toy ′′ = −y is y = C1 cos t + C2 sin t. The same complete
solution is C1(e

it + e−it)/2 + C2(e
it − e−it)/2i = c1e

it + c2e
−it with

c1 = (C1 + C2)/2 andc2 = (C1 − C2)/2i.

21 Supposey(t) = e−t eit solvesy′′ + By′ + Cy = 0. What areB andC ? If this
equation is solved byy = e3it, what areB andC ?

Solution If y = est solvesy ′′ + By ′ + Cy = 0 then substitutingest shows that
s2 + Bs+ C = 0. This problem hass = −1 + i. Then the other root is the conjugate
s = −1 − i (always assumingB andC are real numbers). The sum−2 is −B. The
product(s)(s) = 2 isC. So the underlying equation isy ′′ + 2y ′ + 2y = 0.

22 From the multiplicationeiA e−iB = ei(A−B), find the “subtraction formulas”
for cos (A−B) andsin (A−B).

Solution Start with the fact thateiAe−iB = ei(A−B). Use Euler’s formula:
(cosA+ i sinA)(cosB − i sinB) = cos(A−B) + i sin(A−B).

Compare real parts:cosA cosB + sinA sinB = cos(A−B).

Compare imaginary parts:sinA cosB − cosA sinB = sin(A−B).

23 (a) If r andR are the absolute values ofs andS, show thatrR is the absolute value of
sS. (Hint : Polar form !)

(b) If s andS are the complex conjugates ofs andS, show thatsS is the complex
conjugate ofsS. (Polar form !)
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Solution (a) Given: s = reiθ and S = Reiφ for some anglesθ and φ. Then
sS = rRei(θ+φ). The absolute value ofsS is rR = (absolute value ofs)
(absolute value ofS).

(b) Now s = re−iθ andS = Re−iφ. Multiply to get sS = rRe−i(θ+φ). This is the
complex conjugate ofsS = rRei(θ+φ) in part (a).

24 Suppose a complex numbers solves a real equations3 + As2 + Bs + C = 0
(with A, B, C real). Why does the complex conjugates also solve this equation ?
“Complex solutions to real equations come in conjugate pairss and s.”

Solution The complex conjugate ofs3+As2+Bs+C = 0 is s3+As2+Bs+C = 0.

We took the conjugate of every term using the fact thatA,B,C are real. (The conju-
gates ofs2 ands3 ares2 ands3 by Problem 23).

For quadratic equationsx2 + Bx + C = 0, the formula(−B ±
√
B2 − 4C)/2 is

producingcomplex conjugates from± whenB2 − 4C is negative.

25 (a) If two complex numbers add tos+S = 6 and multiply tosS = 10, what ares and
S ? (They are complex conjugates.)

(b) If two numbers add tos + S = 6 and multiply tosS = −16, what ares and
S ? (Now they are real.)

Solution (a) s andS must have the same real part3. They each have magnitude
√
10.

Sos andS are3 + i and3− i.

(b) If s+S = 6 andsS = −16 thens andS are the roots ofx2 − 6x− 16 = 0. Factor
into (x− 8)(x+2) = 0 to see thats andS are8 and−2. (Not complex conjugates! In
this exampleB2 − 4AC = 36 + 64 = 100 and the quadratic has real roots8 and−2.)

26 If two numberss andS add tos + S = −B and multiply tosS = C, show thats and
S solve the quadratic equations2 +Bs+ C = 0.

Solution Just check that(x − s)(x − S) = x2 + Bx + C. The left side is
x2 − (s+ S)x+ sS. Thens+ S agrees with−B andsS matchesC.

27 Find three solutions tos3 = −8i and plot the three points in the complex plane. What
is the sum of the three solutions ?

Solution The three solutions have the same absolute value2. Their angles are sepa-
rated by120 ◦ = 2π/3 radians= 4π/6 radians. The first angle isθ = −30 ◦ = −π/6
radians (so that3θ = −90 ◦ = −π/2 radians matches−i).

The answers are2e−πi/6, 2e3πi/6, 2e7πi/6. They add to0.

28 (a) For which complex numberss = a + iω doesest approach0 as t → ∞ ?
Those numberss fill which “half–plane” in the complex plane ?

(b) For which complex numberss = a + iω doessn approach0 as n → ∞ ?
Those numberss fill which part of the complex plane ? Not a half-plane !

Solution (a) If s = a + iω, the absolute value ofest is eat. This approaches0 if a is
negative. The numberss = a+ iω with negativea fill the left half-plane.

(b) This part asks about the powerssn instead ofest. Powers ofs approach zero if
|s| < 1. This is the same asa2 + ω2 < 1. These complex numbers fill theinside of
the unit circle.
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Problem Set 2.3, page 101

1 Substitutey = est and solve the characteristic equation fors :

(a)2y ′′ + 8y ′ + 6y = 0 (b) y ′′′′ − 2y ′′ + y = 0.

Solution (a) 2s2 + 8s + 6 factors into2(s + 3)(s + 1) so the roots ares = −3 and
s = −1. The null solutions arey = e−3t andy = e−t (and any combination).

(b) s4 − 2s2 + 1 factors into(s2 − 1)2 which is (s − 1)2(s + 1)2. The roots are
s = 1, 1,−1,−1. The null solutions arey = c1e

t + c2te
t + c3e

−t + c4te
−t. (The

factort enters for double roots.)
2 Substitutey = est and solve the characteristic equation fors = a+ iω :

(a)y ′′ + 2y ′ + 5y = 0 (b) y ′′′′ + 2y ′′ + y = 0

Solution (a) s2 + 2s + 5 = 0 givess = (−2 ±
√
4− 20)/2 = −1 ± 2i = a + iω.

Theny = e−t cos 2t andy = e−t sin 2t solve the (null) equation.

(b) s4 + 2s2 + 1 = 0 factors into(s2 + 1)(s2 + 1) = 0. The roots arei, i,−i,−i.
The solutions arey = c1e

it + c2te
it + c3e

−it + c4te
−it. They can also be written as

y = C1 cos t+ C2t cos t+ C3 sin t+ C4t sin t.
3 Which second order equation is solved byy = c1e

−2t + c2e
−4t ? Ory = te5t ?

Solution If s = −2 ands = 4 are the exponents, the characteristic equation must be
s2 + 6s+ 8 = 0 coming fromy ′′ + 6y ′ + 8y = 0.

If y = te5t is a solution, then5 is adouble root. The characteristic equation must be
(s− 5)2 = s2 − 10s+ 25 = 0 coming fromy ′′ − 10y ′ + 25y = 0.

4 Which second order equation has solutionsy = c1e
−2t cos 3t+ c2e

−2t sin 3t?

Solution Those sine/cosine solutions combine to givee−2te3it ande−2te−3it. Then
s = −2 ± 3i. The sum is−4 and4, the product is22 + 32 = 13.

The equation must bey ′′ − 4y ′ + 13y = 0.

5 Which numbersB give (under) (critical) (over) damping in4y ′′ +By ′ + 16y = 0?

Solution The roots of4s2 + Bs + 16 are s = (−B ±
√
B2 − 162)/2. We have

underdamping forB2 > 162 (real roots); critical damping forB2 = 162 (double root);
overdamping forB2 < 162 (complex roots).

6 If you want oscillation frommy ′′ + by ′ + ky = 0, thenb must stay below .

Solution Oscillations mean underdamping. We needb2 < 4km.

Problems 7–16 are about the equationAs2 + Bs + C = 0 and the rootss1, s2.

7 The rootss1 ands2 satisfys1 + s2 = −2p = −B/2A ands1s2 = ω2
n = C/A. Show

this two ways :

(a) Start fromAs2 +Bs+C = A(s− s1)(s− s2). Multiply to sees1s2 ands1 + s2.

(b) Start froms1 = −p+ iωd, s2 = −p− iωd

Solution (a) MatchAs2+Bs+C toA(s−s1)(s−s2) = As2−A(s1+s2)s+As1s2.
Then−B = A(s1 + s2) andC = As1s2. Error in problem : s1 + s2 equals−B/A
and not−B/2A.

(b) s1 + s2 = (−p+ iωd) + (−p− iωd) = −2p = −B/A. Thenp = B/2A.
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8 Finds andy at the bottom point of the graph ofy = As2 +Bs+C. At that minimum
points = smin andy = ymin, the slope isdy/ds = 0.

Solution The minimum ofAs2 + Bs + C is located by derivative= 2As + B = 0.
Thens = −B/2A (which isp). The value ofAs2 +Bs+ C at that minimum point is
A(B2/4A2)− (B2/2A) + C = −(B2/4A) + C = (4AC −B2)/4A.

Notice: IfB2 < 4AC the minimum is> 0. ThenAs2 +Bs+ C 6= 0 for reals.

9 The parabolas in Figure 2.10 show how the graph ofy = As2 + Bs + C is raised
by increasingB. Using Problem 8, show that the bottom point of the graph moves left
(change insmin) and down (change inymin) whenB is increased by∆B.

Solution For the graph ofy = As2+Bs+C, the bottom point isy = (4AC−B2)/4A
ats = −B/2A. WhenB is increased,s moves left andy moves down. (The convention
is A > 0.)

10 (recommended) Draw a picture to show the paths ofs1 ands2 whens2 +Bs+ 1 = 0
and the damping increases fromB = 0 to B = ∞. At B = 0, the roots are on the

axis. AsB increases, the roots travel on a circle (why ?). AtB = 2, the
roots meet on the real axis. ForB > 2 the roots separate to approach0 and−∞.
Why is their products1s2 always equal to1?

Solution The roots ofs2 +Bs+ 1 will move asB increases from0 to ∞. At B = 0,
the roots ofs2 + 1 = 0 areimaginary: s = ±i. AsB increases, the roots are complex
conjugates always multiplying tos1s2 = 1. They are on theunit circle . WhenB
reaches2, the roots ofs2 + 2s + 1 = (s + 1)2 meet ats = −1. (Each root traveled a
quarter-circle, from±i to −1.) For largerB and overdampingB2 > 4AC = 4(1)(1),
the rootss1s2 arereal. One root moves from−1 towards = 0, the other moves from
−1 toward−∞. At all times s1s2 = C/A = 1/1.

11 (this too if possible) Draw the paths ofs1 ands2 whens2+2s+k = 0 and the stiffness
increases fromk = 0 to k = ∞. When k = 0, the roots are .
At k = 1, the roots meet ats = . For k → ∞ the two roots travel up/down
on a in the complex plane.Why is their sums1 + s2 always equal to− 2?

Solution This problem changesk in s2+2s+ k = 0. So thesums1+ s2 stays at−2,
theproduct s1s2 = k/1 increases from0 to ∞.

Whenk = 0, the roots−2 and0 are real. Whenk = 1, the roots are−1 and−1
(repeated). Whenk → ∞, thenB2 − 4AC = 4 − 4k is negative and the roots
s = −1 ± iω arecomplex conjugates. They lie on the vertical linex = Res = −1
in the complex plane.

12 If a polynomialP (s) has a double root ats = s1, then(s − s1) is a double factor and
P (s) = (s − s1)

2Q(s). CertainlyP = 0 at s = s1. Show that alsodP/ds = 0
ats = s1. Use the product rule to finddP/ds.

Solution P = (s − s1)
2Q(s) has a double roots = s1, together with the roots of

Q(s). The derivative is
dP

ds
= (s− s1)

2 dQ

ds
+ 2(s− s1)Q(s). This is zero ats = s1.

13 Show thaty′′ = 2ay′ − (a2 + ω2)y leads tos = a± iω. Solvey ′′ − 2y ′ + 10y = 0.

Solution Substitutey = est in the differential equation. Cancelest from every term to
leaves2 = 2as− (a2 + ω2).
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The roots area± iω, their sum is2a, their product isa2 + ω2.

Fory ′′ − 2y ′ + 10y = 0 (negative damping!) the sum iss1 + s2 = 2 and the product
is 10. The roots ares = 1 ± 3i. The solutiony(t) is c1e(1+3i)t + c2e

(1−3i)t.

14 The undampednatural frequencyis ωn =
√
k/m. The two roots ofms2 + k = 0 are

s = ± iωn (pure imaginary). Withp = b/2m, the roots ofms2 + bs + k = 0 are
s1, s2 = −p ±

√
p2 − ω2

n. The coefficientp = b/2m has the units of1/time.

Solves2 + 0.1s+ 1 = 0 ands2 + 10s+ 1 = 0 with numbers correct to two decimals.

Solution s2 +0.1s+1 = 0 givess = (−0.1±
√
0.01− 4)/2 = (−0.1± i

√
3.99)/2.

How to approximate that square root?
The square root of4 − x is close to2 − 1

4x. Computing(2 − 1
4x)

2 = 4 − x + x2/16

we see the small errorx2/16. Our problem has4 − x = 3.99 andx = 1/100. So the
square root is close to2 − 1

400 . The roots ares ≈
(
−0.1± i

(
2− 1

400

))
/2. In other

wordss = −0.05 + i(1− 0.00125).
Fors2 +10s+1 = 0, the roots ares = (−10±

√
(100− 4)/2 = −5±

√
25− 1. The

square root of25 − x is close to5 − 1
10x, because squaring the approximation gives

25 − x + (x2/100). Our example hasx = 1 ands ≈ −5± (5 − 1
10 ), which gives the

two approximate rootss = − 1
10 and−10 + 1

10 .

These add to−10 (correct) and multiply to.99 (almost correct).

15 With large overdampingp >> ωn, the square root
√
p2 − ω2

n is close to
p − ω2

n/2p. Show that the roots ofms2 + bs + k are s1 ≈ −ω2
n/2p = (small)

ands2 ≈ −2p = −b/m (large).

Solution Use that approximate square rootp− ω2
n/2p in the quadratic formula :

s = −p±
√
p2 − ω2

n ≈ −p±
(
p− ω2

n

2p

)
. Then s = −ω2

n

2p
and − 2p+

ω2
n

2p
.

Whenp is large andωn is small, a small root is near−ω2
n/2p and a large root is near

−2p. (Their product is the correctω2
n, their sum is close to the correct−2p.)

16 With small underdampingp << ωn, the square root ofp2 − ω2
n is approximately

iωn − ip2/2ωn. Square that to come close top2 − ω2
n. Then the frequency for small

underdamping is reduced toωd ≈ ωn − p2/2ωn.

Solution Now p is muchsmaller thanωn. So the rootss = −p ±
√
p2 − ω2

n are
complex. The damped frequencyωd =

√
ω2
n − p2 is close toωn and the correction

term is−p2/2ωn from the approximationωn−p2/2ωn to the square root. (Square that
approximation to seeω2

n − p2 + (p4/4ω2
n).

17 Here is an8th order equation with eight choices for solutionsy = est :
d8y

dt8
= y becomes s8est = est and s8 = 1 : Eight roots in Figure 2.6.

Find two solutionsest that don’t oscillate (s is real). Find two solutions that only
oscillate (s is imaginary). Find two that spiral in to zero and two that spiral out.

Solution The equations8 = 1 has8 roots. Two of them ares = 1 ands = −1 (real :
no oscillation). Two ares = i ands = −i (imaginary : pure oscillation). Two are
s = e2πi/8 ands = e−2πi/8 (positive real partscos π

4 : (oscillating growth, spiral out).
Two ares = e3πi/4 ands = e−3πi/4 (negative real parts : oscillating decay, spiral in).
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18 An
dny

dtn
+ · · ·+A1

dy

dt
+ A0y = 0 leads toAns

n + · · · + A1s + A0 = 0.

The n rootss1, . . . , sn producen solutionsy(t) = est (if those roots are distinct).
Write downn equations for the constantsc1 to cn in y = c1e

s1t + · · · + cne
snt by

matching then initial conditions fory(0), y ′(0), . . ., Dn−1y(0).

Solution Then roots given solutionsy = est (when the rootss are all different).
There aren constants iny = c1e

s1t + · · · + cne
snt. These constants are found by

matching then initial conditionsy(0), y ′(0), . . . Take derivatives ofy and sett = 0 :

c1 + c2 + · · ·+ cn = y(0)

c1s1 + c2s2 + · · ·+ cnsn = y ′(0)

c1s
2
1 + c2s

2
2 + · · ·+ cns

2
n = y ′′(0)

· · · = · · ·
Then by n matrixA in those equations is the transpose of aVandermonde matrix :

A =




1 1 · · · 1
s1 s2 · · · sn

s21 s22 · · · s2n
· · · · · ·




19 Find two solutions tod2015y/dt2015=dy/dt. Describe all solutions tos2015=s.

Solution With y = est we finds2015 = s. One solution hass = 1 andy = et. The
other2014 solutions haves2014 = 1 (s = 1 is double! Second solutiony = tet.)
The2014 values ofs are equally spaced around the unit circle, separated by the angle
2π/2014.

20 The solution toy ′′ = 1 starting fromy(0) = y ′(0) = 0 is y(t) = t2/2. The
fundamental solution tog ′′ = δ(t) is g(t) = t by Example 5. Does the integral∫
g(t− s)f(s)ds =

∫
(t− s)ds from 0 to t give the correct solutiony = t2/2?

Solution The main formula for a particular solution is correct :

yp(t) =

t∫

0

g(t− s)f(s) ds =

t∫

0

(t− s) ds = − (t− s)2

2

]t

s=0

=
t2

2
.

21 The solution toy ′′ + y = 1 starting fromy(0) = y ′(0) = 0 is y = 1 − cos t. The
solution tog ′′ + g = δ(t) is g(t) = sin t by equation (13) withω = 1 andA = 1.
Show that1− cos t agrees with the integral

∫
g(t− s)f(s)ds =

∫
sin(t− s)ds.

Solution The formula for a particular solution is again correct :

yp(t) =

t∫

0

g(t− s)f(s) ds =

t∫

0

sin(t− s) ds = cos (t− s)]
t
s=0 = 1− cos t.

Theny ′′

p + yp = 1.

22 The step functionH(t) = 1 for t ≥ 0 is the integral of the delta function.So the step
responser(t) is the integral of the impulse response.This fact must also come from
our basic solution formula :
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Ar ′′ +Br ′ + Cr = 1 with r(0) = r ′(0) = 0 has r(t) =

t∫

0

g(t − s) 1 ds

Changet− s to τ and changeds to−dτ to confirm thatr(t) =
t∫
0

g(τ)dτ .

Section 2.5 will find two good formulas for the step responser(t).

Solution For any equationAr ′′ + Br ′ + Cr = 1 with f(t) = 1, yp comes from the
integral formula :

yp =

t∫

0

g(t−s)f(s) ds =

t∫

0

g(t−s) ds. Change tot−s = τ and −ds = dτ and

−
0∫

t

g(τ)dτ = +

t∫

0

g(τ)dτ = step response

Problem Set 2.4, page 114
Problems 1-4 use the exponential responseyp = ect/P (c) to solveP (D)y = ect.

1 Solve these constant coefficient equations with exponential driving force :

(a)y ′′

p + 3y ′

p + 5yp = et (b) 2y ′′

p + 4yp = eit (c) y′′′′ = et

Solution (a) Substitutey = Y et to findY :

Y et + 3Y et + 5Y et = et gives 9Y = 1 and Y = 1/9 : y = et/9

(b) Substitutey = Y eit : 2i2Y eit + 4Y eit = eit : 2Y = 1 : y = eit/2

(c) Substitutey = Y et to findY = 1 andy = et.

2 These equationsP (D)y = ect use the symbolD for d/dt. Solve foryp(t) :

(a) (D2 + 1)yp(t) = 10e−3t (b) (D2 + 2D + 1)yp(t) = eiωt

(c) (D4 +D2 + 1)yp(t) = eiωt

Solution (a) Substitutey = Y e−3t to find9Y + Y = 10 : Y = 1 andy = e−3t.

(b) Substitutey = Y eiωt to find ((iω)2 + 2iω + 1)Y = 1 andY = 1/(1− ω2 + 2iω).

(c) Substitutey = Y eiωt to find((iω)4 + (iω)2 +1)Y = 1 andY = 1/(1−ω2 +ω4).

3 How couldyp = ect/P (c) solvey ′′ + y = eteit and theny ′′ + y = et cos t ?

Solution First,y ′′+y = e(1+i)t hasc = 1+i andy = Y ect = e(1+i)t/((1+i)2+1) =
eteit/(1 + 2i). Thereal part of thaty solves the equation driven byet cos t :

y = Re

[
et(cos t+ i sin t)

(
1− 2i

12 + 22

)]
=

1

5
et(cos t+ 2 sin t).
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4 (a) What are the rootss1 to s3 and the null solutions toy′′′n − yn = 0 ?

(b) Find particular solutions toy′′′p − yp = eit and toy′′′p − yp = et − eiωt.

Solution (a)y = est leads tos3 − 1 = 0. The three rootss = 1, s = e2πi/3 = − 1
2 +

1
2

√
3, s = e−2πi/3 = − 1

2− 1
2

√
3 give three null solutionsyn = et, e−t/2 cos

√
3
2 t, e−t/2 sin

√
3
2 t.

(b) The particular solution withf = eit is yp = eit/(i3 − 1).

The particular solution withf = et−eiωt looks likey = et/(13−1)−eiωt((iω)3−1).
But the first part has13 − 1 = 0 and resonance : thenet/(13 − 1) changes by equation
(19) to tet/3 : (The differential equation hasy ′′′ − y = (D3 − 1)y = P (D)y and is
P ′(D) = 3D2 andP ′(c) = 3 becauseet hasc = 1.)

Problems 5-6 involve repeated rootss in yn and resonanceP (c) = 0 in yp.
5 Which value ofC gives resonance iny ′′+Cy = eiωt ? Why do we never get resonance

in y ′′ + 5y ′ + Cy = eiωt ?

Solution y ′′+Cy = eiωt has resonance wheneiωt solves the null equation, so(iω)2+
C = 0 andC = ω2. For thisC the particular solution must change fromyp = eiωt/0
to yp = teiωt/2iω (because the derivative ofP (D) = D2 + C is P ′(D) = 2D and
thenP ′(iω) = 2iω).

We never get resonance withP (D) = D2+5D+C becauseP (iω) = (iω)2+5iω+C
is never zero andy = eiωt is never a null solution.

6 Suppose the third order equationP (D)yn = 0 has solutionsy = c1e
t + c2e

2t + c3e
3t.

What are the null solutions to the sixth order equationP (D)P (D)yn = 0 ?

Solution The three roots ofP (s) must bes = 1, 2, 3. The sixth order equation
P (D)P (D)y = 0 has those asdouble rootsof P (s)2. So the null solutions are

y = c1e
t + c2te

t + c3e
2t + c4te

2t + c5e
3t + c6te

3t

7 Complete this table with equations fors1 ands2 andyn andyp :
Undamped free
Undamped forced
Damped free
Damped forced

my ′′ + ky = 0
my ′′ + ky = eiωt

my ′′ + by ′ + ky = 0
my ′′ + by ′ + ky = ect

yn = c1e
iωnt + c2e

−iωnt

yp = eiωt/m(ω2
n − ω2)

yn = c1e
s1t + c2e

s2t

yp = ect/(mc2 + bc + k)

Heres1 ands2 are−b/2m±
√
b2 − 4mk/2m.

8 Complete the same table when the coefficients are1 and2Zωn andω2
n with Z < 1.

Undamped free
Undamped forced
Underdamped free
Underdamped forced

y ′′ + ω2
ny = 0

y ′′ + ω2
ny = eiωt

y ′′ + 2Zωny
′ + ω2

ny = 0

y ′′ + 2Zωny
′ + ω2

ny = ect

yn = c1e
iωnt + c2e

−iωnt

yp = eiωt/m(ω2
n − ω2)

yn = c1e
s1t + c2e

s2t

yp = ect/(c2 + 2Zωnc + ω2
n)

Those use equations (20) in 2.3 and (32-33) in 2.4.
9 What equationsy ′′ +By ′ + Cy = f have these solutions ? Hint: FindB andC from

the exponentss in yn : s1 + s2 = −B ands1s2 = C. Findf by substitutingyp.

(a)y = c1 cos 2t+ c2 sin 2t+ cos 3t y ′′ + 4y = −5 cos 3t

(b)y = c1e
−t cos 4t+c2e

−t sin 4t+cos 5t y ′′ + 2y ′ + 17y = −8 cos 5t − 10 sin 5t

(c) y = c1e
−t + c2te

−t + eiωt y ′′ + 2y ′ + y = [(iω)2 + 2iω + 1]eiωt.
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10 If yp = te−6t cos 7t solves a second order equationAy ′′ + By ′ + Cy = f ,
what does that tell you aboutA, B, C, andf ?

Solution This particularyp is showingresonancefrom the factort. (If this wasyn,
we would be seeing a double root ofAs2 + Bs + C = 0.) The root iss = −6 + 7i
from the other factors ofyp.

So I believe that

As2 +Bs+ C = A(s+ 6− 7i)(s+ 6 + 7i) = A(s2 + 12s+ 36 + 49)

f = Fe−6t(A cos 7t+B sin 7t)

11 (a) Find the steady oscillationyp(t) that solvesy ′′ + 4y ′ + 3y = 5 cosωt.

(b) Find the amplitudeA of yp(t) and its phase lagα.

(c) Which frequencyω gives maximum amplitude (maximum gain) ?

Solution (a)yp hassinωt as well ascosωt. Use equations (22-23) foryp = M cosωt+
N sinωt :

D = (3− ω2)2 + 16ω2 M =
3− ω2

D
N =

4ω

D

(b) From equation (26) and the page 112 table :

Amplitude= G = 1√
D

and the angleα has tangent= N
M = 4ω

3−ω2 .

(c) The maximum gainG and the minimum ofD = (3−ω2)2+16ω2 will occur when
dD

dω
= −4ω(3− ω2) + 32ω = 0 and 3− ω2 = 8 and ω = ±

√
5.

This “practical resonance frequency” is computed at the endof section 2.5.

12 Solvey ′′ + y = sinωt starting fromy(0) = 0 andy ′(0) = 0. Find the limit ofy(t) as
ω approaches1, and the problem approaches resonance.

Solution The solution isy = yn + yp = c1 cos t + c2 sin t + Y sinωt. Substituting
into the equation gives−ω2Y sinωt+ Y sinωt = sinωt andY = 1

1−ω2 .

y(0) = 0 givesc1 = 0. And y ′(0) = c2 + ωY = 0 givesc2 = −ωY :

y(t) =
−ω

1− ω2
sin t+

1

1− ω2
sinωt =

sinωt− ω sin t

1− ω2
.

Asω goes to1, this goes to0/0. Then the l’Hopital Rule finds the ratio ofω-derivatives
atω = 1 :

t cosωt− sin t

−2ω
−→ t cos t− sin t

−2
= Resonant solution

13 Does critical damping and a double roots = 1 in y ′′ +2y ′ + y = ect produce an extra
factort in the null solutionyn or in the particularyp (proportional toect) ? What isyn
with constantsc1, c2 ? What isyp = Y ect ?

Solution Critical damping is shown in the double roots = −1,−1 in s2 +2s+1 = 0
and in thenull solutions yn = c1e

−t + c2te
−t. (Resonance would come whenc is

also−1 in the right hand side.) The solutionyp = Y ect hasy ′′ + 2y ′ + y = ect and
(c2Y + 2cY + Y ) = 1 andY = 1/(c2 + 2c+ 1).
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14 If c = iω in Problem13, the solutionyp to y ′′+2y ′+y = eiωt is . That fraction
Y is the transfer function atiω. What are the magnitude and phase inY = Ge−iα ?

Solution Setc = iω in the solution to Problem 13:
yp + Y ect = eiωt/(i2ω2 + 2iω + 1) = Ge−iαeiωt.

ThenG = 1/(1 − ω2 + 2iω) has magnitude|G| = 1/
√
(1 − ω2)2 + 4ω2 = 1/

√
D.

The phase angle hastanα = 2ω
1−ω2 .

By rescaling both t and y, we can reachA = C = 1. Then ωn = 1 and
B = 2Z. The model problem isy ′′ + 2Zy ′ + y = f(t).

15 What are the roots ofs2 + 2Zs + 1 = 0 ? Find two roots forZ = 0, 1
2 , 1, 2

and identify each type of damping. The natural frequency is nowωn = 1.

Solution The roots ares = −Z ±
√
Z2 − 1. (All factors2 will cancel.)

Z = 0 : s = ±i No damping
Z = 1

2 : s = (−1±
√
3i)/2 Underdamping

Z = 1 : s = −1,−1 Critical damping
Z = 2 : s = −2±

√
3 Overdamping

16 Find two solutions toy ′′ + 2Zy ′ + y = 0 for everyZ exceptZ = 1 and−1. Which
solutiong(t) starts fromg(0) = 0 andg ′(0) = 1 ? What is different aboutZ = 1 ?

Solution If Z2 6= 1 the solutions arey = c1e
s1t + c2e

s2t. Theimpulse responseg(t)
on page 97 comes froms = −Z ± r :

g(t) =
es1t − es2t

s1 − s2
= e−Zt(ert − e−rt)/2r with r =

√
Z2 − 1 in formula (2.3.12).

If Z = 1 (critical) thens1 = s2 andr = 0 andg(t) changes tote−t (formula 2.3.15).
17 The equationmy ′′ + ky = cosωnt is exactly at resonance. The driving frequency

on the right side equals the natural frequencyωn =
√
k/m on the left side.

Substitutey = Rt sin(
√
k/mt) to find R. This resonant solution grows in time be-

cause of the factort.

Solution y ′ = R sin
√

k
m t+R

√
k
m t cos

√
k
m t andy ′′ = 2R

√
k
m cos

√
k
m t−R k

m t sin
√

k
m t.

Thenmy ′′+ky = 2R
√
km cos

√
k
m t−Rkt sin

√
k
m t+kRt sin

√
k
m t = 2R

√
km cos

√
k
m t.

This agrees withcosωnt on the right side of the differential equation ifR = 1/2
√
km.

18 Comparing the equationsAy ′′+By ′+Cy = f(t) and4Az ′′+Bz ′+(C/4)z = f(t),
what is the difference in their solutions ?

Correction The forcing term in thez-equation should bef( t4 ).

Solution z(t) will be 4y( t
4
). Thenz ′ = y ′( t4 ) andz ′′ = 1

4y
′′( t4 ).

4Az ′′ +Bz ′ + C
4 z equals term by term toAy ′′( t4 ) +By ′( t4 ) + Cy( t4 ) = f( t4 ).

19 Find the fundamental solution to the equationg ′′ − 3g ′ + 2g = δ(t).

Solution The roots ofs2 − 3s+2 = 0 ares = 2 ands = 1 : Real roots. Use formula
2.3.12 on page 97 to findg(t) :

g(t) =
es1t − es2t

A(s2 − s1)
= e2t − et.

Notice thatg(0) = 0 andg ′(0) = 1 (andA = 1 in the differential equation).
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20 (Challenge problem) Find the solution toy ′′+By ′+y = cos t that starts fromy(0) = 0
andy ′(0) = 0. Then let the damping constantB approach zero, to reach the resonant
equationy ′′ + y = cos t in Problem 17, withm = k = 1.

Show that your solutiony(t) is approaching the resonant solution1
2 t sin t.

Solution The particular solution isyp = sin t
B . Theny ′′

p + yp = 0 andBy ′

p = cos t.

The roots ofs2 + Bs+ 1 = 0 ares = (−B ±
√
B2 − 4)/2 = (−B ± i

√
4−B2)/2.

Then y = c1e
s1t + c2e

s2t + 1
B sin t. At t = 0 we must havec1 + c2 = 0 and

s1c1 + s2c2 +
1
B = 0. Putc2 = −c1 to find (s1 − s2)c1 = i

√
4−B2c1 = −1/B.

Solution nearB = 0 y =
i

B
√
4−B2

(es1t − es2t) +
1

B
sin t.

At B = 0 the roots ares1 = i ands2 = −i, and
√
4−B2 = 2.

The solutiony(t) approachesy = i
2B 2i sin t+ 1

B sin t = 0
0 (sign of resonance).

l’Hopital asks for the ratio of theB-derivatives. CertainlyB in the denominator hasB-
derivative equal to1. And

√
4−B2 approaches2. So we want theB-derivative of the

numerator, where s1, s2 depend onB. Then as B → 0, y approaches
d
dB

i
2 (e

s1t − es2t) = it
2

[
es1t ds1dB − es2t ds2dB

]
→ it

2

(
− 1

2

)
eit− it

2

(
− 1

2

)
e−it = 1

2
t sin t. Wow!

21 Suppose you know three solutionsy1, y2, y3 to y ′′ + B(t)y ′ + C(t)y = f(t).
(Recommended) How could you findB(t) andC(t) andf(t)?

Solution The differencesu = y1 − y2 andv = y1 − y3 are null solutions :

u ′′ +B(t)u ′ + C(t)u = 0
v ′′ +B(t)v ′ + C(t)v = 0

Solve those two linear equations for the numbersB(t) andC(t) at each timet. Then
y1 is a particular solution soy ′′

1 +B(t)y ′

1 + C(t)y1 gives f(t).

Problem Set 2.5, page 127

1 (Resistors in parallel) Two parallel resistorsR1 andR2 connect a node at voltageV
to a node at voltage zero. The currents areV/R1 andV/R2. What is the total current
I between the nodes ? WritingR12 for the ratioV/I, what isR12 in terms ofR1 and
R2 ?

Solution CurrentsV/R1 andV/R2 in parallel give total currentI = V/R1 + V/R2.
Then the effective resistance inI = V/R has

1

R
=

1

R1
+

1

R2
=

R1 +R2

R1R2
and R =

R1R2

R1 +R2
.

2 (Inductor and capacitor in parallel) Those elements connect a node at voltageV eiωt to a
node at voltage zero (grounded node). The currents are(V/iωL)eiωt and
V (iωC)eiωt. The total currentIeiωt between the nodes is their sum. Writing
Z12e

iωt for the ratioV eiωt/Ieiωt, what isZ12 in terms ofiωL andiωC ?

Solution This is like Problem 1 with impedancesiωL and1/iωC in parallel, instead
of resistancesR1 andR2. The effective impedance imitates that previous formula for
R = R1R2/(R1 +R2) :



60 Chapter 2. Second Order Equations

Z =
Z1Z2

Z1 + Z2
=

iωL(1/iωC)

iωL+ (iωC)−1
=

iωL

1− ω2LC
.

3 The impedance of an RLC loop isZ = iωL + R + 1/iωC. This impedanceZ is real
whenω = . This impedance is pure imaginary when . This impedance is
zero when .

Solution Z is real wheniωL cancels with1/iωC = −i/ωC. ThenωL = 1/ωC and
ω2 = 1/LC. Z is imaginary whenR = 0. The impedance is zero when bothR = 0
andω2 = 1/LC.

4 What is the impedanceZ of an RLC loop whenR = L = C = 1? Draw a graph that
shows the magnitude|Z| as a function ofω.

Solution An RLC loop adds the impedancesR + iωL + i/(iωC). In case
R = L = C = 1, the total impedance in series isZ = 1 + iω + 1/iω. The magni-
tude|Z| = (1 + (ω − 1/ω)2)1/2 will equal1 atω = 1. For largeω, |Z| is asymptotic
to the line|Z| = ω. For smallω, |Z| is asymptotic to the curve|Z| = 1/ω.

5 Why does an LC loop with no resistor produce a90◦ phase shift between current
and voltage ? Current goes around the loop from a battery of voltageV in the loop.

Solution The phase shift is the angle of the complex impedanceZ. With no resistor,
R = 0 andZ = iωL+(1/iωC) = i(ωL− (1/ωC)). This pure imaginary number has
angleθ = ±π/2 = ±90 ◦ in the complex plane.

6 The mechanical equivalent of zero resistance is zero damping : my ′′ + ky = cosωt.
Find c1 andY starting fromy(0) = 0 andy ′(0) = 0 with ω2

n = k/m.

y(t) = c1 cosωnt+ Y cosωt.

That answer can be written in two equivalent ways :

y = Y (cosωt− cosωnt) = 2Y sin
(ωn − ω)t

2
sin

(ωn + ω)t

2
.

Solution The complete solution isy = c1 cosωnt+ c2 sinωnt+(cosωt)/(k−mω2).
The initial conditionsy = y ′ = 0 determinec1 andc2 :

y(0) = 0 c1 = −1/(k −mω2) y ′(0) = 0 c2 = 0.

Theny(t) = (cosωt − cosωnt)/(k − mω2). The identitycosωt − cosωnt =

2 sin (ω−ωn)t
2 sin (ω+ωn)t

2 expressesy as the product of two oscillations.
7 Suppose the driving frequencyω is close toωn in Problem 2. A fast oscillation

sin[(ωn + ω)t/2] is multiplying a very slow oscillation2Y sin[(ωn − ω)t/2].
By hand or by computer, draw the graph ofy = (sin t)(sin 9t) from 0 to 2π.

You should see a fast sine curve inside a slow sine curve. Thisis abeat.

Solution Whenω is close toωn, the first (bold) formula in Problem 6 is near0/0. The
second formula is much better :

2 sin
(ω − ωn)t

2
≈ (ω−ωn)t sin

(ω + ωn)t

2
≈ sinωnt y ≈ (ω − ωn)t sinωnt

This shows the typicalt factor for resonance. The graph ofy = (sin t)(sin 9t) has
ω = 10 andωn = 8, so that(10 − 8)/2 = 1 and(10 + 8)/2 = 9. The graph shows a
fast “sin 9t” curve inside a slow “sin t” curve : good to draw by computer.
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8 Whatm, b, k, F equation for a mass-dashpot-spring-force corresponds to Kirchhoff’s
Voltage Law around a loop ? What force balance equation on a mass corresponds to
Kirchhoff’s Current Law ?

Solution The Voltage Law says thatvoltage drops add to zeroaround a loop :

Equation (5) isL
dI

dt
+RI +

1

C

∫
Idt = V eiωt.

This corresponds tomy ′′ + by ′ + ky = f . The Current Law says that “flow in equals
flow out” at every node. The mechanical analog is that “forces balance” at every node.

In a static structure (no movement) we can have force balanceequations in thex, y, and
z direction. In a dynamic structure (with movement) the forces include the inertia term
my ′′ and the friction termby ′.

9 If you only know the natural frequencyωn and the damping coefficientb for one
mass and one spring, why is thatnot enoughto find the damped frequencyωd ?
If you know all ofm, b, k what isωd ?

Solution If we only knowω2
n = k/m and b, that does not determine the damping

ratio Z = b2/4mk or the damped frequencyωd =
√

p2 − ω2
n with p = B/2A =

b/2m = ωnZ in equation (2.4.30). We needthree numbersas inm, b, k or two ratios
as inω2

n = k/m and2p = b/m.
10 Varying the numbera in a first order equationy ′ − ay = 1 changes thespeedof the

response. VaryingB andC in a second order equationy ′′ + By ′ + Cy = 1 changes
the formof the response. Explain the difference.

Solution The growth factor in a first order equation iseat. The units ofa are1/time
and this controls the speed. For a second-order equationy ′′ + By ′ + Cy ′ = f , the
coefficientsB andC control not only the frequencyωn =

√
C but also the form of

y(t) : damped oscillation ifB2 < 4C and overdamping ifB2 > 4C.

11 Find the step responser(t) = yp + yn for this overdamped system :
r ′′ + 2.5r ′ + r = 1 with r(0) = 0 and r ′(0) = 0.

Solution The roots ofs2 + 2.5s + 1 = (s + 2)(s + 1
2 ) ares1 = −2 ands2 = − 1

2 .
Then equation (18) for the step response gives

r(t) = 1 +

(
−1

2
e−2t + 2e−t/2

)
/(−3/2) = 1 +

1

3
e−2t − 4

3
e−t/2.

Check thatr(0) = 0 andr ′(0) = 0 (andr(∞) = 1).

12 Find the step responser(t) = yp + yn for this critically damped system. The double
roots = −1 produces what form for the null solution ?

r ′′ + 2r ′ + r = 1 with r(0) = 0 and r ′(0) = 0.

Solution The characteristic equations2 + 2s+ 1 = 0 has a double roots = −1. The
null solution isyn = c1e

−t + c2te
−t. The particular solution withf = 1 is yp = 1.

The initial conditions givec1 andc2 :

r(t) = c1e
−t + c2te

−t + 1

r(0) = c1 + 1 = 0 c1 = −1

r ′(0) = −c1 + c2 + 1 = 0 c2 = −2

r(t) = 1 − (1 + 2t)e−t
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13 Find the step responser(t) for this underdamped system using equation (22) :
r ′′ + r ′ + r = 1 with r(0) = 0 and r ′(0) = 0.

Solution Equation (22) gives the step response for an underdamped system.

r(t) = 1− ωn

ωd
e−pt sin(ωdt+ φ).

Thenr ′′ + r ′ + r = 1 hasm = b = k = 1 andb2 < 4mk (underdamping).

p =
b

2m
=

1

2
ω2
n =

k

m
= 1 ω2

d = ω2
n − p2 =

3

4
cosφ =

p

ωn
=

1

2
φ =

π

3
.

Substituting in the formula givesr(t) = 1− 2√
3
e−t/2 sin

(√
3

2
t+

π

3

)
.

14 Find the step responser(t) for this undamped system and compare with (22) :
r ′′ + r = 1 with r(0) = 0 and r ′(0) = 0.

Solution Now r ′′ + r = 1 hasm = k = 1 andb = 0 (no damping) :

In this case p = 0 ω2
n = 1 ωd = ωn cosφ = p

ωn

= 0 φ = π
2 .

Substituting into (22) givesr(t) = 1− sin
(
t+ π

2

)
= 1 − cos t.

15 For b2 < 4mk (underdamping), what parameter decides the speed at which the step
responser(t) rises tor(∞) = 1 ? Show that thepeak time is T = π/ωd when
r(t) reaches its maximum before settling back tor = 1. At peak timer ′(T ) = 0.

Solution With underdamping, formula (22) has the decay factore−pt. Then
p = B/2A = b/2m is the decay rate. The “peak time” is the time whenr reaches
its maximum (its peak). That timeT hasdr/dt = 0.

dr

dt
= −ωn

ωd

(
−pe−pt sin(ωdt+ φ) + ωde

−pt cos(ωdt+ φ)
)
= 0 at t = T (peak time).

−p sin(ωdT + φ) + ωd cos(ωdT + φ) = 0

tan(ωdT + φ) = ωd/p which is tanφ

ThenωdT = π and T = π/ωd. (Note : I seem to get2π/ωd.)

16 If the voltage sourceV (t) in an RLC loop is a unit step function, what resistanceR
will produce an overshoot tormax = 1.2 if C = 10−6 Farads andL = 1 Henry ?
(Problem 15) found the peak timeT whenr(T ) = rmax).

Sketch two graphs ofr(t) for p1 < p2. Sketch two graphs asωd increases.

Solution The peak time isT = π/ωd. ThenωdT = π and we wantr = 1.2 :

rmax(T ) = 1− ωn

ωd

e−pT sin(π + φ)

1.2 = 1 + ωn

ωd

e−pT sin(φ) = 1 + e−pT

0.2 = e−pπ/ωd

pπ/ωd = − ln(0.2) = ln 5

We substitutep = B/2A = R/2ωL andωd =
√
ω2
n − ω2 =

√
(1/LC)− ω2. With

known values ofL andC andω we can findR.
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17 What values ofm, b, k will give the step responser(t) = 1−
√
2e−t sin(t+ π

4 )?

Solution This responser(t) matches equation (22) whenωn =
√
2ωd andp = 1

andφ = π/4. Then

ω2
d = ω2

n − p2 = 2ω2
d − 1 gives ωd = 1 and ωn =

√
2.

Thereforeω2
n = k/m = 2 andp = b/2m = 1. The numbersm, b, k are proportional

to 1, 2, 2.

18 What happens to thep − ωd − ωn right triangle as the damping ratioωn/p increases
to 1 (critical damping)? At that point the damped frequencyωd becomes . The
step response becomesr(t) = .

Solution Critical damping has equal rootss1 = s2 andb2 = 4mk and damping ratio
Z = 1 andωd = ωn

√
1− Z2 = 0. (The oscillation disappears and the damped

frequency goes toωd = 0 so thatφ = 0.) Then the step response is

r(t) = 1− ωnt

ωdte
− pt sin(ωdt) −→ 1 − ωnte

−pt.

19 The rootss1, s2 = −p ± iωd are poles of the transfer function1/(As2 + Bs + C)

Show directly that the product of the rootss1 = −p + iωd ands2 = −p − iωd is
s1s2 = ω2

n. The sum of the roots is−2p. The quadratic equation with those roots
is s2 + 2ps+ ω2

n = 0.

s1

s2

−p

iωd

− iωd

Imaginary axis

Real axis

Circle of radius ωn

Solution Multiplying the complex conjugate numbers = −p ± iωd gives
|s|2 = (−p+ iωd)(−p− iωd) = p2 + ω2

d = ω2
n.

For any quadraticAs2 + Bs + C = A(s − s1)(s − s2), C matchesAs1s2. Then
s1s2 = C/A = ω2

n. Complex rootsstay on the circle of radiusωn, as in the picture.

Adding−p+ iω to−p− iω givess1 + s2 = −2p. This always equals−B/A.

20 Supposep is increased whileωn is held constant. How do the rootss1 ands2 move ?

Solution Increasingp will make both roots go along the circle in the direction of−ωn.
Problem 19 showed that they stay on the circle of radiusωn until they meet at−ωn. At
that points1 + s2 = −2ωn = −2p. Therefore that value ofp is ωn.

Increasingp beyondωn will give two negative real rootsthat add to−2ωn.



64 Chapter 2. Second Order Equations

21 Suppose the massm is increased while the coefficientsb andk are unchanged. What
happens to the rootss1 ands2 ?

Solution The key numberB2 − 4AC = b2 − 4mk will eventually go negative when
m is increased. The roots will be complex (a conjugate pair). Further increasing the
massm will decrease bothp = b/2m andω2

n = k/m. The roots approach zero.

22 Ramp response How could you findy(t) whenF = t is a ramp function ?

y ′′ + 2py ′ + ω2
ny = ω2

nt starting from y(0) = 0 and y ′(0) = 0.

A particular solution (straight line) isyp = . The null solution still has the
form yn = . Find the coefficientsc1 andc2 in the null solution from the two
conditions att = 0.

This ramp responsey(t) can also be seen as the integral of .

Solution A particular solution isyp = C + t. Substitute into the equation:

y ′′ + 2py ′ + ω2
ny = 0+ 2p+ ω2

n(C + t) = ω2
nt. ThusC = −2p/ω2

n.

The null solution is stillyn = c1e
s1t + c2e

s2t. We findc1 andc2 at t = 0 :

y = c1e
s1t + c2e

s2t + C + t = c1 + c2 + C = 0

y ′ = c1s1e
s1t + c2s2e

s2t + 1 = c1s1 + c2s2 + 1 = 0

Solving those equations givesc1 = Cs2−1
s1−s2

andc2 = 1−Cs1
s1−s2

with C = −2p/ω2
n.

The ramp response is also the integral of thestep response.

Problem Set 2.6, page 137

Find a particular solution by inspection (or the method of undetermined coefficients)

1 (a)y ′′ + y = 4 (b) y ′′ + y ′ = 4 (c) y ′′ = 4

Solution (a)yp = 4 (b) yp = 4t (c) yp = 2t2

2 (a)y ′′ + y ′ + y = et (b) y ′′ + y ′ + y = ect

Solution (a)yp = 1
3e

t (b) yp = ect/(c2+c+1)

3 (a)y ′′ − y = cos t (b) y ′′ + y = cos 2t (c) y ′′ + y = t+ et

Solution (a)yp = − 1
2 cos t (b) yp = − 1

3 cos 2t (c) yp = t+ 1
2e

t

4 For thesef(t), predict the form ofy(t) with undetermined coefficients :

(a)f(t) = t3 (b) f(t) = cos 2t (c) f(t) = t cos t

Solution (a)yp = at3 + bt2 + ct+ d (b) yp = a cos 2t+ b sin 2t
(c) yp = (At+ B) cos t+ (Ct+D) sin t

5 Predict the form fory(t) when the right hand side is

(a)f(t) = ect (b) f(t) = tect (c) f(t) = et cos t

Solution (a)yp = Y ect (b) yp = (Y t+ Z)ect (c) yp = aet cos t+bet sin t
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6 Forf(t) = ect when is the prediction fory(t) different fromY ect ?

Solution There will be atect term inyp whenect is a null solution. This is resonance :

Ac2 + Bc+ C = 0 and c is s1 or s2.

Problems 7-11 : Use the method of undetermined coefficients to find a solutionyp(t).

7 (a)y ′′ + 9y = e2t (b) y ′′ + 9y = te2t

Solution (a)yp = Y e2t with 4Y e2t + 9Y e2t = e2t andY = 1
13

(b) yp = (Y t+Z)e2t with y ′ = (2Y t+ Y + 2Z)e2t andy ′′ = (4Y t+ 4Y + 4Z)e2t.

The equationy ′′ + 9y = te2t gives(4Y t+ 4Y + 4Z + 9Y t+ 9Z)e2t = te2t.

Then13Y t = t and4Y+13Z = 0 giveY = 1
13 andZ = − 4

13Y andyp = 1
13

(t − 4
13

)e2t.

8 (a)y ′′ + y ′ = t+ 1 (b) y ′′ + y ′ = t2 + 1

Solution (a)yp = at2 + bt and y ′′ + y ′ = 2a+ 2at+ b = t+ 1.

Thena = 1
2 andb = 0 and yp = 1

2
t2.

*Notice thatyp = constant is a null solution so we needed to assumeyp = at2 + bt.

(b) yp = at3+bt2+ct (NOT+d) andy ′′+y ′ = (6at+2b)+(3at2+2bt+c) = t2+1.

Then3a = 1 and6a+ 2b = 0 and2b+ c = 1 : yp = 1
3
t3 − 1t2 + 3t.

9 (a)y ′′ + 3y = cos t (b) y ′′ + 3y = t cos t

Solution (a)yp = A cos t+B sin t.

y ′′

p + 3yp = −A cos t−B sin t+ 3A cos t+ 3B sin t = cos t.

Then2A = 1 and2B = 0 andyp = 1
2
cos t.

(b) yp = (At+B) cos t+ (Ct+D) sin t.

y ′

p = (A+ Ct+D) cos t+ (−At−B + C) sin t.

y ′′

p + 3yp = C cos t − A sin t + (−A − Ct − D) sin t + (−At − B + C) cos t +
3(At+B) cos t+ 3(Ct+D) sin t = t cos t.

Match 3At − At = t and C − B + C + 3B = 0 and −Ct + 3Ct = 0 and
−A−A−D + 3D = 0.

Then A = 1
2 , C = 0, B = 0, D = A = 1

2 gives yp = 1
2
t cos t + 1

2
sin t.

10 (a)y ′′ + y ′ + y = t2 (b) y ′′ + y ′ + y = t3

Solution (a)yp = at2+bt+c givey ′′

p +y ′

p+y = (2a)+(2at+b)+(at2+bt+c) = t2.

Thena = 1 and2a + b = 0 and2a + b + c = 0 give a = 1, b = −2, c = 0 :
yp = t2 − 2t.

(b) Nowyp = at2 + bt+ c+ dt3. Added into part (a), the newdt3 produces

y ′′ + y ′ + y = (2a) + (2at+ b) + (at2 + bt+ c) + d(6t+ 3t2 + t3) = t3 + c = 0

Then d = 1, 3d + a = 0, 6d + b + 2a = 0, 2a + b + c = 0
gived = 1, a = −3, b = 0, c = 6 : yp = t3 − 3t2 + 6.
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11 (a)y ′′ + y ′ + y = cos t (b) y ′′+y ′+y = t sin t

Solution (a)yp = A cos t+B sin t.

y ′′

p + y ′

p + yp = (−A+B +A) cos t+ (−B −A+B) sin t = cos t.

ThenB = 1 andA = 0 andyp = sin t.

(b) The forms foryp andy ′

p andy ′′

p are the same as in 2.6.9 (b). Theny ′′

p +y ′

p+yp equals
C cos t−A sin t+(−A−Ct−D) sin t+(−At−B+C) cos t+(A+Ct+D) cos t
+(−At−B + C) sin t+ (Ct+D) sin t = t sin t.

Match coefficients oft cos t, t sin t, cos t, sin t :

−A + C + A = 0 − C − A + C = 1 C − B + C + A + D + B = 0
−A−A−D −B + C +D = 0.

ThenA = −1, C = 0, B = 2, D = 1 give yp = −t cos t + 2 cos t.

Problems 12–14 involve resonance. Multiply the usual form of yp by t.

12 (a)y ′′ + y = eit (b) y ′′ + y = cos t

Solution (a) Look foryp = Y teit. Theny ′

p = Y (it+ 1)eit.

y ′′

p + yp = Y (i2t+ 2ieit) + Y teit = 2iY eit.

This matcheseit on the right side whenY = 1/2i andyp = teit/2i = −iteit/2.

(b) Look foryp = At cos t+Bt sin t. Theny ′

p = A cos t−At sin t+B sin t+Bt cos t.

y ′′

p + y = −2A sin t−At cos t+ 2B cos t−Bt sin t+At cos t+Bt sin t = cos t.

ThenA = 0 and B = 1
2 and yp = 1

2
t sin t.

13 (a)y ′′ − 4y ′ + 3y = et (b) y ′′ − 4y ′ + 3y = e3t

Solution (a) Look foryp = ctet with y ′

p = c(t+ 1)et andy ′′

p = c(t+ 2)et.

y ′′

p − 4y ′

p + 3yp = (2c− 4c)et = et with c = −1

2
and yp = −1

2
tet.

(b) Look foryp = cte3t with y ′

p = c(3t+ 1)e3t andy ′′

p = c(9t+ 6)e3t.

y ′′

p − 4y ′

p + 3yp = (6c− 4c)e3t = e3t with c =
1

2
and yp =

1

2
te3t.

14 (a)y ′ − y = et (b) y ′ − y = tet (c) y ′ − y = et cos t

Solution (a) Look foryp = ctet with y ′

p = c(t+ 1)et.

Theny ′

p − yp = cet = et when c = 1 and yp = tet.

(b) Look foryp = ct2et with y ′

p = c(t2 + 2t)et.

Then y ′

p − yp = c(t2 + 2t− t2)et = tet when c =
1

2
and yp =

1

2
t2et.

(c) Look foryp = Aet cos t+Bet sin t. Then

y ′

p = Aet cos t−Aet sin t+Bet sin t+Bet cos t.

y ′

p − yp = −Aet sin t+Bet cos t = et cos t whenA = 0, B = 1, andyp = et sin t.
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15 Fory ′′ + 4y = et sin t (exponential times sinusoidal) we have two choices :

1 (Real) Substituteyp = Met cos t+Net sin t : determineM andN
2 (Complex) Solvez ′′ + 4z = e(1+i)t. Theny is the imaginary part ofz.

Use both methods to find the samey(t)—which do you prefer ?

Solution Method 1 hasy ′

p = Met cos t − Met sin t + Net sin t + Net cos t =

(M +N)et cos t+ (−M +N)et sin t.

Then y ′′

p + 4yp = (M +N) et cos t− (M +N) et sin t+ (−M +N) et sin t +

(−M +N) et cos t+ 4M et cos t+ 4N et sin t.
This equalset sin t when2N + 4M = 0 and−2M + 4N = 1.

Then N = −2M and −2M − 8M = 1 and M = − 1
10 , N = 2

10 ,

yp = − 1
10

et cos t+ 2
10

et sin t.

Method 2 Look forzp = Ze(1+i)t. Thenz ′′

p + 4zp = Z
[
(1 + i)2 + 4

]
e(1+i)t =

e(1+i)t givesZ = 1/(4 + 2i).

Take the imaginary part ofzp :

Im
e(1+i)t

4 + 2i
= Im

et(cos t+ i sin t)(4− 2i)

16 + 4
=

et

20
(−2 cos t + 4 sin t).

This complex method was shorter and easier. It produced the sameyp.

16 (a) Which values ofc give resonance fory ′′ + 3y ′ − 4y = tect ?

Solution c2 + 3c− 4 = (c− 1)(c+ 4). Soc = 1 andc = −4 will give resonance.

(b) What form would you substitute fory(t) if there is no resonance ?

Solution With no resonance look foryp = (at+ b)ect.

(c) What form would you use whenc produces resonance ?

Solution With resonance look foryp = (at2 + bt)ect. If we also look fordect, this
will be a null solution and we cannot determined.

17 This is the rule for equationsP (D)y = ect with resonanceP (c) = 0 :

If P (c) = 0 andP ′(c) 6= 0, look for a solutionyp = Ctect (m = 1)
If c is a root of multiplicitym, thenyp has the form .

Solution If c is a root ofP with multiplicity m, then multiply the usualY ect by tm.

18 (a) To solved4y/dt4 − y = t3e5t, what form do you expect fory(t)?

(b) If the right side becomest3 cos 5t, which8 coefficients are to be determined ?

Solution (a) The exponentc = 5 is not a root ofP (D) = D4 − 1 (54 6= 1).
So look foryp = (at3 + bt2 + ct+ d)e5t.

(b) If the right side ist3 cos 5t then

yp = (at3 + bt2 + ct+ d) cos 5t+ (et3 + ft2 + gt+ h) sin 5t.

19 For y ′ − ay = f(t), the method of undetermined coefficients is looking for all right
hand sidesf(t) so that the usual formulayp = eat

∫
e−asf(s)ds is easy to integrate.

Find these integrals for the “nice functions”f = ect, f = eiωt, andf = t :
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∫
e−asecsds

∫
e−aseiωsds

∫
e−assds

Solution The equation hasy ′ − ay so the growth factor (the impulse response) is
g(t) = eat. This problem connects the method of undetermined coefficients to the
ordinary formulayp =

∫
g(t− s)f(s) ds. The integral

∫
ea(t−s)f(s) ds is easy for :

∫
e−asecs ds =

e(c−a)s

(c− a)

∫
e−aseiωs ds =

e(iω−a)s

iω − a
∫

se−as ds = −
(
s

a
+

1

a2

)
e−as.

Problems 20–27 develop the method of variation of parameters.

20 Find two solutionsy1, y2 to y ′′ + 3y ′ + 2y = 0. Use those in formula (13) to solve

(a)y ′′ + 3y ′ + 2y = et (b) y ′′+3y ′+2y = e−t

Solution (a)y ′′ + 3y ′ +2y leads tos2 + 3s+2 = (s+ 1)(s+ 2). The null solutions
arey1 = e−t andy2 = e−2t. The Variation of Parameters formula is

yp = −y1

∫
y2f

W
+y2

∫
y1f

W
with W = y1y

′

2−y2y
′

1 = (−2−1)e−te−2t = −3e−3t.

f = et gives yp = +
e−t

3

∫
e−2tet

e−3t
− e−2t

3

∫
e−tet

e−3t
=

e−t

3

e2t

2
− e−2t

3

e3t

3
=

(
1

6
− 1

9

)
et =

1

18
et.

(b) Againy1 = e−t andy2 = e−2t. Now f = e−t gives resonance andt appears :

yp = +
e−t

3

∫
e−2te−t

e−3t
− e−2t

3

∫
e−te−t

e−3t
=

e−t

3
t− e−2t

3
et =

1

3
(t − 1)e−t.

21 Find two solutions toy ′′ + 4y ′ = 0 and use variation of parameters for

(a)y ′′ + 4y ′ = e2t (b) y ′′ + 4y ′ = e−4t

Solution (a) y ′′ + 4y ′ = 0 has null solutionsy1 = 1 = e0t and y2 = e−4t.
ThenW = y1y

′

2 − y2y
′

1 = −4e−4t. The equation hasf = e2t.

From (13) :yp = −1

∫
e−4te2t

−4e−4t
+ e−4t

∫
(1)e2t

−4e−4t
=

e2t

8
+ e−4t

(
e6t

−24

)
=

e2t

12
.

(b) f = e−4t is also a null solution : expect resonance and a factort.

yp = −1

∫
e−4te−4t

−4e−4t
+ e−4t

∫
(1)e−4t

−4e−4t
= −e−4t

16
− e−4t

(
t

4

)
.
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22 Find an equationy ′′ + By ′ + Cy = 0 that is solved byy1 = et and y2 = tet.
If the right side isf(t) = 1, what solution comes from theV P formula (13) ?

Solution With y1 = et andy2 = tet, the exponents = 1 must be a double root :

As2 +Bs+ C = A(s− 1)2 and the equation can bey ′′ − 2y ′ + y = f(t).

With f(t) = 1 andW = y1y
′

2 − y2y
′

1 = et(et + tet)− tet(et) = e2t, eq. (13) gives

yp = −et
∫

tet(1)

e2t
+ tet

∫
et(1)

e2t
= −et(−te−t − e−t) + tet(−e−t) = 1

yp = 1 is a good solution toy ′′ − 2y ′ + y = 1.

23 y ′′ − 5y ′ + 6y = 0 is solved byy1 = e2t and y2 = e3t, becauses = 2 and
s = 3 come froms2 − 5s+ 6 = 0. Now solvey ′′ − 5y ′ + 6y = 12 in two ways :

1. Undetermined coefficients (or inspection)2. Variation of parameters using (13)

The answers are different. Are the initial conditions different ?

Solution Solvingy ′′ − 5y ′ + 6y = 12 givesyp = 2 by inspection or undetermined
coefficients.

Usings2 − 5s + 6 = (s − 2)(s − 3) we havey1 = e2t andy2 = e3t andW = e5t.
Then setf = 12 :

yp = −e2t
∫

e3t(12)

e5t
+e3t

∫
e2t(12)

e5t
= −e2t

(
12e−2t

−2

)
+e3t

(
12e−3t

−3

)
= 6−4 = 2

But if those two integrals are computed from0 to t, the lower limit gives a differentyp :

−e2t
t∫

0

e−2t(12) + e3t
t∫

0

e−3t(12) = e2t
[
12e−2t

−2

]t

0

+ e3t
[
12e−3t

−3

]t

0

= 2 − 6e2t + 4e3t = 2 + null solution.

24 What are the initial conditionsy(0) andy ′(0) for the solution (13) coming from varia-
tion of parameters, starting from anyy1 andy2 ?

Solution Every integralI(t) =

∫ t

0

h(s) ds starts fromI(0) = 0 andI ′(0) = h(0)

by the Fundamental Theorem of Calculus. For equation (13), this givesyp(0) = 0
andy ′

p(0) = 0 (which can be checked foryp = 2− 6e2t + 4e3t in Problem 23).

25 The equationy ′′ = 0 is solved byy1 = 1 andy2 = t. Use variation of parameters to
solvey ′′ = t and alsoy ′′ = t2.

Solution Those null solutionsy1 = 1 andy2 = t giveW = y1y
′

2 = 1. Then

for f = t yp = −1
∫
t2 + t

∫
t = − t3

3 + t3

2 = t3/6

for f = t2 yp = −1
∫
t t2 + t

∫
t2 = − t4

4 + t4

3 = t4/12

Those are correct solutions toy ′′ = t andy ′′ = t2.
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26 Solveys ′′ + ys = 1 for the step response using variation of parameters, starting from
the null solutionsy1 = cos t andy2 = sin t.

Solution The Wronskian ofy1 = cos t and y2 = sin t is W = (cos t)(sin t) ′ −
(sin t)(cos t) ′ = 1. Setf = 1 andW = 1 in equation (13) :

yp = − cos t

∫ t

0

(sin t)(1)

1
+ sin t

∫ t

0

(cos t)(1)

1
= − cos t(− cos t+ 1) + sin t(sin t)

= 1 − cos t : Step response

27 Solveys ′′ + 3ys
′ + 2ys = 1 for the step response starting from the null solutions

y1 = e−t andy2 = e−2t.

Solution The Wronskian ofy1 = e−t andy2 = e−2t is

W = e−t(−2e−2t)− e−2t(−e−t) = −e−3t. Setf = 1 in (13) :

yp = −e−t

t∫

0

e−2t(1)

−e−3t
dt+ e−2t

t∫

0

e−t(1)

−e−3t
dt = +e−t[et − 1] + e−2t

[
1

2
e2t +

1

2

]

=
1

2
− e−t +

1

2
e−2t.

The steady state isyp(∞) = 1
2 . This agrees withy ′′ + 3y ′ + 2y = 1 wheny =

constant.
28 SolveAy ′′+Cy = cosωtwhenAω2 = C (the case of resonance). Example 4 suggests

to substitutey = Mt cosωt+Nt sinωt. FindM andN .

Solution y = Mt cosωt+Nt sinωt has

y ′ = M(cosωt− ωt sinωt) +N(sinωt+ ωt cosωt).

Now computeAy ′′ + Cy whenC = Aω2. The result is

AM(−2ω sinωt − ω2t cosωt) + Aω2Mt cosωt + AN(2ω cosωt − ω2t sinωt) +
Aω2N sinωt = cosωt.

Simplify toAM(−2ω sinωt)+AN(2ω cosωt) = cosωt. ThenM = 0 andN = 1/2Aω.
29 Putg(t) into the great formulas (17)-(18) to see the equations abovethem.

Solution The equation above (17) came from theV of P equation (13) :

Particular solution
Constant coefficients yp(t) =

−es1t

s2 − s1

t∫

0

e−s1T f(T )dT+
es2t

s2 − s1

t∫

0

e−s2T f(T )dT

This is the integral of
−es1(t−T )

s2 − s1
f(T )+

es2(t−T )

s2 − s1
f(T ) which is exactlyg(t−T )f(T ).

For equal rootss1 = s2, the equation after (17) is theV of P equation :

Particular solution yp

Null solutions est, test yp(t) = −est
t∫

0

Te−sTf(T )dT + test
t∫

0

e−sT f(T )dT
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This is the integral of−Tes(t−T )f(T ) + tes(t−T )f(T ) dt = (t− T )es(t−T )f(T ).

This is exactlyg(t− T )f(T ) wheng(t) = test in the equal roots case.

Neat conclusion :Variation of Parameters gives exactly
∫
g(t − T )f(T )dT .

Problem Set 2.7, page 148

1 Take the Laplace transform of each term in these equations and solve for Y (s),
with y(0) = 0 andy′(0) = 1. Find the rootss1 ands2 — the poles ofY (s) :

Undamped y′′ + 0y′ + 16y = 0

Underdamped y′′ + 2y′ + 16y = 0

Critically damped y′′ + 8y′ + 16y = 0

Overdamped y′′ +10y′ + 16y = 0

For the overdamped case use PF2 to writeY (s) = A/(s− s1) + B/(s− s2).

Solution (a) Taking the Laplace Transform ofy ′′ + 0y ′ + 16y = 0 gives :

s2Y (s)− sy(0)− y ′(0) + 0 · sY (s)− 0 · y(0) + 16Y (s) = 0

s2Y (s)− 1 + 16Y (s) = 0

Y (s)(s2 + 16) = 1

Y (s) =
1

s2 + 16
The poles ofY = roots ofs2 + 16 ares = 4i and−4i.

(b) Taking the Laplace Transform ofy ′′ + 2y ′ + 16y = 0 gives :

s2Y (s)− sy(0)− y ′(0) + 2 · sY (s)− 2 · y(0) + 16Y (s) = 0

s2Y (s)− 1 + 2sY (s) + 16Y (s) = 0

Y (s)(s2 + 2s+ 16) = 1

Y (s) =
1

s2 + 2s + 16

The roots ofs2 + 2s+ 16 are−1− i
√
15 and−1 + i

√
15. Underdamping.

(c) Taking the Laplace Transform ofy ′′ + 8y ′ + 16y = 0 gives :

s2Y (s)− sy(0)− y ′(0) + 8 · sY (s)− 2 · y(0) + 16Y (s) = 0

s2Y (s)− 1 + 8sY (s) + 16Y (s) = 0

Y (s)(s2 + 8s+ 16) = 1

Y (s) =
1

s2 + 8s+ 16
=

1

(s + 4)2

There is a double pole ats = −4. Critical damping.

(d) Taking the Laplace Transform ofy ′′ + 10y ′ + 16y = 0 gives :
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s2Y (s)− sy(0)− y ′(0) + 10 · sY (s)− 10 · y(0) + 16Y (s) = 0

s2Y (s)− 1 + 10sY (s) + 16Y (s) = 0

Y (s)(s2 + 10s+ 16) = 1

Y (s) =
1

s2 + 10s+ 16
=

1

(s+ 2)(s+ 8)
=

1

6(s+ 2)
− 1

6(s+ 8)

The poles ofY (s) are−2 and−8 : Overdamping.

2 Invert the four transformsY (s) in Problem 1 to findy(t).

Solution (a)Y (s) =
1

s2 + 16
=

1

4
· 4

s2 + 16
inverts toy(t) =

1

4
sin(4t).

(b) Y (s) =
1

s2 + 2s+ 16
=

1

(s+ 1)2 + 15
inverts by equation (28) to

y(t) = e−t cos(
√
15t)/

√
15.

(c) Y (s) =
1

(s+ 4)2
inverts toy(t) = te−4t.

(d) Y (s) =
1

6(s+ 2)
− 1

6(s+ 8)
inverts toy(t) =

1

6
e−2t − 1

6
e−8t.

3 (a) Find the Laplace TransformY (s) from the equationy′ = eat with y(0) = A.

(b) Use PF2 to breakY (s) into two fractionsC1/(s− a) + C2/s.

(c) InvertY (s) to findy(t) and check thaty′ = eat andy(0) = A.

Solution (a) Taking the Laplace Transform ofy ′ = eat gives :

sY (s)− y(0) =
1

s− a

sY (s)−A =
1

s− a

Y (s) =
A

s
+

1

s(s− a)

(b) By using partial fractionsY (s) =
A

s
+

1
a

(s− a)
+

−1
a

s

(c) The inverse Laplace Transform of each term gives :

y(t) = A +
1

a
eat − 1

a

Differentiating gives :y ′(t) = a
1

a
eat = eat with y(0) = A+

1

a
− 1

a
= A.

4 (a) Find the transformY (s) wheny′′ = eat with y(0) = A andy′(0) = B.

(b) SplitY (s) intoC1/(s− a) + C2/(s− a)2 + C3/s.

(c) InvertY (s) to findy(t). Checky′′ = eat andy(0) = A andy′(0) = B.

Solution (a) The Laplace Transform ofy ′′ = eat gives :
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s2Y (s)− sy(0)− y ′(0) =
1

s− a

s2Y (s) = sA+B +
1

s− a

Y (s) =
A

s
+

B

s2
+

1

s2(s− a)

(b)
1

s2(s− a)
=

Cs+D

s2
+

E

s− a
=

(s− a)(Cs+D) + Es2

s2(s− a)
.

That numerator matches1 whenD = −1

a
, C = − 1

a2
, E =

1

a2
.

(c) y(t) = A+Bt+ C +Dt+ Eeat = A + Bt − 1

a2
− t

a
+

1

a2
eat.

5 Transform these differential equations to findY (s) :

(a) y′′ − y′ = 1 with y(0) = 4 andy′(0) = 0

(b) y′′ + y = cos ωt with y(0) = y′(0) = 0 andω 6= 1

(c) y′′ + y = cos t with y(0) = y′(0) = 0. What changed forω = 1 ?

Solution (a) The Laplace Transform ofy ′′ − y ′ = 1 is

s2Y (s)− sy(0)− y ′(0)− (sY (s)− y(0)) =
1

s

s2Y (s)− 4s− sY (s) + 4 =
1

s

Y (s)(s2 − s) =
1

s
+ 4s− 4

Y (s) =
1
s + 4s− 4

s2 − s

Y (s) =
4s2 − 4s+ 1

s3 − s2

Y (s) =
(2s− 1)2

s2(s− 1)

Y (s) = − 1

s2
+

3

s
+

1

s − 1

(b) The Laplace Transform ofy ′′ + y = cosωt with y(0) = 0 andy ′(0) = 0 :

s2Y (s)− sy(0)− y ′(0) + Y (s) =
s

s2 + ω2

s2Y (s) + Y (s) =
s

s2 + ω2

Y (s) =
s

(s2 + ω2)(s2 + 1)

(c) The Laplace Transform ofy ′′ + y = cos t with y(0) = 0 andy ′(0) = 0 :
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s2Y (s) + Y (s) =
s

s2 + 1

Y (s) =
s

(s2 + 1)2
: Double poles from resonance

6 Find the Laplace transformsF1, F2, F3 of these functionsf1, f2, f3 :

(a) f1(t) = eat − ebt (b) f2(t) = eat + e−at (c) f3(t) = t cos t

Solution (a) The Laplace Transform ofeat − ebt is
1

s− a
− 1

s− b
=

a− b

(s− a)(s− b)
.

(b) The Laplace Transform ofeat + e−at is
1

s− a
+

1

s+ a
=

2s

s2 − a2
.

(c) The Laplace Transform ofteat is 1
(s−a)2 by equation (19). Witha = i, write

t cos t = 1
2 te

it + 1
2 te

−it. Then the transform oft cos t is

1

2

1

(s− i)2
+

1

2

1

(s+ i)2
=

1

2

(s+ i)2 + (s− i)2

(s− i)2(s+ i)2
=

s2 − 1

(s2 + 1)2
.

7 For any real or complexa, the transform off = teat is . By writing
cos ωt as (eiωt + e−iωt)/2, transformg(t) = t cos ωt and h(t) = tet cos ωt.
(Notice that the transform ofh is new.)

Solution The transform ofteat is 1
(s−a)2 by equation (19). Herea = iω.

Thent cosωt = 1
2 te

iωt + 1
2 te

−iωt transforms to

1

2

1

(s− iω)2
+

1

2

1

(s+ iω)2
=

1

2

(s+ iω)2 + (s− iω)2

(s− iω)2(s+ iω)2
=

s2 − ω2

(s2 + ω2)2
.

Similarly tet cosωt = 1
2 te

(1+iω)t + 1
2 te

(1−iω)t transforms to

1

2

1

(s− 1− iω)2
+
1

2

1

(s− 1 + iω)2
=

1

2

(s− 1 + iω)2 + (s− 1− iω)2

(s− 1− iω)2(s− 1 + iω)2
=

(s− 1)2 − ω2

((s− 1)2 + ω2)2
.

8 Invert the transformsF1, F2, F3 using PF2 and PF3 to discoverf1, f2, f3 :

(a) F1(s) =
1

(s− a)(s− b)
(b) F2(s) =

s

(s− a)(s− b)
(c) F3(s) =

1

s3 − s

Solution (a)F1(s) =
1

(s− a)(s− b)
=

1

(a− b)(s− a)
+

1

(b− a)(s− b)
.

The inverse transform isf1 =
1

(a − b)
eat +

1

(b − a)
ebt.

(b)F2(s) =
s

(s− a)(s− b)
=

a

(a− b)(s− a)
+

b

(b− a)(s− b)
.

The inverse transform isf2 =
a

(a − b)
eat +

b

(b − a)
ebt.
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(c)F3(s) =
1

s3 − s
=

1

(s− 1)(s+ 1)s
= −1

s
+

1
2

s+ 1
+

1
2

s− 1
usingPF3.

The inverse transform isf3 = −1 +
1

2
e−t +

1

2
et.

9 Step 1 transforms these equations and initial conditions. Step2 solves forY (s).
Step3 inverts to findy(t) :

(a)y′ − ay = t with y(0) = 0

(b) y′′ + a2y = 1 with y(0) = 1 and y′(0) = 2

(c) y′′ + 3y′ + 2y = 1 with y(0) = 4 and y′(0) = 5.

What particular solutionyp to (c) comes from using “undetermined coefficients” ?yp = 1
2

.

Solution (a)y′ − ay = t transforms tosY (s)− y(0)− aY (s) =
1

s2
with y(0) = 0.

Y (s) =
1

s2(s− a)
=

− 1
a2

s
+

− 1
a

s2
+

1
a2

s− a

The inverse transform isy(t) = − 1

a2
− 1

a
t+

1

a2
eat.

(b) y′′ + a2y = 1 transforms tos2Y (s)− sy(0)− y ′(0)+ a2Y (s) =
1

s
with y(0) = 1

andy ′(0) = 2. This is(s2 + a2)Y (s) = y ′(0) + sy(0) +
1

s
:

Y (s) =
2

s2 + a2
+

s

s2 + a2
+

1

s(s2 + a2)
=

2

a

a

s2 + a2
+

s

s2 + a2
+

1

a2s
− 1

a2
s

s2 + a2
.

The inverse transform isy(t) =
2

a
sin(at) + cos(at) +

1

a2
− 1

a2
cos(at).

(c) y′′+3y′+2y = 1 becomess2Y (s)−sy(0)−y ′(0)+3sY (s)−3y(0)+2Y (s) =
1

s
.

Theny(0) = 4 andy ′(0) = 5 give

Y (s) =
1

s(s2 + 3s+ 2)
+

4s+ 5

(s2 + 3s+ 2)
=

1

s(s+ 1)(s+ 2)
+

4(s+ 1) + 1

(s+ 1)(s+ 2)
.

The inverse transform can come fromPF3 on page 143. It comes much more quickly
and directly (without Laplace transforms!) from knowing that
y = yp + yn = 1

2 + c1e
−t + c2e

−2t :

y(0) = 1
2 + c1 + c2 = 4 andy ′(0) = −c1 − 2c2 = 5 add to 1

2 − c2 = 18
2 and

y(t) = 1
2
+ 12e−t − 17

2
e−2t.

Questions 10-16 are about partial fractions.

10 Show that PF2 in equation (9) is correct. Multiply both sides by(s− a)(s− b) :

(∗) 1 = + .

(a) What do those two fractions in (∗) equal at the pointss = a ands = b ?
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(b) The equation (∗) is correct at those two pointsa and b. It is the equation of
a straight . So why is it correct for everys?

Solution (usingb instead ofc in PF2) :

1 =
s − b

a − b
+

s − a

b − a
after multiplying equation (9) by(s− a)(s− b).

(a) At s = a we get1 = a−b
a−b . At s = b we get1 = b−a

b−a .

(b) When the equation of astraight lineis correct for two valuess = a ands = b, it is
correct for all values ofs.

11 Here is the PF2 formula with numerators. Formula(∗) hadK = 1 andH = 0 :

PF2′ Hs+K

(s− a)(s− b)
=

Ha+K

(s− a)(a− b)
+

Hb+K

(b− a)(s− b)

To show that PF2′ is correct, multiply both sides by(s − a)(s − b). You are left
with the equation of a straight . Check your equation ats = a and ats = b.
Now it must be correct for alls, and PF2′ is proved.

Solution Multiplying by (s− a)(s− b) produces

(*) Hs+K =
(Ha+K)(s− b)

a− b
+

(Hb+K)(s− a)

b− a
.

At s = a this isHa+K = Ha +K + 0 : correct. Similarly correct ats = b. Since
(*) is linear ins, it is the equation of a straight line. When correct at 2 pointss = a and
s = b, it is correct for everys.

12 Break these functions into two partial fractions using PF2 and PF2′ :

(a)
1

s2 − 4
(b)

s

s2 − 4
(c)

Hs+K

s2 − 5s+ 6

Solution (a)
1

s2 − 4
=

1

(s− 2)(s+ 2)
=

1

(s− 2)(2 + 2)
+

1

(s+ 2)(−4)

=
1

4(s − 2)
− 1

4(s + 2)

(b)
s

s2 − 4
=

s

(s− 2)(s+ 2)
=

2

(s− 2)(2 + 2)
+

−2

(−4)(s+ 2)

=
1

2(s − 2)
+

1

2(s + 2)

(c)
Hs+K

s2 − 5s+ 6
=

Hs+K

(s− 2)(s− 3)

=
2H +K

(s− 2)(2− 3)
+

3H +K

(3− 2)(s− 3)

= −2H + K

s − 2
+

3H + K

s − 3
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13 Find the integrals of(a)(b)(c) in Problem 12 by integrating each partial fraction. The
integrals ofC/(s− a) andD/(s− b) are logarithms.

Solution (a)
∫

1

s2 − 4
ds =

∫
1

4(s− 2)
− 1

4(s+ 2)
ds

=
1

4
ln(s− 2)− 1

4
ln(s+ 2) =

1

4
ln

s − 2

s + 2

(b)
∫

s

s2 − 4
ds =

∫
1

2(s− 2)
+

1

2(s+ 2)
ds

=
1

2
ln(s− 2) +

1

2
ln(s+ 2) =

1

2
ln(s2 − 4)

(c)
∫

Hs+K

s2 − 5s+ 6
ds =

∫
−2H +K

s− 2
+

3H +K

s− 3
ds

= −(2H + K) ln(s − 2) + (3H + K) ln(s − 3)

14 Extend PF3 to PF3′ in the same way that PF2 extended to PF2′ :

PF3 ′ Gs2 +Hs+K

(s− a)(s− b)(s− c)
=

Ga2 +Ha+K

(s− a)(a− b)(a− c)
+

?

?
+

?

?
.

Solution We want
Gs2 +Hs+K

(s− a)(s− b)(s− c)
=

A

s− a
+

B

s− b
+

C

s− c
.

We can multiply both sides by(s− a)(s− b)(s− c) and solve forA,B,C. Or we can
useA as given in the problem statement—and permute lettersa, b, c to getB andC
fromA. That way is easier, and our three fractions are

a2G + aH + K

(a − b)(a − c)

1

s − a
+

b2G + bH + K

(b − a)(b − c)

1

s − b
+

c2G + cH + K

(c − a)(c − b)

1

s − c

15 The linear polynomial(s− b)/(a− b) equals1 at s = a and0 ats = b. Write down a
quadratic polynomial that equals1 ats = a and0 ats = b ands = c.

Solution
(s− b)(s− c)

(a− b)(a− c)
equals0 for s = b ands = c. It equals1 for s = a.

16 What is the numberC so thatC(s− b)(s− c)(s− d) equals1 ats = a?

NoteA complete theory of partial fractions must allow double roots (whenb = a). The
formula can be discovered from l’Ĥopital’s Rule (in PF3 for example) when
b approachesa. Multiple roots lose the beauty of PF3 and PF3′—we are happy
to stay with simple rootsa, b, c.

Solution ChooseC =
1

(a − b)(a − c)(a − d)
.

Questions 17-21 involve the transformF (s) = 1 of the delta function f(t) = δ(t).
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17 FindF (s) from its definition
∞∫
0

f(t)e−stdt whenf(t) = δ(t− T ), T ≥ 0.

Solution The transform ofδ(t− T ) is F (s) =

∞∫

0

δ(t− T ) e−stdt = e−sT .

18 Transformy ′′ − 2y ′ + y = δ(t). Theimpulse responsey(t) transforms intoY (s) =
transfer function . The double roots1 = s2 = 1 gives a double pole and a newy(t).

Solution With y(0) = y ′(0) = 0, the transform is(s2 − 2s + 1)Y (s) = 1. Then
Y (s) = 1

(s−1)2 and the inverse transform is the impulse responsey(t) = g(t) = tet.

19 Find the inverse transformsy(t) of these transfer functionsY (s) :

(a)
s

s− a
(b)

s

s2 − a2
(c)

s2

s2 − a2

Solution (a)Y (s) =
s

s− a
=

s− a+ a

s− a
= 1 +

a

s− a

y(t) = δ(t) + aeat

(b) Using PF2 we haveY (s) =
s

s2 − a2
=

s

(s− a)(s+ a)
=

1

2(s− a)
+

1

2(s+ a)

The inverse transform isy(t) =
1

2
eat +

1

2
e−at = coshat

(c) Y (s) =
s2

s2 − a2
=

s2 − a2 + a2

s2 − a2
= 1 +

a2

s2 − a2
= 1 +

a

2(s− a)
− a

2(s+ a)

y(t) = δ(t) +
a

2
eat − a

2
e−at = δ(t) + a sinh(at)

20 Solvey′′ + y = δ(t) by Laplace transform, withy(0) = y′(0) = 0. If you found
y(t) = sin t as I did, this involves a serious mystery :That sine solvesy′′ + y = 0,
and it doesn’t havey ′(0) = 0. Where doesδ(t) come from? In other words, what is
the derivative ofy ′ = cos t if all functions are zero fort < 0?

If y = sin t, explain whyy′′ = − sin t + δ(t). Remember thaty = 0 for t < 0.

Problem (20) connects to a remarkable fact. The same impulseresponsey = g(t)
solves both of these equations :An impulse at t = 0 makes the velocityy ′(0) jump
by 1. Both equations start fromy(0) = 0.

y ′′ +By ′ + Cy = δ(t) with y ′(0) = 0 y ′′ +By ′ + Cy = 0 with y ′(0) = 1.

Solution y ′′ + y = δ(t) transforms intos2Y (s) + Y (s) = 1.

ThenY (s) = 1
s2+1 has the inverse transformy(t) = sin t.

At time t = 0 the derivative ofy ′ = cos(t) is not y ′′ = sin(0) = 0, but rather
y ′′ = sin(0) + δ(t), since the functiony ′ = cos(t) jumps from0 to 1 at t = 0.
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21 (Similar mystery) These two problems give the sameY (s) = s/(s2 + 1) and the same
impulse responsey(t) = g(t) = cos t. How can this be ?

(a) y′ = − sin t with y(0) = 1 (b) y′ = − sin t+ δ(t) with “y(0) = 0”

Solution (a) The Laplace transform ofy′(t) = − sin(t) with y(0) = 1 is

sY (s)− 1 = − 1

s2 + 1

sY (s) = 1− 1

s2 + 1
=

s2 + 1− 1

s2 + 1
=

s2

s2 + 1

Y (s) =
s

s2 + 1

(b) The Laplace transform ofy ′(t) = − sin(t) + δ(t) with y(0) = 0 is

sY (s)− y(0) = − 1

s2 + 12
+ 1

sY (s)− 0 =
s2 + 1− 1

s2 + 1
=

s2

s2 + 1

Y (s) =
s

s2 + 1

These two problems (a) and (b) give the sameY (s) and therefore the samey(t). The
reason is thatδ(t) in the derivativey ′ gives the same result as an initial condition
y(0) = 1. Both cause a jump fromy = 0 beforet = 0 to y = 1 right aftert = 0. And
both transform to1.

Problems 22-24 involve the Laplace transform of the integral of y(t).

22 If f(t) transforms toF (s), what is the transform of the integralh(t) =
t∫
0

f(T )dT ?

Answer by transforming the equationdh/dt = f(t) with h(0) = 0.

Solution If h(t) =
t∫
0

f(T ) dT thendh/dt = f(t) with h(0) = 0. Taking the Laplace

Transform gives :

sH(s) = F (s) and H(s) =
F (s)

s
.

23 Transform and solve the integro-differential equationy′ +
t∫
0

y dt = 1, y(0) = 0.

A mystery like Problem 20 :y = cos t seems to solvey′ +
t∫
0

ydt = 0, y(0) = 1.

Solution The Laplace transform ofy′ +
t∫
0

y dt = 1 with y(0) = 0 is
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sY (s)− y(0) +
Y (s)

s
=

1

s

Y (s) =
1(

s+ 1
s

)
s
=

1

s2 + 1

The inverse transform ofY (s) is y(t) = sin(t)
About the mystery : The derivative ofcos t is − sin t + δ(t) becausecos t jumps at
t = 0 from zero fort < 0 (by convention) to1. But I am not seeing a new mystery.

24 Transform and solve the amazing equationdy/dt+
t∫
0

y dt = δ(t).

Solution The transform of
dy

dt
+

t∫

0

y dt = δ(t) is sY (s) +
Y (s)

s
= 1.

ThenY (s) =
1(

s+ 1
s

)
s
=

s

s2 + 1
and y(t) = cos t.

Note that this follows from Problem 20, where we found thatcos(t) has integralsin(t)
and derivative− sin(t) + δ(t).

25 The derivative of the delta function is not easy to imagine—it is called a “doublet”
because it jumps up to+∞ and back down to−∞. Find the Laplace transform of the
doubletdδ/dt from the rule for the transform of a derivative.

A doubletδ ′(t) is known by its integral :
∫
δ ′(t)F (t)dt = −

∫
δ(t)F ′(t)dt = −F ′(0).

Solution The Laplace transform ofδ(t) is 1. The Laplace transform of the derivative
is sY (s)− y(0). The Laplace transform of the doubletδ ′(t) = dδ/dt is therefores.

26 (Challenge) What functiony(t) has the transformY (s) = 1/(s2 + ω2)(s2 + a2)?
First use partial fractions to findH andK :

Y (s) =
H

s2 + ω2
+

K

s2 + a2

Solution Y (s) =
1

(s2 + ω2)(s2 + a2)
=

1

(s2 + ω2)(a2 − ω2)
− 1

(s2 + a2)

1

(a2 − ω2)
.

Theny(t) =
sinωt

ω(a2 − ω2)
− sinat

a(a2 − ω2)
.

27 Why is the Laplace transform of a unit step functionH(t) the same as the Laplace
transform of a constant functionf(t) = 1 ?

Solution The step function and the constant function are the same fort ≥ 0.
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Problem Set 3.1, page 160

1 (a) Why do two isoclinesf(t, y) = s1 andf(t, y) = s2 never meet ?

(b) Along the isoclinef(t, y) = s, what is the slope of all the arrows ?

(c) Then all solution curves go only one way across an .

Solution (a) Isoclines can’t meet becausef(t, y) has one fixed value along an isocline.

(b) The slope of the arrows is fixed ats along the isoclinef(t, y) = s.

(c) All solution curves go one way (with slopes) across the isoclinef(t, y) = s.
2 (a) Are isoclinesf(t, y) = s1 andf(t, y) = s2 always parallel ? Always straight ?

(b) An isoclinef(t, y) = s is a solution curve when its slope equals .

(c) The zeroclinef(t, y) = 0 is a solution curve only wheny is : slope0.

Solution (a) In casef(t, y) does not depend ont (autonomous equation) the isoclines
are horizontal lines. In general isoclines need to be parallel or straight.

(b) If the slope of the isoclinesf(t, y) = s happens to bes (slope of arrows equals slope
of curve, so the arrows go along the isocline) then the isocline is actually a solution
curve. Example: A steady state wheref(y) = 0 has arrows of slope zero. That
horizontal isocline is also the graph of the constant solutiony(t) = Y .

(c) The zerocline is a solution curve when the slope is zero and y is constant.
3 If y1(0) < y2(0), what continuity off(t, y) assures thaty1(t) < y2(t) for all t ?

Solution Two solution curvesy1(t) andy2(t) can’t meet or cross if they are continuous
curves : this will be true iff and∂f/∂y are continuous.

4 The equationdy/dt = t/y is completely safe ify(0) 6= 0. Write the equation as
y dy = t dt and find its unique solution starting fromy(0) = −1. The solution curves
are hyperbolas—can you draw two on the same graph ?

Solution dy/dt = t/y leads to
∫
y dy =

∫
t dt andy2 = t2 + C. If y(0) = −1 then

y(t) = −
√
t2 + 1. The hyperbolasy2 = t2 + C are asymptotic to the45 ◦ and−45 ◦

linesy = t andy = −t.
5 The equationdy/dt = y/t has many solutionsy = Ct in casey(0) = 0. It has

no solution ify(0) 6= 0. When you look at all solution curvesy = Ct, which points
in thet, y plane have no curve passing through ?

Solution The solution curvesy = Ct (allowing all numbersC) go through all points
(t, y) with suitableC = y/t—except the points on the vertical linet = 0 (other
than the origin(0, 0) that all the linesy = Ct will pass through). You cannot solve
dy/dt = y/t with an initial value likey(0) = 1, because the right sidey/t would be
1/0.

6 For y ′ = ty draw the isoclinesty = 1 and ty = 2 (those will be hyperbolas).
On each isocline draw four arrows (they have slopes1 and2). Sketch pieces of so-
lution curves that fit your picture between the isoclines.

Solution The solution curvesdy/dt = ty havedy/y = t dt andln y = 1
2 t

2 + c and
y = exp

(
1
2 t

2 + c
)
= C exp

(
1
2 t

2
)
. Solution curves cross isoclinesf(t, y) = s with
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that slopes! The arrows with that slope are tangent to the curves as they cross the
isocline.

7 The solutions toy ′ = y arey = Cet. ChangingC gives a higher or lower curve. But
y ′ = y is autonomous, its solution curves should be shifting rightand left !

Draw y = 2et andy = −2et to show that they really areright-left shiftsof y = et

andy = − et. The shifted solutions toy ′ = y areet+C and− et+C .

Solution For all autonomous equationsdy/dt = f(y), the solution curves are horizon-
tal shifts of each other. In particular forf(y) = y, the curvesy = Cet shift right-left
asC increases-decreases.

8 For y ′ = 1 − y2 the flat linesy = constant are isoclines1 − y2 = s. Draw the
lines y = 0 andy = 1 andy = −1. On each line draw arrows with slope1 − y2.
The picture says thaty = andy = are steady state solutions. From
the arrows ony = 0, guess a shape for the solution curvey = (et − e−t)/(et + e−t).

Solution The picture will show the horizontal linesy = 1 andy = −1 as “zeroclines”
wheref(t, y) = s = 1− y2 = 0. So those are steady state solution curvesy(t) = Y =
1 or−1.

The isocliney = 0 is thex-axis, along withf(t, y) = 1 − y2 = 1 = s. (The arrows
cross thex-axis at45 ◦, with slopes = 1.) So the solution curves areS-curves going
up from the liney = −1 to the liney = 1, rising at45 ◦ along thex-axis halfway
between those two lines.

9 The parabolay = t2/4 and the liney = 0 are both solution curves fory ′ =
√
|y|.

Those curves meet at the pointt = 0, y = 0. What continuity requirement is failed
by f(y) =

√
|y|, to allow more than one solution through that point ?

Solution The functionf(y) =
√
|y| is continuous aty = 0 but its derivativedf/dy =

1/2
√
|y| blows up (because of1/0.) So two solutions can start from the same initial

valuey(0) = 0, and they do.

10 Supposey = 0 up to timeT is followed by the curvey = (t− T )2/4. Does this solve
y ′ =

√
|y|? Draw thisy(t) going through flat isoclines

√
|y| = 1 and2.

Solution Yes,y ′ =
√
|y| is solved by the constanty(t) = 0. It is also solved by the

curvey(t) = (t− T )2/4 becausedy/dt = (t − T )/2 equals the square root of|y(t)|.
So solution curves can lift off thex-axisy = 0 anywhere they want, and start upwards
on a parabola.

11 The equationy ′ = y2 − t is often a favorite in MIT’s course 18.03 : not too easy.
Why do solutionsy(t) rise to their maximum ony2 = t and then descend ?

Solution Below the parabolay2 = t (which opens to the right instead of opening
upwards) the right side ofdy/dt = y2 − t will be negative. The solution curves have
negative slope and they can’t cross the rising parabola.

12 Constructf(t, y) with two isoclines so solution curves goup through the higher
isocline and other solution curves godownthrough the lower isocline.True or false:
Some solution curve will stay between those isoclines :A continental divide.

Solution We want the isoclinef(t, y) = s = 1 to beabovethe isoclinef(t, y) =
s = −1. A simple example would bef(t, y) = y. Then the equationdy/dt = y has
solution curvesy = Cet, C > 0 goingup through the isoclinef(t, y) = 1 (which is
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the flat liney = 1). The curvesy = Cet with C < 0 go down throughy = −1. The
continental divide is the solution curvey(t) = 0 with C = 0. Certainlyy(t) = 0 does
solvedy/dt = y.

There is always a “continental divide” where solution curves (like water in the Rockies)
can’t choose between the Atlantic and the Pacific.

Problem Set 3.2, page 168

1 Draw Figure 3.6 for a sink (the missing middle figure) withy = c1e
−2t + c2e

−t.
Which term dominates ast → ∞ ? The paths approach the dominating line as they
go in toward zero.The slopes of the lines are−2 and −1 (the numberss1 ands2).

Solution Thec2e−t term dominates att → ∞ since it decays at a slower rate.

Then y(t) =
sinωt

ω(a2 − ω2)
− sinat

a(a2 − ω2)
.

2 Draw Figure 3.7 for a spiral sink (the missing middle figure) with rootss = −1 ± i.
The solutions arey = C1e

−t cos t + C2e
−t sin t. They approach zero because

of the factore−t. They spiral around the origin because ofcos t andsin t.

Solution The spiral goes clockwise in toward(0, 0). Not easy to draw to scale, by
hand!

3 Which path does the solution take in Figure 3.6 ify = et + et/2 ? Draw the
curve(y(t), y′(t)) more carefully starting att = 0 where(y, y′) = (2, 1.5).

Solution As t → ∞, the path of the point(y(t), y ′(t)) comes closer and closer to the
path fory = et—becauseet dominates the other termet/2. The path fory = et

has points(y, y ′) = (et, et) so it is a straight45 ◦ line in the(y, y ′) plane.

4 Which path does the solution take around the saddle in Figure3.6 if y = et/2 + e−t ?
Draw the curve more carefully starting att = 0 where(y, y′) = (2,− 1

2 ).

Solution The functiony = et/2 + e−t comes from exponents12 and−1 (positive and
negative will give asaddle point. The graph shows the spiral is unwinding clockwise
as it leaves the tight spiral and goes outward. For larget the dominant part of(y, y ′)
will be (et/2, 1

2e
t/2) from the growing termet/2 in y.

5 Redraw the first part of Figure 3.6 when the roots are equal :s1 = s2 = 1 andy =
c1e

t + c2te
t. There is nos2-line. Sketch the path fory = et + tet.

Solution y = et+tet hasy ′ = 2et+tet. The larger termtet gives(y, y ′) ≈ (tet, tet)
on the45 ◦ line in they, y ′ plane. Att = 0 it starts from(y(0), y ′(0)) = (1, 2).

6 The solutiony = e2t − 4et gives a source (Figure 3.6), withy ′ = 2e2t − 4et. Starting
at t = 0 with (y, y ′) = (−3,−2), where is(y, y ′) whenet = 1.1 andet = .25 and
et = 2?

Solution Substituting the valuest = ln 1.1 andln 0.25 andln 2, we get:

1. Foret = 1.1 we have(y, y ′) = (−3.19,−1.98)

2. Foret = .25 we have(y, y ′) = (−0.9375,−0.875)

3. Foret = 2 we have(y, y ′) = (−4, 0)
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Those early times don’t show the situation for larget, when the dominant terme2t gives
(y, y ′) = (e2t, 2e2t) and the path approaches a straight linewith slope 2.

7 The solutiony = et(cos t + sin t) hasy ′ = 2et cos t. This spirals out because ofet.
Plot the points(y, y ′) at t = 0 andt = π/2 andt = π, and try to connect them with a
spiral. Note thateπ/2 ≈ 4.8 andeπ ≈ 23.

Solution

1. Fort = 0, (y, y ′) = (1, 2)

2. Fort = π
2 , (y, y

′) = (eπ/2, 0) ≈ (4.8, 0)

3. Fort = π, (y, y ′) = (−eπ,−2eπ) ≈ (−23.1,−46.2)

Maybe we can see the path better by writing(y, y ′) = et(cos t, cos t)+ et(sin t, cos t).
The first term goes forward and back on the45 ◦ line. the second term circles around
and spirals out because ofet. So we have a big circle around a moving slider.

8 The rootss1 ands2 are±2i when the differential equation is . Starting from
y(0) = 1 andy ′(0) = 0, draw the path of(y(t), y ′(t)) around the center. Mark the
points whent = π/2, π, 3π/2, 2π. Does the path go clockwise ?

Solution The differential equation isy ′′ + 4y = 0. The solution starting at(y, y ′) =
(1, 0) is (y(t), y ′(t)) = (cos 2t,−2 sin 2t). This is an ellipse in the equation

y2 +
1

4
(y ′)2 = cos2 2t+ sin22t = 1.

The path is clockwise around that elliptical center.

9 The equationy ′′ + By ′ + y = 0 leads tos2 + Bs+ 1 = 0. ForB = −3, −2, −1, 0,
1, 2, 3 decide which of the six figures is involved. ForB = −2 and2, why do we not
have a perfect match with the source and sink figures ?

Solution To determine which figure is involved, we solve the quadraticequation:

s1 and s2 are
−B ±

√
B2 − 4

2

B = −3 hass1 = 3−
√
5

2 ≈ 0.38 and s2 = 3+
√
5

2 ≈ 2.6. Sourcewith 0 < s1 < s2

B = −2 hass1 = 1 and s2 = 1. Since 0 < s1 = s2 we have asource

B = −1 hass1 = 1+
√
3i

2 and s2 = 1+
√
3i

2 . Spiral Source (outward) Re(s1) = Re(s2) > 0

B = 0 hass1 = i and s2 = −i. Since 0 = Re(s1) = Re(s2) we have acenter

B = 1 hass1 = −1+
√
3i

2 and s2 = −1+
√
3i

2 . Spiral Sink (inward) Re(s1) = Re(s2) < 0

B = 2 hass1 = −1 and s2 = −1. Since s1 = s2 < 0 we have asink

B = 3 hass1 = −3−
√
5

2 ≈ −2.6 and s2 = −3+
√
5

2 ≈ −0.38. s1 < s2 < 0. This is asink

The special caseB = 2 andB = −2 gaveequal rootss1 = s2. Then there will be a
factor “t” in the null solution. The path won’t close on itself like a circle or ellipse. As
it turns, it will go slowly outward from that factort.
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10 For y ′′ + y ′ + Cy = 0 with dampingB = 1, the characteristic equation will be
s2 + s+ C = 0. WhichC gives the changeover from asink(overdamping) to a spiral
sink(underdamping)? Which figure hasC < 0?

Solution The solutions to the quadratic equations2 + s+ C = 0 are

s1 and s2 are
−1±

√
1− 4C

2

The change from a sink to a spiral sink occurs atC = 1
4 . Those are sinks because the

real part ofs is negative. WhenC is less than zero, we change to one positive root and
one negative root. Then the path becomes asaddle.

Problems 11–18 are aboutdy/dt = Ay with companion matrices
[

0 1
−C −B

]
.

11 The eigenvalue equation isλ2 + Bλ + C = 0. Which values ofB andC give com-
plex eigenvalues? Which values ofB andC giveλ1 = λ2 ?

Solution Look at the solution to the quadratic equationλ2 +Bλ+ C = 0 :

λ1 and λ2 =
−B ±

√
B2 − 4AC

2A
=

−B ±
√
B2 − 4C

2

Therefore whenB2 < 4C we get complex eigenvalues.

On the other hand, whenB2 = 4C we getλ1 = λ2 = −B/2 (the square root is0).
12 Findλ1 andλ2 if B = 8 andC = 7. Which eigenvalue is more important ast → ∞ ?

Is this a sink or a saddle?

Solution We solve the quadratic eigenvalue equation forλ1 andλ2 :

λ =
−B ±

√
B2 − 4AC

2A
=

−8±
√
64− 28

2
gives λ1 = −7 and λ2 = −1.

Sinces1 < s2 < 0 we have asink. The more negativeλ2 gives slower decay as
t → ∞.

13 Why do the eigenvalues haveλ1 + λ2 = −B ? Why isλ1λ2 = C ?

Solution This refers to the eigenvalues of the companion matrix :

A =

[
0 1

−C −B

]
comes from

y ′

1 = y2
y ′

2 = −Cy −By2
. Theny ′′

1 = y ′

2 is y ′′

1 + By ′

1 +

Cy1 = 0.

The eigenvaluesλ1 andλ2 are the roots ofλ2 + Bλ + C = 0 just as the rootss1 and
s2 are the roots ofs2 +Bs+C = 0. We know from factoring into(s− s1)(s− s2) or
(λ− λ1)(λ− λ2) that the coefficient ofλ2 is 1, the coefficient ofλ isB = −λ1 − λ2,
and the constant form isC = λ1 timesλ2.

14 Which second order equations did these matrices come from ?

A1 =

[
0 1
1 0

]
(saddle) A2 =

[
0 1

−1 0

]
(center)

Solution Write the matrix equationy ′ = Ay as two coupled first order equations. For
A we get
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y ′

1 = y2

y ′

2 = y1

Theny ′′

1 = y ′

2 = y1 and the second order equation isy ′′ = y.

The second matrixA2 givesy ′

1 = y2 andy ′

2 = −y1.

Theny ′′

1 = y ′

2 = −y1 and the second order equation isy ′′ + y = 0. (Notice that we
also findy ′′

2 = −y2.)

15 The equationy ′′ = 4y produces a saddle point at(0, 0). Find s1 > 0 ands2 < 0
in the solutiony = c1e

s1t + c2e
s2t. If c1c2 6= 0, this solution will be (large) (small) as

t → ∞ and also ast → −∞.

The only way to go toward the saddle(y, y ′) = (0, 0) ast → ∞ is c1 = 0.

Solution Assuming a solution of the formy(t) = est gives :

y ′′ − 4y = 0

s2est − 4est = 0

s2 − 4 = 0

s = ±2

Therefores1 = 2 ands2 = −2. The solution becomesy = c1e
2t + c2e

−2t. As
t → ∞, thee2t term will grow unlessc1 = 0. In that case(y, y ′) = (c2e

−2t,−2c2e
−2t)

goes to the saddle point(0, 0).

16 If B = 5 andC = 6 the eigenvalues areλ1 = 3 andλ2 = 2. The vectorsv = (1, 3)
andv = (1, 2) areeigenvectorsof the matrixA : Multiply Av to get3v and2v.

Solution v = (1, 3) is an eigenvector with eigenvalueλ1 = 3 :

Av =

[
0 1

−6 5

] [
1
3

]
=

[
3
9

]
= 3

[
1
3

]
= 3v.

Similarly v = (1, 2) is an eigenvector with eigenvalueλ2 = 2 :
[

0 1
−6 5

] [
1
2

]
=

[
2
4

]
= 2

[
1
2

]
.

Notice that these eigenvectors of the companion matrixA have the formv = (1, λ).

17 In Problem 16, write the two solutionsy = veλt to the equationsy ′ = Ay.
Write the complete solution as a combination of those two solutions.

Solution The eigenvectorsv1 = (1, 3) andv2 = (1, 2) give two pure exponential
solutionsy = veλt :

y1 =

[
e3t

3e3t

]
and y2 =

[
e2t

2e2t

]
.

The complete solution isy(t) = c1y1+c2y2. Two constants to match two components
of the initial vectory(0) at t = 0. Theny(0) = c1v1 + c2v2.
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18 The eigenvectors of a companion matrix have the formv = (1, λ). Multiply by A to
show thatAv = λv gives one trivial equation and the characteristic equationλ2+Bλ+
C = 0.

[
0 1

−C −B

] [
1
λ

]
= λ

[
1
λ

]
is

λ = λ
−C −Bλ = λ2

Find the eigenvalues and eigenvectors ofA =

[
3 1
1 3

]
.

Solution The eigenvectors of a companion matrix have the special formv = (1, λ), as
the problem statement shows—because−C − Bλ = λ2 from the eigenvalue equation
λ2 + Bλ+ C = 0.

The exampleA is not a companion matrix!

A =

[
3 1
1 3

]
has eigenvectorsv1 =

[
1
1

]
and v2 =

[
1

−1

]
with λ1 = 4 and λ2 = 2.

[
3 1
1 3

] [
1
1

]
= 4

[
1
1

] [
3 1
1 3

] [
1

−1

]
= 2

[
1

−1

]

The equation forλ isλ2−6λ+8 = 0 with 6 coming from the trace3+3 and8 coming
from the determinant9− 1.

19 An equation is stable and all its solutionsy = c1e
s1t + c2e

s2t go to y(∞) = 0
exactly when

(s1 < 0 or s2 < 0) (s1 < 0 and s2 < 0) (Re s1 < 0 and Re s2 < 0)?

Solution The correct answer is (Res1 < 0 and Res2 < 0).
20 If Ay ′′ +By ′ + Cy = D is stable, what isy(∞) ?

Solution The steady state solution to this equation is the constanty(∞) = D/C.
Because the equation is stable, the null solutionyn(t) will go to zero ast → ∞. The
rootss1 ands2 have negative real parts.

Problem Set 3.3, page 182

1 If y ′ = 2y + 3z + 4y2 + 5z2 andz ′ = 6z + 7yz, how do you know thatY = 0,
Z = 0 is a critical point ? What is the2 by 2 matrix A for linearization around
(0, 0) ? This steady state is certainly unstable because .

Solution Herey ′ = f(y, z) andz ′ = g(y, z) havef = g = 0 at the point(y, z) =
(0, 0). Then this point is a critical point (stationary point). TheJacobian matrix of
derivatives at that point(0, 0) is

[
∂f/∂y ∂f/∂z
∂g/∂y ∂g/∂z

]
=

[
2 + 8y 3 + 10z
7z 6 + 7y

]
=

[
2 3
0 6

]
at (y, z) = (0, 0).

The eigenvalues of this triangular matrix are2 and6 (on the diagonal). Any positive
eigenvalue means growth and instability.
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2 In Problem 1, change2y and 6z to −2y and−6z. What is now the matrixA for
linearization around(0, 0) ? How do you know this steady state is stable ?

Solution

A=

[
−2 + 8y 3 + 10z

7z −6 + 7y

]
=

[
−2 3
0 −6

]
now has eigenvaluesλ=−2,−6: stable.

3 The systemy ′ = f(y, z) = 1 − y2 − z, z ′ = g(y, z) = −5z has a critical point
at Y = 1, Z = 0. Find the matrixA of partial derivatives off andg at that point :
stable or unstable ?

Solution Heref = g = 0 when(Y, Z) = (1, 0).[
∂f/∂y ∂f/∂z
∂g/∂y ∂g/∂z

]
=

[
−2y −1

0 −5

]
=

[
−2 −1
0 −5

]
. Stable.

4 This linearization is wrong but the zero derivatives are correct. What is missing?
Y = 0, Z = 0 is not a critical point ofy ′ = cos (ay + bz), z ′ = cos (cy + dz).[

y ′

z ′

]
=

[
−a sin 0 −b sin 0
−c sin 0 −d sin 0

] [
y
z

]
=

[
0 0
0 0

] [
y
z

]
.

Solution At the point(Y, Z) = (0, 0), the functionsf = cos(0+0) andg = cos(0+0)
are equal to1. This is not a critical point.

5 Find the linearized matrixA at every critical point. Is that point stable ?

(a)
y ′ = 1− yz
z ′ = y − z3

(b)
y ′ = −y3 − z
z ′ = y + z3

Solution (a) f(y, z) = 1 − yz andg(y, z) = y − z3 are both zero wheny = z3 and
then1 − yz = 1 − z4 = 0. ThenZ = 1 goes withY = 1 andZ = −1 goes with
Y = −1 : two critical points .

A =

[
∂f/∂y ∂f/∂z
∂g/∂y ∂g/∂z

]
=

[
−z −y
1 −3z2

]
=

[
−1 −1
1 −3

]
OR

[
1 1
1 −3

]
.

The eigenvalues solvedet(A− λI) = 0.

At (1, 1) det

[
−1− λ −1

1 −3− λ

]
= λ2 + 4λ+ 4 = 0, λ = −2,−2

At (−1,−1) det

[
1− λ 1
1 −3− λ

]
= λ2 + 2λ− 4 = 0, λ = −1 ±

√
5

Then(Y, Z) = (1, 1) is stablebut (−1,−1) is unstable(because−1 +
√
5 > 0).

(b) f = −y3 − z andg = y + z3 are both zero at(Y, Z) = (0, 0) and(1,−1)
and(−1, 1) : three critical points becausef = 0 givesz = −y3 and theng = 0
givesy = ya, leading toy = 0, 1, or −1. The stability test applies to the matrix of
derivatives :

A =

[
−3y2 −1

1 3z2

]
has det(A− λI) = λ2 + λ(3y2 − 3z2) + 1− 9y2z2.

At (0, 0) λ2 + 1 = 0 andλ = ±i Unstable(neutrally stable)

At (1,−1) and (−1, 1) λ2 − 8 = 0 Unstablewith λ =
√
8.
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6 Can you create two equationsy ′ = f(y, z) andz ′ = g(y, z) with four critical points :
(1, 1) and(1,−1) and(−1, 1) and(−1,−1) ?

I don’t think all four points could be stable ? This would be like a surface with four
minimum points and no maximum.

Solution An example would bey ′ = y2 − z2 andz ′ = 1 − z2. Thenz2 − 1 = 0
andy2 − z2 = 0 have the four points(Y, Z) = (±1,±1) as critical points. In this case
the linearized matrix (Jacobian matrix) is

[
∂f/∂y ∂f/∂z
∂g/∂y ∂g/∂z

]
=

[
2y −2z
0 −2z

]
and only (Y, Z) = (−1, 1) is stable.

7 The second order nonlinear equation for a damped pendulum isy ′′ + y ′ + sin y = 0.
Write z for the damping termy ′, so the equation isz ′ + z + sin y = 0.

Show thatY = 0, Z = 0 is a stable critical point at the bottom of the pendulum.
Show thatY = π, Z = 0 is an unstable critical point at the top of the pendulum.

8 Those pendulum equationsy ′ = z andz ′ = − sin y − z have infinitely many critical
points ! What are two more and are they stable ?

Solutions to 7 and 8The systemy ′ = z andz ′ = −z − sin y has critical points when
z = 0 andsin y = 0 (this allows all valuesy = nπ).

The Jacobian matrix of derivatives ofz and−z − sin y is a companion matrix :

A =

[
0 1

− cos y −1

]
=

[
0 1

−1 −1

]
or

[
0 1
1 −1

]

We have− cos y = −1 aty = 0,±2π,±4π, . . . and− cos y = +1 aty = ±π,±3π, . . .

The eigenvalues satisfyλ2 + λ+ 1 = 0 or λ2 + λ− 1 = 0 :

λ = 1
2 (−1±

√
−3) = 1

2 (−1± i
√
−3) is stable aty = 2nπ.

λ = 1
2 (−1±

√
5) is unstable at y = (2n + 1)π.

The pendulum is stable hanging straight down (at 6:00) and unstable when balanced
directly upward (at 12:00).

9 The Líenard equationy ′′ + p(y)y ′ + q(y) = 0 gives the first order systemy ′ = z and
z ′ = . What are the equations for a critical point ? When is it stable ?

Solution The coupled equations arey ′ = z andz ′ = −p(y)z − q(y). These right
sides are zero (critical point) whenz = 0 andq(y) = 0.

The first derivative matrix is[
∂f/∂y ∂f/∂z
∂g/∂y ∂g/∂z

]
=

[
0 0

−p ′z − q ′ −p

]
=

[
0 1

−C −B

]
.

That companion matrix is stable (according to Section 3.1) whenB > 0 andC > 0.

10 Are these matrices stable or neutrally stable or unstable (source or saddle) ?

[
2 1
0 −3

] [
0 9

−1 0

] [
−1 2
−1 −1

] [
−1 −2
−1 −1

] [
0 9

−1 −1

]
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Solution The stability tests aretrace < 0 anddeterminant > 0. This is because
determinant= (λ1)(λ2) and trace= sum down the main diagonal= λ1 + λ2. Apply
these tests to find

stable, unstable(saddle withdet < 0), stable, unstable, stable.

The second matrix hasλ = ±3i which gives undamped oscillation and neutral stability.

11 Suppose a predatorx eats a preyy that eats a smaller preyz :

dx/dt = −x+ xy Find all critical pointsX,Y, Z
dy/dt = −xy + y + yz FindA at each critical point
dz/dt = −yz + 2z (9 partial derivatives)

Solution The right hand sides arex(1− y) andy(−x+ 1+ z) andz(−y+ z). These
are all zero atthree critical points (X,Y, Z) : (0, 0, 0) (0, 2,−1), (1, 1, 0)

(Follow the two possibilitiesX = 0 or Y = 1 needed forX(1− Y ) = 0.) The matrix
of first derivatives of those right hand sides is

[
1− y −x 0
−y −x+ 1 + z y
0 −z 2− y

]
. Substitute the three critical vectors(X,Y, Z) :

A =

[
1 0 0
0 1 0
0 0 2

] [ −1 0 0
−2 0 2
0 1 0

] [
0 −1 0

−1 0 1
0 0 1

]

12 The damping iny ′′+(y ′)3+y = 0 depends on the velocityy ′ = z. Thenz ′+z3+y =
0 completes the system. Damping makes this nonlinear system stable—is the linearized
system stable ?

Solution y ′ = z andz ′ = −y − z3 has only(Y, Z) = (0, 0) as critical point :

A = first derivative matrix=

[
0 1
−1 −3z2

]
has determinant= 1, trace= −3z2:

unstable.
13 Determine the stability of the critical points(0, 0) and(2, 1) :

(a)
y ′ = −y + 4z + yz
z ′ = −y − 2z + 2yz

(b)
y ′ = −y2 + 4z
z ′ = y − 2x4

Solution (a) The first derivative matrix at(y, z) = (0, 0) or (2, 1) is

A =

[
z − 1 4 + y
z − 1 2y − 2

]
=

[
−1 4
−1 −2

]
(stable)or

[
0 6
1 2

]
(unstable)
(trace 2)

(b) The first derivative matrix at(y, z) = (0, 0) or (2, 1) is (replace x by z)

A =

[
−2y 4
1 −8z3

]
=

[
0 4
1 0

]
(unstable)
(trace 0) or

[
−4 4
1 −8

]
(stable).
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Problems 14–17 are about Euler’s equations for a tumbling box.

14 The correct coefficients involve the moments of inertiaI1, I2, I3 around the axes.
The unknownsx, y, z give the angular momentum around the three principal axes :

dx/dt = ayz with a = (1/I3 − 1/I2)
dy/dt = bxz with b = (1/I1 − 1/I3)
dz/dt = cxy with c = (1/I2 − 1/I1).

Multiply those equations byx, y, z and add. This proves thatx2 + y2 + z2 is .

Solution Multiply by x, y, andz to get

xx ′ = axyz

yy ′ = bxyz

zz ′ = cxyz

1
2 (x

2 + y2 + z2) ′ = (a+ b+ c)xyz = 0 for the given a, b, c.x2I
I

Thenx2 + y2 + z2 = constantbecause its derivative is zero.
15 Find the 3 by 3 first derivative matrix from those three right hand sidesf , g, h.

What is the matrixA in the6 linearizations at the same6 critical points ?

Solution The first derivative matrix in Problem 14 is
[

∂f/∂x ∂f/∂y ∂f/∂z
∂g/∂x ∂g/∂y ∂g/∂z
∂h/∂x ∂h/∂y ∂h/∂z

]
=

[
0 az ay
bz 0 bx
cy cx 0

]
.

The 3 right sides are zero at the 6 critical points(±1, 0, 0), (0,±1, 0), (0, 0,±1).

[
0 0 0
0 0 ±b
0 ±c 0

]
,

[
0 0 ±a
0 0 0
±c 0 0

]
,

[
0 ±a 0
±b 0 0
0 0 0

]
.

All six points are neutrally stable (Reλ = 0).
16 You almost always catch an unstable tumbling book at a momentwhen it is flat.

That tells us : The pointx(t), y(t), z(t) spends most of its time (near) (far from)
the critical point(0, 1, 0). This brings the travel timet into the picture.

Solution This neat observation was explained to me by Alar Toomre. Thevelocity
(f, g, h) = (ayz, bxz, cxy) is low near a critical point wherex, y, z are small. Then
the book spends most timenear the point where the book is flat and easy to catch.

17 In reality what happens when you

(a) throw a baseball with no spin (a knuckleball) ?

(b) hit a tennis ball with overspin ?

(c) hit a golf ball left of center ?

(d) shoot a basketball with underspin (a free throw) ?

Solution (a) The knuckleball is unstable–hard for the batter to judge.

(b) The topspin brings the tennis ball down faster with a higher bounce.

(c) The golf ball slices to the right off the fairway.

(d) The basketball with underspin is more stable with less bounce around the rim.
It is more likely to end up in the basket.
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Problem Set 3.4, page 189

1 Apply Euler’s methodyn+1 = yn +∆tfn to findy1 andy2 with ∆t = 1
2 :

(a)y ′ = y (b) y ′ = y2 (c) y ′ = 2ty (all with y(0) = y0 = 1)

Solution (a) y1 = y0 + ∆t y0 = 1 + ∆t = 1.5 y2 = (1 + ∆t)2 = yn =
(1 +∆t)R = 2.25

(b) y1 = y0 +∆t y20 = 1+∆t = 1.5 y2 = y1 +∆ty21 = 1+∆t+∆t(1 + 2∆t+
∆t2) = (1 + ∆t)(1 + ∆t+∆t2) = (1.5)(1.75)

(c) y1 = (1 + 2t+ ∆t)y0 = 1 becauset = 0 y2 = (1 + 2t+ ∆t)y1 = 1.5 because
t = ∆t.

2 For the equations in Problem 3, findy1 andy2 with the step size reduced to∆t = 1
4 .

Now the value y2 is an approximation to the exacty(t) at what time t ?
Theny2 in this question corresponds to whichyn in Problem 3 ?

Solution With ∆t = 1
4 , y2 will now be an approximation to the true solutiony(12 )

because2∆t = 1
2 .

(a) y1 = 1 +∆t = 5/4 = 1.35 y2 = (1 +∆t)2 = 25/16

(b) y1 = 1 +∆t = 1.25 y2 =
(
1 + 1

4

) (
1 + 1

4 + 1
16

)
=
(
5
4

) (
21
16

)

(c) y1 = 1 y2 = (1 + 2t+∆t)y1 =
(
1 + 2

19

)
=
(
9
8

)

3 (a) Fordy/dt = y starting fromy0 = 1, what is Euler’syn when∆t = 1?

(b) Is it larger or smaller than the true solutiony = et at timet = n ?

(c) What is Euler’sy2n when∆t = 1
2 ? This is closer to the truey(n) = en.

Solution (a)yn+1 = (1 +∆t)yn = 2yn soyn = 2n

(b) 2n is smaller thanen

(c) yn+1=(1+∆t)yn=
3
2yn. Theny2n=

(
1+ 1

2

)2n
is above2n because

(
1+ 1

2

)2
> 2.

4 For dy/dt = −y starting fromy0 = 1, what is Euler’s approximationyn aftern steps
of size∆t ? Find all theyn’s when∆t = 1. Find all theyn’s when∆t = 2. Those
time steps aretoo largefor this equation.

Solution yn+1 = Yn −∆tyn soyn = (1−∆t)ny0.

If ∆t = 1 then all ofY1, Y2, Y3, . . . are zero.

If ∆t = 2 thenYn+1 = −yn andyn = (−1)n.

The approximation will blow up for∆t > 2.

In reality it seems useless for∆t > 0.1.

5 The true solution toy ′ = y2 starting fromy(0) = 1 is y(t) = 1/(1 − t). This
explodes att = 1. Take3 steps of Euler’s method with∆t = 1

3 and take4 steps
with ∆t = 1

4 . Are you seeing any sign of explosion?

Solution With ∆t = 1
3 , Euler’s method fory ′ = y2 becomesyn+1 = yn + ∆ty2n.

Three steps with∆t = 1
3 and four steps with∆t = 1

4 give
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y1 = 4
3 , y2 = 52

27 , y3 = __ y1 = 5
4 , y2 = 105

64 , y3 = __ y4 = __

We are not reaching infinity at timet = n∆t = 1 but as∆t → 0 andn = 1/∆t the
numbersyn will keep growing past any bound.

6 The true solution tody/dt = −2ty with y(0) = 1 is the bell-shaped curvey = e−t2 . It
decays quickly to zero. Show that stepn + 1 of Euler’s method gives
yn+1 = (1− 2n∆t2)yn. Do theyn’s decay toward zero ? Do they stay there ?

Solution A step of Euler’s method starting at timet = n∆t givesyn+1 = yn −
2(n∆t)yn. In the early steps we are multiplyingyn by 1 − 2n∆t which is normally
less than1. So theyn are decreasing at first. But whenn is larger than1/∆t, we are
multiplying by a number below−1. At that point theyn start growing and changing
sign at every step : seriousinstability.

7 The equationsy ′ = −y andz ′ = −10z are uncoupled. If we use Euler’s method for
both equations with the same∆t between 2

10 and2, show thatyn → 0 but |zn| → ∞.
The method is failing on the solutionz = e−10t that should decay fastest.

Solution The Euler formulas areyn+1 = (1−∆t)yn andzn+1 = (1− 10∆t)zn. For
time steps∆t between 2

10 and2, they factor has|1 − ∆t| < 1. But thez factor has
|1− 10∆t| > 1. The true solutions arey = Ce−t andz = Ce−10t.

But that quickly decreasingz has a quickly increasingzn when |1 − 10∆t| > 1 :
instability.

8 What valuesy1 and y2 come frombackward Eulerfor dy/dt = −y starting from
y0 = 1 ? Show thatyB1 < 1 andyB2 < 1 even if∆t is very large. We haveabsolute
stability: no limit on the size of∆t.

Solution Backward Euler fory ′ = −y is yn+1 − yn = −∆tyn+1 (not −∆tyn).
Thenyn+1 = yn/(1 +∆t). For any At that factor1/(1 +∆t) is less than1 : absolute
stability.

9 The logistic equationy ′ = y−y2 has anS-curve solution in Section 1.7 that approaches
y(∞) = 1. This is a steady state becausey ′ = 0 wheny = 1.

Write Euler’s approximationyn+1 = to this logistic equation, with stepsize
∆t. Show that this has the same steady state :yn+1 equalsyn if yn = 1.

Solution y ′ = y−y2 is approximated byyn+1 = yn+∆t(yn−y2n). This equation has
a steady state whenyn+1 = yn—and this requires the∆t factor to be zero :yn − y2

n =
0. So the two steady states are (yn = 1 forever) and (yn = 0 forever).

10 The important question in Problem 3 is whether the steady state yn = 1 is stable
or unstable. Subtract1 from both sides of Euler’syn+1 = yn +∆t(yn − y2n) :

yn+1 − 1 = yn +∆t(yn − y2n)− 1 = (yn − 1)(1−∆tyn).

Each step multiplies the distance from1 by (1 − ∆tyn). Near the steadyy∞ = 1,
1−∆t yn has size|1−∆t|. For which∆t is this smaller than1 to give stability ?

Solution yn − 1 is the distance from steady state. The equation in the problem shows
that this distance is multiplied at each step by a factor1 − ∆tyn. This factor has
|1 − ∆tyn| < 1 when0 < ∆tyn < 2. Whenyn is near1, this means∆t can be
almost2 for stability.
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11 Apply backward EuleryBn+1 = yn+∆tfB
n+1 = yn+∆t

[
yBn+1 −

(
yBn+1

)2]
to the logis-

tic equationy ′ = f(y) = y − y2. What is yB1 if y0 = 1
2 and ∆t = 1

4 ?
You have to solve a quadratic equation to findyB1 . I am finding two answers foryB1 .
A computer code might choose the answer closer toy0.

Solution At each new time step, Backward Euler becomes a quadratic equation for
yn+1 in the logistic equation. Ify0 = 1

2 and∆t = 1
4 the equation fory1(= yB1 ) is

∆t(y1)
2 + (1−∆t)y1 − y0 = 0 OR

1

4
y21 +

3

4
y1 −

1

2
= 0.

Multiply by 4. The solutions ofy21 + 3y1 − 2 = 0 are

y1 =
−3±

√
17

2
. The better choice

(
near

1

2

)
is yB1 =

−3 +
√
17

2
.

12 For the bell-shaped curve equationy ′ = −2ty, show that backward Euler divides
yn by 1 + 2n(∆t)2 to find yBn+1. As n → ∞, what is the main difference from
forward Euler in Problem 3 ?

Solution Backward Euler fory ′ = −2ty is yn+1 − yn = −2t∆tyn+1 or yn+1 =
yn/(1 + 2t+∆t).

That fraction is smaller than1 for all t and∆t. Then the numbersyn are steadily
decreasing asn → ∞, like the true solutiony(t) = e−t2 . (Forward Euler was hopeless
in Problem 6, withYn increasing and changing sign at every step beyondn = 1/∆t.)

13 The equationy ′ =
√
|y| hasmany solutionsstarting fromy(0) = 0. One solution

stays aty(t) = 0, another solution isy = t2/4. (Theny ′ = t/2 agrees with
√
y.)

Other solutions can stay aty = 0 up to t = T , and then switch to the parabola
y = (t − T )2/4. As soon asy leaves the bad pointy = 0, wheref(y) = y1/2

has infinite slope, the equation has only one solution.

Backward Eulery1 − ∆t
√
|y1| = y0 = 0 gives two correct valuesyB1 = 0 and

yB1 = (∆t)2. What are the three possible values ofyB2 ?

Solution Backward Euler foryB2 will be y2 − ∆t
√
|y2| = Y1. If yB1 = 0 thenyB2

can be0 or (∆t)2. If yB1 = (∆t)2 thenx =
√
|yB2 | solvesx2 − ∆tx − (∆t)2 = 0.

Again two possibilities :

x =
1

2

(
1±

√
5
)
∆t.

Because
√
|y| is continuous but its derivative blows up aty = 0, multiple solutions are

possible.
14 Every finite difference person will think of averaging forward and backward Euler :

Centered Euler/Trapezoidal yC
n+1 − yn = ∆t

(
1

2
fn +

1

2
fC
n+1

)
.

Fory ′ = −y the key questions areaccuracyandstability . Start withy(0) = 1.

yC1 − y0 = ∆t

(
− 1

2
y0 −

1

2
yC1

)
gives yC

1 =
1 − ∆t/2

1 + ∆t/2
y0.

Stability Show that|1−∆t/2| < |1 + ∆t/2| for all ∆t. No stability limit on∆t.
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Accuracy For y0 = 1 compare the exacty1 = e−∆t = 1 − ∆t + 1
2∆t2 − · · ·

with yC1 = (1− 1
2∆t)/(1 − 1

2∆t) = (1− 1
2∆t)(1 − 1

2∆t+ 1
4∆t2 − · · · ).

An extra power of∆t is correct :Second order accuracy. A good method.

Solution Stability is |yn+1| ≤ |yn| for an equation likey ′ = −y where the true
solutiony = e−t is decreasing. In this problem

yC1 =
1−∆t/2

1 + ∆t/2
y0 has growth factor

∣∣∣∣
1−∆t/2

1 + ∆t/2

∣∣∣∣ < 1 because

∣∣∣∣1 +
∆t

2

∣∣∣∣ >
∣∣∣∣1−

∆t

2

∣∣∣∣

Accuracy is decided by comparingyC1 to the exacty1. The two series agree in the terms
1 and−∆t and 1

2 (∆t)2 : Second order accuracybecause the(∆t)3 error appears in
1/∆t time steps to reach the typical timet = 1. Sign correction in text to :

yC1 =

(
1−1

2
∆t

)
/

(
1+

1

2
∆t

)
= · · ·

The rest is correct and produces1−∆t+ 1
2 (∆t)2 . . . as required.

The website has codes for Euler and Backward Euler and Centered Euler. Those
methods are slow and steady with first order and second order accuracy. The test problems
give comparisons with faster methods like Runge-Kutta.

Problem Set 3.5, page 194

Runge-Kutta can only be appreciated by using it. A simple code is on math.mit.edu/dela.
Professional codes are ode 45 (inMATLAB) and ODEPACK and many more.

1 For y ′ = y with y(0) = 1, show that simplified Runge-Kutta and full Runge-Kutta
give these approximationsy1 to the exacty(∆t) = e∆t :

yS1 = 1 +∆t+
1

2
(∆t)2 yRK

1 = 1 +∆t+
1

2
(∆t)2 +

1

6
(∆t)3 +

1

24
(∆t)4

Solution Simplified Runge-Kutta (equation (1) in this section) wheny ′=f(t, y)=y :

yn+1 = yn +∆t

[
1

2
f(tn, yn) +

1

2
f
(
tn+1, y

Euler
n+1

)]

= yn +∆t

[
1

2
yn +

1

2
(yn +∆tyn)

]

= yn +∆tyn +
1

2
(∆t2)yn (3 good terms ofe∆tyn)

Full Runge-Kutta is in equation (5)—now applied whenf(t, y) = y :

k1 =
1

2
yn k3 =

1

2

(
yn +

∆t

2

(
yn +

∆t

2
yn

))

k2 =
1

2

(
yn +

∆t

2
yn

)
k4 =

1

2

(
yn +∆t

(
yn +

∆t

2

(
yn +

∆t

2
yn

)))
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Then the Runge-Kutta choice foryn+1 is correct through(∆t)4 !

yn +
∆t

3
(k1 + 2k2 + 2k3 + k4) = yn

[
1 +

∆t

6
+

∆t

3

(
1 +

∆t

2

)
+

∆t

3

(
1 +

∆t

2

(
1 +

∆t

2

))
+

∆t

6

(
1 + ∆t+

(∆t)2

2

(
1 +

∆t

2

))]

= yn

[
1 + ∆t+

1

2
(∆t)2 +

1

6
(∆t)3 +

1

24
(∆t)4

]
.

2 With ∆t = 0.1 compute those numbersyS1 andyRK
1 and subtract from the exacty =

e∆t. The errors should be close to(∆t)3/6 and(∆t)5/120.

Solution Wheny0 = 1 and∆t = 1
10 , the first step in the solution above gives

Simplified Runge-Kutta1 + 1
10 + 1

2

(
1
10

)2
= 1.105.

Runge-Kutta1 + 1
10 + 1

2

(
1
10

)2
+ 1

6

(
1
10

)3
+ 1

24

(
1
10

)4
= 11

10 + 1
200 + 1

6000 + 1
240000 =

1.1051708.

The exact growth factor isexp
(

1
10

)
= 1.1051709. Error10−7 is near10−5/120.

3 Those valuesyS1 andyRK
1 have errors of order(∆t)3 and(∆t)5. Errors of this size at

every time step will produce total errors of size and at timeT , fromN
steps of size∆t = T/n.

Those estimates of total error are correct provided errors don’t grow (stability).

Solution Local errors of size(∆t)3 or (∆t)5 produce global errors of size(∆t)2 or
(∆t)4 after1/∆t—provided the system is stable and local errors don’t grow.

4 dy/dt = f(t) with y(0) = 0 is solved by integration whenf does not involvey.
From timet = 0 to ∆t, simplified Runge-Kutta approximates the integral off(t) :

yS1 = ∆t

(
1

2
f(0) +

1

2
f(∆t)

)
is close to y(∆t) =

∆t∫

0

f(t)dt

f(0)
f(∆t)

0 ∆t

Suppose the graph off(t) is a straight line as shown. Then the region is atrapezoid.
Check that its area is exactlyyS1 . Second order means exact for linearf .

Solution The area of a trapezoid is(base)(average height) = (∆t)(f(0)+f(∆t))/2.
This is exactly the answer chosen by simplified Runge-Kutta.

5 Suppose again thatf does not involvey, sody/dt = f(t) with y(0) = 0. Then full
Runge-Kutta fromt = 0 to∆t approximates the integral off(t) by yRK

1 :

yRK
1 = ∆t (c1f(0) + c2f(∆t/2) + c3f(∆t)) . Find c1, c2, c3.

This approximation to
∆t∫
0

f(t) dt is called Simpson’s Rule. It has4th order accuracy.

Solution Full Runge-Kutta allows the top edge of the trapezoid to becurved: it is the
graph of a nonlinearf(t). The area under this curve is well approximated by Simpson’s
Rule :
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area ≈ ∆t

[
1

6
f(0) +

4

6
f

(
∆t

2

)
+

1

6
f(∆t)

]
.

If you apply Runge-Kutta toy ′ = f(t) from 0 to∆t, with the right hand side indepen-
dent ofy, the result is

k1 =
1

2
f(0) k2 =

1

2
f

(
∆t

2

)
k3 =

1

2
f

(
∆t

2

)
k4 =

1

2
f (∆t)

∆t

3
(k1+2k2+2k3+k4) =

∆t

6
f(0)+

4∆t

6
f

(
∆t

2

)
+

∆t

6
f (∆t) : Simpson’s Rule

6 Reduce these second order equations to first order systemsy ′ = f(t, y) for the vector
y = (y, y ′). Write the two components ofyE

1 (Euler) andyS
1 .

(a)y ′′ + yy ′ + y4 = 1 (b)my ′′ + by ′ + ky = cos t

Solutions to Problems 6 and 7Write z for y ′. The first order systems are

(a) y ′ = z (b) y ′ = z

z ′ = 1− yz − y4 mz ′ = −ky − bz + cos t

Then Euler’s method gives(yE1 , z
E
1 ) from (y0, z0) :

[
yE1

zE1

]
=

[
y0

z0

]
+∆t

[
z0

1− y0z0 − (z0)
4

]

[
yE1

mzE1

]
=

[
y0

mz0

]
+∆t

[
z0

−ky0 − bz0 + cos 0

]

Simplified Runge-Kutta finds(yS1 , z
S
1 ) from (y0, z0) by addinghalf of those Euler

correctionsplus half of the updated correction :

(a)

[
yS1

zS1

]
=

[
y0

z0

]
+

∆t

2

[
z0

1− y0z0 − (z0)
4

]
+

∆t

2

[
zE1

1− yE1 z
E
1 − (zE1 )

4

]

(b)

[
yS1

mzS1

]
=

[
y0

z0

]
+

∆t

2

[
z0

−ky0 . . .

]
+

∆t

2

[
zE1

−kyE1 − bzE1 + cos∆t

]

8 For y ′ = −y andy0 = 1 the exact solutiony = e−t is approximated at time∆t by 2
or 3 or 5 terms :

yE1 = 1−∆t yS1 = 1−∆t+
1

2
(∆t)2 yRK

1 = 1−∆t+
1

2
(∆t)2− 1

6
(∆t)3+

1

24
(∆t)4

(a) With∆t = 1 compare those three numbers to the exacte−1. What errorE ?

(b) With∆t = 1/2 compare those three numbers toe−1/2. Is the error nearE/16?

Solution (a)∆t = 1 givesyE1 = 0 yS1 = 1
2

yRK
1 = 9

24
= .375 compared to the

exacte−1 = .368 ERK = .007.
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(b)∆t = 1
2 givesyE1 = 1

2
yS1 = 5

8
yRK
1 = 233

(24)(16)
= .60677 e−1/2 = .60653

ERK = .00024.

Two steps with∆t = 1
2 would leave an error about2(.00024) = −.00048 which is

close to.007/16.

9 For y ′ = ay, simplified Runge-Kutta givesySn+1 = (1 + a∆t + 1
2 (a∆t)2)yn.

This multiplier ofyn reaches1− 2 + 2 = 1 whena∆t = −2 : the stability limit.

(Computer experiment) ForN = 1, 2, . . . , 10 discover the stability limitL = LN

when the series fore−L is cut off afterN + 1 terms :
∣∣∣∣1− L+

1

2
L2 − 1

6
L3 + · · · ± 1

N !
LN

∣∣∣∣ = 1.

We knowL = 2 for N = 1 andN = 2. Runge-Kutta hasL = 2.78 for N = 4.

Solution The stability limits LN for N = 1, . . ., 10 come from MATLAB:

2.0 2.0 2.513 2.785 3.217 3.55 3.954 4.314 4.701 5.070.
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4

Problem Set 4.1, page 206

1 With A = I (the identity matrix) draw the planes in the row picture. Three sides of a
box meet at the solutionv = (x, y, z) = (2, 3, 4):

1x+ 0y + 0z = 2
0x+ 1y + 0z = 3
0x+ 0y + 1z = 4

or

[
1 0 0
0 1 0
0 0 1

][
x
y
z

]
=

[
2
3
4

]
.

Draw the four vectors in the column picture. Two times column1 plus three times
column2 plus four times column3 equals the right sideb.

The columns arei = (1, 0, 0) andj = (0, 1, 0) andk = (0, 0, 1) andb = (2, 3, 4) =
2i+ 3j + 4k.

2 If the equations in Problem 1 are multiplied by2, 3, 4 they becomeDV = B:

2x+ 0y + 0z = 4
0x+ 3y + 0z = 9
0x+ 0y + 4z = 16

or DV =

[
2 0 0
0 3 0
0 0 4

][
x
y
z

]
=

[
4
9
16

]
= B

Why is the row picture the same? Is the solutionV the same asv? What is changed in
the column picture—the columns or the right combination to giveB?

The planes are the same:2x = 4 is x = 2, 3y = 9 is y = 3, and4z = 16 is z = 4. The
solution is the same pointX = x. The columns are changed; but same combination.

3 If equation 1 is added to equation 2, which of these are changed: the planes in the row
picture, the vectors in the column picture, the coefficient matrix, the solution? The new
equations in Problem 1 would bex = 2, x+ y = 5, z = 4.

The solution is not changed! The second plane and row 2 of the matrix and all columns
of the matrix (vectors in the column picture) are changed.

4 Find a point withz = 2 on the intersection line of the planesx + y + 3z = 6 and
x− y + z = 4. Find the point withz = 0. Find a third point halfway between.

If z = 2 thenx+y = 0 andx−y = z give the point(1,−1, 2). If z = 0 thenx+y = 6
andx− y = 4 produce(5, 1, 0). Halfway between those is(3, 0, 1).

5 The first of these equations plus the second equals the third:

x + y + z = 2
x + 2y + z = 3
2x + 3y + 2z = 5.

The first two planes meet along a line. The third plane contains that line, because
if x, y, z satisfy the first two equations then they also . The equations have
infinitely many solutions (the whole lineL). Find three solutions onL.

If x, y, z satisfy the first two equations they also satisfy the third equation. The line
L of solutions containsv = (1, 1, 0) andw = (12 , 1,

1
2 ) andu = 1

2v + 1
2w and all

combinationscv + dw with c+ d = 1.
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6 Move the third plane in Problem 5 to a parallel plane2x+3y+2z = 9. Now the three
equations have no solution—why not? The first two planes meet along the lineL, but
the third plane doesn’t that line.

Equation1 + equation2− equation3 is now0 = −4. Line misses plane;no solution.
7 In Problem 5 the columns are(1, 1, 2) and(1, 2, 3) and(1, 1, 2). This is a “singular

case” because the third column is . Find two combinations of the columns that
giveb = (2, 3, 5). This is only possible forb = (4, 6, c) if c = .

Column3 = Column 1 makes the matrix singular. Solutions(x, y, z) = (1, 1, 0) or
(0, 1, 1) and you can add any multiple of(−1, 0, 1); b = (4, 6, c) needsc = 10 for
solvability (thenb lies in the plane of the columns).

8 Normally 4 “planes” in 4-dimensional space meet at a . Normally 4
vectors in 4-dimensional space can combine to produceb. What combination
of (1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 0), (1, 1, 1, 1) producesb = (3, 3, 3, 2)?

Four planes in 4-dimensional space normally meet at apoint. The solution toAx =
(3, 3, 3, 2) is x = (0, 0, 1, 2) if A has columns(1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 0),
(1, 1, 1, 1). The equations arex+ y + z + t = 3, y + z + t = 3, z + t = 3, t = 2.

Problems 9–14 are about multiplying matrices and vectors.

9 Compute eachAx by dot products of the rows with the column vector:

(a)

[
1 2 4

−2 3 1
−4 1 2

][
2
2
3

]
(b)




2 1 0 0
1 2 1 0
0 1 2 1
0 0 1 2







1
1
1
2




(a) Ax = (18, 5, 0) and (b) Ax = (3, 4, 5, 5).
10 Compute eachAx in Problem 9 as a combination of the columns:

9(a) becomes Ax = 2

[
1

−2
−4

]
+ 2

[
2
3
1

]
+ 3

[
4
1
2

]
=

[ ]
.

How many separate multiplications forAx, when the matrix is “3 by 3”?

Multiplying as linear combinations of the columns gives thesameAx. By rows or by
columns:9 separate multiplications for3 by 3.

11 Find the two components ofAx by rows or by columns:

[
2 3
5 1

] [
4
2

]
and

[
3 6
6 12

] [
2

−1

]
and

[
1 2 4
2 0 1

][ 3
1
1

]
.

Ax equals(14, 22) and(0, 0) and (9, 7).
12 Multiply A timesx to find three components ofAx:

[
0 0 1
0 1 0
1 0 0

][
x
y
z

]
and

[
2 1 3
1 2 3
3 3 6

][
1
1

−1

]
and

[
2 1
1 2
3 3

][
1
1

]
.

Ax equals(z, y, x) and(0, 0, 0) and (3, 3, 6).
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13 (a) A matrix withm rows andn columns multiplies a vector with components
to produce a vector with components.

(b) The planes from them equationsAx = b are in -dimensional space. The
combination of the columns ofA is in -dimensional space.

(a) x hasn components andAx hasm components (b) Planes from each equation
in Ax = b are inn-dimensional space, but the columns are inm-dimensional space.

14 Write 2x+ 3y + z + 5t = 8 as a matrixA (how many rows?) multiplying the column
vectorx = (x, y, z, t) to produceb. The solutionsx fill a plane or “hyperplane”
in 4-dimensional space.The plane is3-dimensional with no4D volume.

2x+3y+z+5t = 8 isAx = b with the1 by 4 matrixA = [ 2 3 1 5 ]. The solutions
x fill a 3D “plane” in 4 dimensions. It could be called ahyperplane.

Problems 15–22 ask for matrices that act in special ways on vectors.

15 (a) What is the2 by 2 identity matrix?I times
[ x
y

]
equals

[ x
y

]
.

(b) What is the2 by 2 exchange matrix?P times
[ x
y

]
equals

[
y
x

]
.

(a) I =

[
1 0
0 1

]
(b) P =

[
0 1
1 0

]

16 (a) What2 by 2 matrixR rotates every vector by90◦ ?R times
[ x
y

]
is
[ y
−x

]
.

(b) What2 by 2 matrixR2 rotates every vector by180◦ ?

90◦ rotation fromR =

[
0 1

−1 0

]
, 180◦ rotation fromR2 =

[
−1 0
0 −1

]
= −I.

17 Find the matrixP that multiplies(x, y, z) to give (y, z, x). Find the matrixQ that
multiplies(y, z, x) to bring back(x, y, z).

P =

[
0 1 0
0 0 1
1 0 0

]
produces(y, z, x) andQ =

[
0 0 1
1 0 0
0 1 0

]
recovers(x, y, z). Q is the

inverse ofP .
18 What2 by 2 matrixE subtracts the first component from the second component ? What

3 by 3 matrix does the same ?

E

[
3
5

]
=

[
3
2

]
and E

[
3
5
7

]
=

[
3
2
7

]
.

E =

[
1 0

−1 1

]
andE =

[
1 0 0

−1 1 0
0 0 1

]
subtract the first component from the second.

19 What 3 by 3 matrix E multiplies (x, y, z) to give (x, y, z + x) ? What matrixE−1

multiplies (x, y, z) to give (x, y, z − x) ? If you multiply (3, 4, 5) by E and then
multiply byE−1, the two results are( ) and( ).

E =

[
1 0 0
0 1 0
1 0 1

]
andE−1 =

[
1 0 0
0 1 0

−1 0 1

]
, Ev = (3, 4, 8) andE−1Ev recovers

(3, 4, 5).
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20 What 2 by 2 matrix P1 projects the vector(x, y) onto thex axis to produce(x, 0) ?
What matrixP2 projects onto they axis to produce(0, y) ? If you multiply(5, 7) byP1

and then multiply byP2, you get( ) and( ).

P1 =

[
1 0
0 0

]
projects onto thex-axis andP2 =

[
0 0
0 1

]
projects onto they-axis.

v =

[
5
7

]
hasP1v =

[
5
0

]
andP2P1v =

[
0
0

]
.

21 What 2 by 2 matrix R rotates every vector through45◦ ? The vector(1, 0) goes to
(
√
2/2,

√
2/2). The vector(0, 1) goes to(−

√
2/2,

√
2/2). Those determine the matrix.

Draw these particular vectors in thexy plane and findR.

R =
1

2

[√
2 −

√
2√

2
√
2

]
rotates all vectors by 45◦ . The columns ofR are the results from

rotating(1, 0) and(0, 1)!

22 Write the dot product of(1, 4, 5) and (x, y, z) as a matrix multiplicationAv. The
matrixA has one row. The solutions toAv = 0 lie on a perpendicular to the
vector . The columns ofA are only in -dimensional space.

The dot productAx = [ 1 4 5 ]

[
x
y
z

]
= (1 by 3)(3 by 1) is zero for points(x, y, z)

on a plane in three dimensions. The columns ofA are one-dimensional vectors.

23 In MATLAB notation, write the commands that define this matrixA and the column
vectorsv andb. What command would test whether or notAv = b ?

A =

[
1 2
3 4

]
v =

[
5

−2

]
b =

[
1
7

]

A = [ 1 2 ; 3 4 ] andx = [ 5 −2 ]
′ andb = [ 1 7 ]

′. r = b−A ∗x prints as zero.

24 If you multiply the4 by 4 all-ones matrixA = ones(4) and the columnv = ones(4,1),
what isA∗v ? (Computer not needed.) If you multiplyB = eye(4) + ones(4) times
w = zeros(4,1) + 2∗ones(4,1), what isB∗w ?

ones(4, 4) ∗ ones(4, 1) = [ 4 4 4 4 ]
′; B ∗w = [ 10 10 10 10 ]

′.

Questions 25–27 review the row and column pictures in 2, 3, and 4 dimensions.

25 Draw the row and column pictures for the equationsx− 2y = 0, x+ y = 6.

The row picture has two lines meeting at the solution (4, 2). The column picture will
have4(1, 1) + 2(−2, 1) = 4(column 1)+ 2(column 2)= right side(0, 6).

26 For two linear equations in three unknownsx, y, z, the row picture will show (2 or 3)
(lines or planes) in (2 or 3)-dimensional space. The column picture is in (2 or 3)-
dimensional space. The solutions normally lie on a .

The row picture shows2 planes in 3-dimensional space. The column picture is in
2-dimensional space. The solutions normally lie on aline.
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27 For four linear equations in two unknownsx andy, the row picture shows four .
The column picture is in -dimensional space. The equations have no solution
unless the vector on the right side is a combination of .

The row picture shows fourlines in the 2D plane. The column picture is infour-
dimensional space. No solution unless the right side is a combination ofthe two columns.

Challenge Problems

28 Invent a3 by 3 magic matrix M3 with entries1, 2, . . . , 9. All rows and columns
and diagonals add to 15. The first row could be8, 3, 4. What isM3 times(1, 1, 1) ?
What isM4 times(1, 1, 1, 1) if a 4 by 4 magic matrix has entries1, . . . , 16 ?

M =

[
8 3 4
1 5 9
6 7 2

]
=

[
5 + u 5− u+ v 5− v

5− u− v 5 5 + u+ v
5 + v 5 + u− v 5− u

]
; M3(1, 1, 1) = (15, 15, 15);

M4(1, 1, 1, 1) = (34, 34, 34, 34) because1 + 2 + · · ·+ 16 = 136 which is4(34).

29 Supposeu andv are the first two columns of a3 by 3 matrixA. Which third columns
w would make this matrix singular ? Describe a typical column picture ofAv = b in
that singular case, and a typical row picture (for a randomb).

A is singular when its third columnw is a combinationcu + dv of the first columns.
A typical column picture hasb outside the plane ofu, v, w. A typical row picture has
the intersection line of two planes parallel to the third plane.Then no solution.

30 Multiplying by A is a “linear transformation”. Those important words mean:

If w is a combination ofu andv, thenAw is the same combination ofAu andAv.

It is this “linearity” Aw = cAu+ dAv that gives us the namelinear algebra.

If u =

[
1
0

]
andv =

[
0
1

]
thenAu andAv are the columns ofA.

Combinew = cu+ dv. If w =

[
5
7

]
how isAw connected toAu andAv ?

w = (5, 7) is 5u+ 7v. ThenAw equals5 timesAu plus7 timesAv.

31 A 9 by 9 Sudoku matrix S has the numbers1, . . . , 9 in every row and column, and in
every3 by 3 block. For the all-ones vectorv = (1, . . . , 1), what isSv ?

A better question is:Which row exchanges will produce another Sudoku matrix?
Also, which exchanges of block rows give another Sudoku matrix ?

Section 4.5 will look at all possible permutations (reorderings) of the rows. I see
6 orders for the first3 rows, all giving Sudoku matrices. Also6 permutations of the
next3 rows, and of the last3 rows. And6 block permutations of the block rows ?

x = (1, . . . , 1) givesSx = sum of each row= 1+ · · ·+9 = 45 for Sudoku matrices.
6 row orders(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1) are in Section 2.7.
The same6 permutations ofblocksof rows produce Sudoku matrices, so64 = 1296
orders of the9 rows all stay Sudoku. (And also1296 permutations of the9 columns.)
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32 Suppose the second row ofA is some numberc times the first row :

A =

[
a b
ca cb

]
.

Then if a 6= 0, the second column ofA is what numberd times the first column ?
A square matrix with dependent rows will also have dependentcolumns. This is a
crucial fact coming soon.

The second column isd = b/a times the first column. So the columns are “dependent”
when the rows are “dependent”.

Problem Set 4.2, page 215

Problems 1–10 are about elimination on2 by 2 systems.

1 What multipleℓ21 of equation 1 should be subtracted from equation 2 ?

2x+ 3y = 1

10x+ 9y = 11.

After this step, solve the triangular system by back substitution,y beforex. Verify that
x times(2, 10) plusy times(3, 9) equals(1, 11). If the right side changes to(4, 44),
what is the new solution ?

Multiply by ℓ21 = 10
2 = 5 and subtract to find2x + 3y = 14 and−6y = 6. The

pivots to circle are 2 and−6. If the right hand side is multiplied by4, the solution is
multiplied by4.

2 If you find solutionsv andw to Av = b andAw = c, what is the solutionu to
Au = b + c? What is the solutionU to AU = 3b + 4c? (We saw superposition for
linear differential equations, it works in the same way for all linear equations.)

If Av = b andAw = c thenA(v +w) = b + c. The solution toAU = 3b + 4c is
U = 3v + 4w.

3 What multiple of equation 1 should besubtractedfrom equation 2 ?

2x− 4y = 6

−x+ 5y = 0.

After this elimination step, solve the triangular system. If the right side changes to
(−6, 0), what is the new solution ?

Subtract− 1
2 times equation 1 from equation 2. This leaves0x+ 3y = 3. Theny = 1

and the first equation becomes2x− 4 = 6 to givex = 5.
If the right side changes from(6, 0) to (−6, 0) the solution changes from(5, 1) to
(−5,−1).
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4 What multipleℓ of equation 1 should be subtracted from equation 2 to removecx?

ax+ by = f

cx+ dy = g.

The first pivot isa (assumed nonzero). Elimination produces what formula for the
second pivot ? The second pivot is missing whenad = bc: that is thesingular case.

Subtractℓ = c
a times equation 1. The new second pivot multiplyingy is d− (cb/a) or

(ad− bc)/a. Theny = (ag − cf)/(ad− bc).
5 Choose a right side which gives no solution and another rightside which gives

infinitely many solutions. What are two of those solutions ?

Singular system
3x+ 2y = 10

6x+ 4y =

6x + 4y is 2 times3x + 2y. There is no solution unless the right side is2 · 10 = 20.
Then all the points on the line3x+2y = 10 are solutions, including(0, 5) and(4,−1).
(The two lines in the row picture are the same line, containing all solutions).

6 Choose a coefficientb that makes this system singular. Then choose a right sideg that
makes it solvable. Find two solutions in that singular case.

2x+ by = 16

4x+ 8y = g.

Singular system ifb = 4, because4x+ 8y is 2 times2x+ 4y. Theng = 32 makes the
lines become thesame: infinitely many solutions like(8, 0) and(0, 4).

7 For whicha does elimination break down (1) permanently or (2) temporarily?

ax+ 3y = −3

4x+ 6y = 6.

Solve forx andy after fixing the temporary breakdown by a row exchange.

If a = 2 elimination must fail (two parallel lines in the row picture). The equations
have no solution. Witha = 0, elimination will stop for a row exchange. Then3y = −3
givesy = −1 and4x+ 6y = 6 givesx = 3.

8 For which three numbersk does elimination break down ? Which is fixed by a row
exchange ? In these three cases, is the number of solutions 0 or 1 or∞ ?

kx+ 3y = 6

3x+ ky = −6.

If k = 3 elimination must fail: no solution. Ifk = −3, elimination gives0 = 0 in
equation 2: infinitely many solutions. Ifk = 0 a row exchange is needed: one solution.

9 What test onb1 andb2 decides whether these two equations allow a solution ? How
many solutions will they have ? Draw the column picture forb = (1, 2) and(1, 0).

3x− 2y = b1

6x− 4y = b2.

On the left side,6x− 4y is 2 times(3x− 2y). Therefore we needb2 = 2b1 on the right
side. Then there will be infinitely many solutions (two parallel lines become one single
line).
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10 In thexy plane, draw the linesx+ y = 5 andx+2y = 6 and the equationy =
that comes from elimination. The line5x−4y = c will go through the solution of these
equations ifc = .

The equationy = 1 comes from elimination (subtractx + y = 5 from x + 2y = 6).
Thenx = 4 and5x− 4y = c = 16.

11 (Recommended) A system of linear equations can’t have exactly two solutions. If(x, y)
and(X,Y ) are two solutions toAv = b, what is another solution ?

If v = (x, y) and alsoV = (X,Y ) solve the systemAv = b, then another solution
is 1

2v + 1
2V . (All combinationsu = cv + (1 − c)V will be solutions sinceAu =

cAv + (1− c)AV = cb+ (1− c)b = b.)

Problems 12–20 study elimination on3 by 3 systems (and possible failure).

12 Reduce this system to upper triangular form by two row operations:

2x+3y + z = 8
Eliminate x → 4x+7y + 5z = 20
Eliminate y → −2y + 2z = 0.

Circle the pivots. Solve by back substitution forz, y, x.

Elimination leads to an upper triangular system; then comesback substitution.
2x + 3y + z = 8

y + 3z = 4

8z = 8

gives
x = 2

y = 1 If a zero is at the start of row 2 or 3,
z = 1 that avoids a row operation.

13 Apply elimination (circle the pivots) and back substitution to solve

2x− 3y = 3

4x− 5y + z = 7

2x− y − 3z = 5.

List the three row operations : Subtract times row from row .

2x − 3y = 3

4x − 5y + z = 7

2x − y − 3z = 5

gives

2x − 3y = 3

y + z = 1

2y + 3z = 2

and
2x − 3y = 3

y + z = 1

− 5z = 0

and
x = 3

y = 1

z = 0
Subtract 2× row 1 from row 2, subtract 1× row 1 from row 3, subtract 2× row 2
from row 3

14 Which numberd forces a row exchange? What is the triangular system (not singular)
for thatd? Whichd makes this system singular (no third pivot) ?

2x+ 5y + z = 0

4x+ dy + z = 2

y − z = 3.

Subtract2 times row 1 from row 2 to reach(d−10)y−z = 2. Equation (3) isy−z = 3.
If d = 10 exchange rows 2 and 3. Ifd = 11 the system becomes singular.
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15 Which numberb leads later to a row exchange? Whichb leads to a singular problem
that row exchanges cannot fix ? In that singular case find a nonzero solutionx, y, z.

x+ by = 0

x− 2y − z = 0

y + z = 0.

The second pivot position will contain−2 − b. If b = −2 we exchange with row 3. If
b = −1 (singular case) the second equation is−y − z = 0. A solution is(1, 1,−1).

16 (a) Construct a3 by 3 system that needs two row exchanges to reach a triangular
form.

(b) Construct a3 by 3 system that needs a row exchange for pivot2, but breaks down
for pivot 3.

(a)
Example of
2 exchanges

0x + 0y + 2z = 4

x + 2y + 2z = 5

0x + 3y + 4z = 6

(exchange 1 and 2, then 2 and 3)

(b)

Exchange
but then
break down

0x + 3y + 4z = 4

x + 2y + 2z = 5

0x + 3y + 4z = 6

(rows 1 and 3 are not consistent)
17 If rows 1 and 2 are the same, how far can you get with elimination (allowing row

exchange)? If columns 1 and 2 are the same, which pivot is missing ?

Equal 2x− y + z = 0 2x+ 2y + z = 0 Equal
rows 2x− y + z = 0 4x+ 4y + z = 0 columns

4x+ y + z = 2 6x+ 6y + z = 2.

If row 1 = row 2, then row 2 is zero after the first step; exchange the zerorow with row
3 and there is nothird pivot. If column2 = column 1, then column2 has no pivot.

18 Construct a3 by 3 example that has9 different coefficients on the left side, but rows
2 and 3 become zero in elimination. How many solutions to yoursystem withb =
(1, 10, 100) and how many withb = (0, 0, 0)?

Examplex + 2y + 3z = 0, 4x + 8y + 12z = 0, 5x + 10y + 15z = 0 has 9 different
coefficients but rows 2 and 3 become0 = 0: infinitely many solutions.

19 Which numberq makes this system singular and which right sidet gives it infinitely
many solutions ? Find the solution that hasz = 1.

x+ 4y − 2z = 1

x+ 7y − 6z = 6

3y + qz = t.

Row 2 becomes3y − 4z = 5, then row 3 becomes(q + 4)z = t − 5. If q = −4 the
system is singular—no third pivot. Then ift = 5 the third equation is0 = 0. Choosing
z = 1 the equation3y − 4z = 5 givesy = 3 and equation 1 givesx = −9.

20 Three planes can fail to have an intersection point,even if no planes are parallel.
The system is singular if row3 is a combination of the first two rows. Find a third
equation that can’t be solved together withx+ y + z = 0 andx− 2y − z = 1.

Singular if row 3 is a combination of rows 1 and 2. From the end view, the three planes
form a triangle. This happens if rows1+2=row 3 on the left side but not the right side:
x+y+z=0, x−2y−z=1, 2x−y=1. No parallel planes but still no solution.
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21 Find the pivots and the solution for both systems (Av = b andSw = b) :

2x+ y = 0 2x− y = 0

x+ 2y + z = 0 −x+ 2y − z = 0

y + 2z + t = 0 − y + 2z − t = 0

z + 2t = 5 − z + 2t = 5.

(a) Pivots2, 3
2
, 4
3
, 5
4

in the equations2x+y = 0, 3
2
y+z = 0, 4

3
z+ t = 0, 5

4
t = 5 after

elimination. Back substitution givest = 4, z = −3, y = 2, x = −1.

(b) If the off-diagonal entries change from+1 to −1, the pivots are the same. The
solution is(1, 2, 3, 4) instead of(−1, 2,−3, 4).

22 If you extend Problem 21 following the1, 2, 1 pattern or the−1, 2,−1 pattern,
what is the fifth pivot ? What is thenth pivot ?S is my favorite matrix.

The fifth pivot is 6

5
for both matrices (1’s or−1’s off the diagonal). Thenth pivot is

n+1

n
.

23 If elimination leads tox+ y = 1 and2y = 3, find three possible original problems.

If ordinary elimination leads tox + y = 1 and2y = 3, the original second equation
could be2y+ ℓ(x+ y) = 3+ ℓ for anyℓ. Thenℓ will be the multiplier to reach2y = 3.

24 For which two numbersa will elimination fail onA =

[
a 2
a a

]
?

Elimination fails on

[
a 2
a a

]
if a = 2 or a = 0.

25 For which three numbersa will elimination fail to give three pivots ?

A =

[
a 2 3
a a 4
a a a

]
is singular for three values ofa.

a = 2 (equal columns),a = 4 (equal rows),a = 0 (zero column).

26 Look for a matrix that has row sums 4 and 8, and column sums2 ands :

Matrix =

[
a b
c d

]
a+ b = 4
c+ d = 8

a+ c = 2
b+ d = s

The four equations are solvable only ifs = . Then find two different matrices
that have the correct row and column sums.Extra credit: Write down the4 by4 system
Av = (4, 8, 2, s) with v = (a, b, c, d) and makeA triangular by elimination.

Solvable fors = 10 (add the two pairs of equations to geta+b+c+d on the left sides,
12 and2 + s on the right sides). The four equations fora, b, c, d aresingular! Two

solutions are

[
1 3
1 7

]
and

[
0 4
2 6

]
, A =



1 1 0 0
1 0 1 0
0 0 1 1
0 1 0 1


 andU =



1 1 0 0
0 −1 1 0
0 0 1 1
0 0 0 0


.
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27 Elimination in the usual order gives what matrixU and what solution(x, y, z) to
this “lower triangular” system ? We are really solving byforward substitution:

3x = 3
6x+ 2y = 8
9x− 2y + z = 9.

Elimination leaves the diagonal matrix diag(3, 2, 1) in 3x = 3, 2y = 2, z = 4. Then
x = 1, y = 1, z = 4.

28 Create aMATLAB commandA(2, : ) = . . . for the new row2, to subtract3 times
row 1 from the existing row 2 if the matrixA is already known.

A(2, :) = A(2, :)− 3 ∗A(1, :) subtracts3 times row1 from row2.

29 If the last corner entry ofA is A(5, 5) = 11 and the last pivot ofA is
U(5, 5) = 4, what different entryA(5, 5) would have madeA singular ?

A change up or down inA(5, 5) produces the same change inU(5, 5). If A(5, 5) = 11
gaveU(5, 5) = 4, then subtract4: A(5, 5) = 7 will give U(5, 5) = 0 and a singular
matrix—zero in the last pivot positionU(5, 5).

Challenge Problems

30 Suppose elimination takesA to U without row exchanges. Then rowi of U is a com-
bination of which rows ofA? If Av = 0, isUv = 0? If Av = b, isUv = b?

Row j of U is a combination of rows1, . . . , j of A. If Ax = 0 thenUx = 0 (not true
if b replaces0). U is the diagonal ofA whenA is lower triangular.

31 Start with100 equationsAv = 0 for 100 unknownsv = (v1, . . . , v100). Suppose
elimination reduces the100th equation to0 = 0, so the system is “singular”.

(a) Elimination takes linear combinations of the rows. So this singular system has the
singular property : Some linear combination of the100 rows is .

(b) Singular systemsAv = 0 have infinitely many solutions. This means that some
linear combination of the100 columns is .

(c) Invent a100 by 100 singular matrix with no zero entries.

(d) For your matrix, describe in words the row picture and thecolumn picture of
Av = 0. Not necessary to draw100-dimensional space.

The question deals with 100 equationsAx = 0 whenA is singular.
(a) Some linear combination of the 100 rows isthe row of 100 zeros.

(b) Some linear combination of the 100columns is the column of zeros.

(c) A very singular matrix has all ones:A = eye(100). A better example has 99
random rows (or the numbers1i, . . . , 100i in those rows). The 100th row could
be the sum of the first 99 rows (or any other combination of those rows with no
zeros).

(d) The row picture has 100 planesmeeting along a common line through0. The
column picture has 100 vectors all in the same 99-dimensional hyperplane.
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Problem Set 4.3, page 223

Problems 1–16 are about the laws of matrix multiplication .

1 A is 3 by 5, B is 5 by 3, C is 5 by 1, andD is 3 by 1. All entries are1. Which of these
matrix operations are allowed, and what are the results ?

BA AB ABD DBA A(B + C).

If all entries ofA,B,C,D are1, thenBA = 3 ones(5) is 5 by 5; AB = 5 ones(3) is
3 by 3; ABD = 15 ones(3, 1) is 3 by 1. DBA andA(B + C) are not defined.

2 What rows or columns or matrices do you multiply to find

(a) the third column ofAB ?

(b) the first row ofAB ?

(c) the entry in row 3, column 4 ofAB ?

(d) the entry in row 1, column 1 ofCDE ?

(a) A (column 3 ofB) (b) (Row 1 ofA) B (c) (Row 3 ofA)(column 4 ofB)
(d) (Row 1 ofC)D(column 1 ofE).

3 AddAB to AC and compare withA(B + C) :

A =

[
1 5
2 3

]
and B =

[
0 2
0 1

]
and C =

[
3 1
0 0

]
.

AB +AC is the same asA(B + C) =

[
3 8
6 9

]
. (Distributive law).

4 In Problem 3, multiplyA timesBC. Then multiplyAB timesC.

A(BC) = (AB)C by theassociative law. In this example both answers are

[
0 0
0 0

]

from column1 of AB and row2 of C (multiply columns times rows).

5 ComputeA2 andA3. Make a prediction forA5 andAn :

A =

[
1 b
0 1

]
and A =

[
2 2
0 0

]
.

(a) A2 =

[
1 2b
0 1

]
andAn =

[
1 nb
0 1

]
. (b) A2 =

[
4 4
0 0

]
andAn =

[
2n 2n

0 0

]
.

6 Show that(A+B)2 is different fromA2 + 2AB +B2, when

A =

[
1 2
0 0

]
and B =

[
1 0
3 0

]
.

Write down the correct rule for(A+B)(A +B) = A2 + +B2.

(A+B)2 =

[
10 4
6 6

]
= A2 +AB +BA+B2. ButA2 + 2AB +B2 =

[
16 2
3 0

]
.
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7 True or false. Give a specific example when false :

(a) If columns 1 and 3 ofB are the same, so are columns 1 and 3 ofAB.

(b) If rows 1 and 3 ofB are the same, so are rows 1 and 3 ofAB.

(c) If rows 1 and 3 ofA are the same, so are rows 1 and 3 ofABC.

(d) (AB)2 = A2B2.

(a) True (b) False (c) True (d) False: usually(AB)2 6= A2B2.

8 How is each row ofDA andEA related to the rows ofA, when

D =

[
3 0
0 5

]
and E =

[
0 1
0 1

]
and A =

[
a b
c d

]
?

How is each column ofAD andAE related to the columns ofA?

The rows ofDA are3 (row1 of A) and5 (row2 of A). Both rows ofEA are row2 of A.
The columns ofAD are3 (column1 of A) and5 (column2 of A). The first column of
AE is zero, the second is column1 of A + column2 of A.

9 Row 1 ofA is added to row 2. This givesEA below. Then column 1 ofEA is added
to column 2 to produce(EA)F . NoticeE andF in boldface.

EA =

[
1 0
1 1

] [
a b
c d

]
=

[
a b

a+ c b+ d

]

(EA)F = (EA)

[
1 1
0 1

]
=

[
a a+ b

a+ c a+ c+ b+ d

]
.

Do those steps in the opposite order, first multiplyAF and thenE(AF ). Compare
with (EA)F . What law is obeyed by matrix multiplication ?

AF =

[
a a+ b

c c+ d

]
andE(AF ) equals(EA)F because matrix multiplication is

associative.

10 Row 1 ofA is added to row 2 to produceEA. ThenF adds row 2 ofEA to row 1.
Now F is on the left, for row operations. The result isF (EA) :

F (EA) =

[
1 1
0 1

] [
a b

a+ c b+ d

]
=

[
2a+ c 2b+ d
a+ c b+ d

]
.

Do those steps in the opposite order : first add row2 to row 1 by FA, then add row 1
of FA to row 2. What law is or is not obeyed by matrix multiplication?

FA =

[
a+ c b+ d

c d

]
and thenE(FA) =

[
a+ c b+ d

a+ 2c b+ 2d

]
. E(FA) is not the

same asF (EA) because multiplication is not commutative.

11 (3 by 3 matrices) Choose the onlyB so that for every matrixA

(a) BA = 4A
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(b) BA = 4B (tricky)

(c) BA has rows 1 and 3 ofA reversed and row 2 unchanged

(d) All rows ofBA are the same as row 1 ofA.

(a) B = 4I (b) B = 0 (c) B =

[
0 0 1
0 1 0
1 0 0

]
(d) Every row ofB is 1, 0, 0.

12 SupposeAB = BA andAC = CA for these two particular matricesB andC :

A =

[
a b
c d

]
commutes with B =

[
1 0
0 0

]
and C =

[
0 1
0 0

]
.

Prove thata = d andb = c = 0. ThenA is a multiple ofI. The only matrices that
commute withB andC and all other2 by 2 matrices areA = multiple ofI.

AB =

[
a 0

c 0

]
= BA =

[
a b

0 0

]
givesb = c = 0. ThenAC = CA givesa = d.

The only matrices that commute withB andC (and all other matrices) are multiples of
I: A = aI.

13 Which of the following matrices are guaranteed to equal(A − B)2 : A2 − B2,
(B −A)2, A2 − 2AB +B2, A(A −B)−B(A−B), A2 −AB −BA+B2 ?

(A − B)2 = (B − A)2 = A(A − B) − B(A − B) = A2 − AB − BA + B2. In a
typical case (whenAB 6= BA) the matrixA2− 2AB+B2 is different from(A−B)2.

14 True or false :

(a) If A2 is defined thenA is necessarily square.

(b) If AB andBA are defined thenA andB are square.

(c) If AB andBA are defined thenAB andBA are square.

(d) If AB = B thenA = I.

(a) True (A2 is only defined whenA is square) (b) False (ifA is m by n andB
is n by m, thenAB is m by m andBA is n by n). (c) True (d) False (take
B = 0).

15 If A ism by n, how many separate multiplications are involved when

(a) A multiplies a vectorx with n components?

(b) A multiplies ann by p matrixB ?

(c) A multiplies itself to produceA2 ? Herem = n andA is square.

(a) mn (use every entry ofA) (b) mnp = p×part (a) (c)n3 (n2 dot products).

16 ForA =
[
2 −1
3 −2

]
andB =

[
1 0 4
1 0 6

]
, compute these answersand nothing more:

(a) column 2 ofAB (b) row 2 ofAB (c) row 2 ofA2

(d) row 2 ofA3.

(a) Use only column 2 ofB (b) Use only row 2 ofA (c)–(d) Use row 2 of firstA.
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Problems 17–19 useaij for the entry in row i, column j of A.

17 Write down the3 by 3 matrixA whose entries are

(a) aij = minimum ofi andj (b) aij = (−1)i+j (c) aij = i/j.

A =




1 1 1

1 2 2

1 2 3


 hasaij = min(i, j). A =




1 −1 1

−1 1 −1

1 −1 1


 hasaij = (−1)i+j =

“alternating sign matrix”.A =




1/1 1/2 1/3

2/1 2/2 2/3

3/1 3/2 3/3


 hasaij = i/j (this will be an ex-

ample of arank one matrix).
18 What words would you use to describe each of these classes of matrices ? Give a

3 by 3 example in each class. Which matrix belongs to all four classes ?

(a) aij = 0 if i 6= j (b) aij = 0 if i < j (c) aij = aji

(d) aij = a1j .

Diagonal matrix, lower triangular, symmetric, all rows equal. Zero matrix fits all four.
19 The entries ofA areaij . Assuming that zeros don’t appear, what is

(a) the first pivot ?

(b) the multiplierℓ31 of row 1 to be subtracted from row3?

(c) the new entry that replacesa32 after that subtraction ?

(d) the second pivot ?

(a) a11 (b) ℓ31 = a31/a11 (c) a32 − (a31

a11
)a12 (d) a22 − (a21

a11
)a12.

Problems 20–24 involve powers ofA.

20 ComputeA2, A3, A4 and alsoAv, A2v, A3v, A4v for

A =




0 2 0 0
0 0 2 0
0 0 0 2
0 0 0 0


 and v =




x
y
z
t


 .

A2 =




0 0 4 0

0 0 0 4

0 0 0 0

0 0 0 0


 , A3 =




0 0 0 8

0 0 0 0

0 0 0 0

0 0 0 0


 , A4 = zero matrix forstrictly triangularA.

ThenAv = A




x

y

z

t


 =




2y

2z

2t

0


 , A2v =




4z

4t

0

0


 , A3v =




8t

0

0

0


 , A4v = 0.
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21 Find all the powersA2, A3, . . . andAB, (AB)2, . . . for

A =

[
.5 .5
.5 .5

]
and B =

[
1 0
0 −1

]
.

A = A2 = A3 = · · · =
[

.5 .5

.5 .5

]
butAB =

[
.5 −.5

.5 −.5

]
and(AB)2 = zero matrix!

22 By trial and error find real nonzero2 by 2 matrices such that

A2 = −I BC = 0 DE = −ED (not allowingDE = 0).

A =

[
0 1

−1 0

]
hasA2 = −I; BC =

[
1 −1
1 −1

] [
1 1
1 1

]
=

[
0 0
0 0

]
;

DE =

[
0 1
1 0

] [
0 1

−1 0

]
=

[
−1 0
0 1

]
= −ED. You can find more examples.

23 (a) Find a nonzero matrixA for whichA2 = 0.

(b) Find a matrix that hasA2 6= 0 butA3 = 0.

A =

[
0 1

0 0

]
hasA2 = 0. Note: Any matrixA = column times row= uvT will

haveA2 = uvTuvT = 0 if vTu = 0. A =




0 1 0

0 0 1

0 0 0


 hasA2 =




0 0 1

0 0 0

0 0 0




butA3 = 0; strictly triangular as in Problem 20.

24 By experiment withn = 2 andn = 3 predictAn for these matrices :

A1 =

[
2 1
0 1

]
and A2 =

[
1 1
1 1

]
and A3 =

[
a b
0 0

]
.

(A1)
n =

[
2n 2n − 1
0 1

]
, (A2)

n = 2n−1

[
1 1
1 1

]
, (A3)

n =

[
an an−1b
0 0

]
.

Problems 25–31 use column-row multiplication and block multiplication.

25 Multiply A timesI using columns ofA (3 by 3) times rows ofI.


a b c
d e f
g h i





1 0 0
0 1 0
0 0 1


=



a
d
g



[1 0 0]

+



d
e
h



[0 1 0]

+



c
f
i



[0 0 1]

.

26 Multiply AB using columns times rows :

AB =

[
1 0
2 4
2 1

][
3 3 0
1 2 1

]
=

[
1
2
2

]
[
3 3 0

]
+ = .
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Columns ofA
times rows ofB

[
1
2
2

]
[3 3 0]+

[
0
4
1

]
[1 2 1] =

[
3 3 0
6 6 0
6 6 0

]
+

[
0 0 0
4 8 4
1 2 1

]
=

[
3 3 0

10 14 4
7 8 1

]
= AB.

27 Show that the product of two upper triangular matrices is always upper triangular :

AB =

[
x x x
0 x x
0 0 x

][
x x x
0 x x
0 0 x

]
=

[
x
0
0 0 x

]
.

Proof using dot products(Row-times-column) (Row 2 ofA) · (column1 of B)= 0.
Which other dot products give zeros ?

Proof using full matrices(Column-times-row) Drawx’s and 0’s in (column2 of A)
times (row2 of B). Also show (column3 of A) times (row3 of B).

(a) (row 3 ofA) · (column 1 ofB) and (row 3 ofA) · (column 2 ofB) are both zero.

(b)

[
x
x
0

]
[
0 x x

]
=

[
0 x x
0 x x
0 0 0

]
and

[
x
x
x

]
[
0 0 x

]
=

[
0 0 x
0 0 x
0 0 x

]
: both upper.

28 If A is 2 by 3 with rows1, 1, 1 and2, 2, 2, andB is 3 by 4 with columns1, 1, 1 and2,
2, 2 and3, 3, 3 and4, 4, 4, use each of the four multiplication rules to findAB :

(1) Rows ofA times columns ofB. Inner products (each entry inAB)

(2) MatrixA times columns ofB. Columns ofAB

(3) Rows ofA times the matrixB. Rows ofAB

(4) Columns ofA times rows ofB. Outer products (3 matrices add toAB)

AB =

[
1 1 1

2 2 2

]



1 2 3 4

1 2 3 4

1 2 3 4


 =

[
3 6 9 12

6 12 18 24

]
.

(1) Two rows ofA times four columns ofB = eight numbers

(2) A times the first column ofB gives

[
3

6

]
. The later columns are multiplied by

2, 3, and 4.

(3) The first row ofA is multiplied byB to give 3, 6, 9, 12. The second row ofA is
doubled so the second row ofAB is doubled.

(4) Column times row multiplication gives three matrices (in this case they are all the
same!)[

1

2

]
[ 1 2 3 4 ] =

[
1 2 3 4

2 4 6 8

]
times 3 givesAB.
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29 Which matricesE21 andE31 produce zeros in the(2, 1) and(3, 1) positions ofE21A
andE31A?

A =

[
2 1 0

−2 0 1
8 5 3

]
.

Find the single matrixE = E31E21 that produces both zeros at once. MultiplyEA.

E21 =

[
1 0 0
1 1 0
0 0 1

]
andE31 =

[
1 0 0
0 1 0

−4 0 1

]
produce zeros in the2, 1 and3, 1 entries.

Multiply E’s to getE = E31E21 =

[
1 0 0
1 1 0

−4 0 1

]
. ThenEA =

[
2 1 0
0 1 1
0 1 3

]
is the

result of bothE’s since(E31E21)A = E31(E21A).

30 Block multiplication produces zeros below the pivot in one big step :

EA =

[
1 0

−c/a I

] [
a b
c D

]
=

[
a b
0 D − cb/a

]
with vectors0, b, c.

In Problem 29, what arec andD and what is the blockD − cb/a?

In 29, c =

[
−2
8

]
, D =

[
0 1
5 3

]
, D − cb/a =

[
1 1
1 3

]
in the lower corner ofEA.

31 With i2 = −1, the product of(A+ iB) and(x+ iy) isAx+ iBx+ iAy −By. Use
blocks to separate the real part withouti from the imaginary part that multipliesi :

[
A −B
? ?

] [
x
y

]
=

[
Ax−By

?

]
real part
imaginary part

[
A −B
B A

] [
x
y

]
=

[
Ax−By
Bx+Ay

]
real part
imaginary part.

Complex matrix times complex vector
needs4 real times real multiplications.

32 (Very important) Suppose you solveAv = b for three special right sidesb :

Av1 =

[
1
0
0

]
and Av2 =

[
0
1
0

]
and Av3 =

[
0
0
1

]
.

If the three solutionsv1, v2, v3 are the columns of a matrixX , what isA timesX ?

A timesX = [x1 x2 x3 ] will be the identity matrixI = [Ax1 Ax2 Ax3 ].

33 If the three solutions in Question 32 arev1 = (1, 1, 1) and v2 = (0, 1, 1) and
v3 = (0, 0, 1), solveAv = b whenb = (3, 5, 8). Challenge problem : What isA?

b =

[
3
5
8

]
givesx = 3x1 + 5x2 + 8x3 =

[
3
8

16

]
; A =

[
1 0 0

−1 1 0
0 −1 1

]
will have

thosex1 = (1, 1, 1),x2 = (0, 1, 1),x3 = (0, 0, 1) as columns of its “inverse”A−1.
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34 Practical question SupposeA is m by n, B is n by p, andC is p by q. Then
the multiplication count for(AB)C is mnp + mpq. The same answer comes from
A timesBC, now with mnq + npq separate multiplications. Noticenpq for BC.

(a) If A is 2 by 4, B is 4 by 7, andC is 7 by 10, do you prefer(AB)C orA(BC) ?

(b) With N -component vectors, would you choose(uTv)wT oruT(vwT) ?

(c) Divide bymnpq to show that(AB)C is faster whenn−1 + q−1 < m−1 + p−1.

Multiplying AB = (m by n)(n by p) needsmnp multiplications. Then(AB)C needs
mpq more. MultiplyBC = (n by p)(p by q) needsnpq and thenA(BC) needsmnq.

(a) If m,n, p, q are2, 4, 7, 10 we compare(2)(4)(7) + (2)(7)(10) = 196 with the
larger number(2)(4)(10) + (4)(7)(10) = 360. SoAB first is better, so that we
multiply that7 by 10 matrix by as few rows as possible.

(b) If u,v,w areN by 1, then(uTv)wT needs2N multiplications butuT(vwT)
needsN2 to findvwT andN2 more to multiply by the row vectoruT. Apologies
to use the transpose symbol so early.

(c) We are comparingmnp + mpq with mnq + npq. Divide all terms bymnpq:
Now we are comparingq−1 + n−1 with p−1 + m−1. This yields a simple im-
portant rule. If matricesA andB are multiplyingv for ABv, don’t multiply the
matrices first.

35 Unexpected fact A friend in England looked at powers of a2 × 2 matrix :

A =

[
1 2
3 4

]
A2 =

[
7 10
15 22

]
A3 =

[
37 54
81 118

]
A4 =

[
A B
C D

]

He noticed that the ratios2/3 and10/15 and54/81 are all the same. This is true for all
powers. It doesn’t work for ann× n matrix, unlessA is tridiagonal. One neat proof is
to look at the equal(1, 1) entries ofAnA andAAn. Can you use that idea to show that
B/C = 2/3 in this example ?

The off-diagonal ratio23 in A =

[
1 2

3 4

]
stays the same for all powers ofAn. Peter

Larcombe gave a proof by induction. Ira Gessel compared the(1, 1) entries on the left
and right sides of the true equationAnA = AAn:

AnA =

[
A B

C D

] [
1 2

3 4

]
=

[
1 2

3 4

] [
A B

C D

]
.

The(1, 1) entries giveA+ 3B = A + 2C and thereforeB/C = 2/3. This ratio stays
the same forA−1.

The same idea applies when the matrixA is N by N , provided it is tridiagonal (three
nonzero diagonals):

The(1, 1) entry ofAnA =




A B E

C D F

G H I







1 2

3 4 5

6 7


 is still A+ 3B.
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Problem Set 4.4, page 234

1 Find the inverses ofA,B,C (directly or from the2 by 2 formula) :

A =

[
0 3

4 0

]
and B =

[
2 0

4 2

]
and C =

[
3 4

5 7

]
.

A−1 =

[
0 1

4
1
3 0

]
and B−1 =

[
1
2 0

−1 1
2

]
and C−1 =

[
7 −4

−5 3

]
.

2 For these “permutation matrices” findP−1 by trial and error (with 1’s and 0’s) :

P =



0 0 1

0 1 0

1 0 0


 and P =



0 1 0

0 0 1

1 0 0


 .

A simple row exchange hasP 2 = I soP−1 = P . HereP−1 =

[
0 0 1
1 0 0
0 1 0

]
. Always

P−1 = “transpose” ofP , coming in Section2.7.

3 Solve for the first column(x, y) and second column(t, z) of A−1 :

[
10 20

20 50

] [
x

y

]
=

[
1

0

]
and

[
10 20

20 50

] [
t

z

]
=

[
0

1

]
.

[
x
y

]
=

[
.5

−.2

]
and

[
t
z

]
=

[
−.2
.1

]
soA−1 =

1

10

[
5 −2

−2 1

]
. This question solved

AA−1 = I column by column, the main idea of Gauss-Jordan elimination.

4 Show that
[
1 2
3 6

]
is not invertible by trying to solveAA−1 = I for column1 of A−1 :

[
1 2

3 6

] [
x

y

]
=

[
1

0

] (
For a differentA, could column1 of A−1

be possible to find but not column 2?

)

The equations arex+ 2y = 1 and3x+ 6y = 0. No solution because3 times equation
1 gives3x+ 6y = 3.

5 Find an upper triangularU (not diagonal) withU2 = I which givesU = U−1.

An upper triangularU with U2 = I isU =

[
1 a
0 −1

]
for anya. And also−U .

6 (a) If A is invertible andAB = AC, prove quickly thatB = C.

(b) If A =
[
1 1
1 1

]
, find two different matrices such thatAB = AC.

(a) Multiply AB = AC by A−1 to findB = C (sinceA is invertible) (b) As long

asB − C has the form

[
x y

−x −y

]
, we haveAB = AC for A =

[
1 1
1 1

]
.
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7 (Important) IfA has row 1+ row 2= row 3, show thatA is not invertible :

(a) Explain whyAv = (1, 0, 0) cannot have a solution.

(b) Which right sides(b1, b2, b3) might allow a solution toAv = b?

(c) What happens to row 3 in elimination?

(a) InAx = (1, 0, 0), equation 1+ equation 2− equation 3 is0 = 1 (b) Right
sides must satisfyb1+ b2 = b3 (c) Row 3 becomes a row of zeros—no third pivot.

8 If A has column 1+ column 2= column 3, show thatA is not invertible :

(a) Find a nonzero solutionx toAx = 0. The matrix is3 by 3.

(b) Elimination keeps column 1+ column 2= column 3. Why is no third pivot ?

(a) The vectorx = (1, 1,−1) solvesAx = 0 (b) After elimination, columns 1
and 2 end in zeros. Then so does column3 = column1 + 2: no third pivot.

9 SupposeA is invertible and you exchange its first two rows to reachB. Is the new
matrixB invertible and how would you findB−1 fromA−1?

If you exchange rows1 and2 of A to reachB, you exchangecolumns1 and2 of A−1

to reachB−1. In matrix notation,B = PA hasB−1 = A−1P−1 = A−1P for thisP .

10 Find the inverses (in any legal way) of

A =




0 0 0 2

0 0 3 0

0 4 0 0

5 0 0 0


 and B =




3 2 0 0

4 3 0 0

0 0 6 5

0 0 7 6


 .

A−1 =




0 0 0 1/5
0 0 1/4 0
0 1/3 0 0
1/2 0 0 0


 andB−1 =




3 −2 0 0
−4 3 0 0
0 0 6 −5
0 0 −7 6


 (invert each

block ofB).

11 (a) Find invertible matricesA andB such thatA+B is not invertible.

(b) Find singular matricesA andB such thatA+B is invertible.

(a) If B = −A then certainlyA+B = zero matrix is not invertible. (b)A =

[
1 0
0 0

]

andB =

[
0 0
0 1

]
are both singular butA+B = I is invertible.

12 If the productC = AB is invertible(A andB are square), thenA itself is invertible.
Find a formula forA−1 that involvesC−1 andB.

Multiply C = AB on the right byC−1 and on the left byA−1 to getA−1 = BC−1.

13 If the productM = ABC of three square matrices is invertible, thenB is invertible.
(So areA andC.) Find a formula forB−1 that involvesM−1 andA andC.

M−1 = C−1B−1A−1 so multiply on the left byC and the right byA : B−1 =
CM−1A.
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14 If you add row 1 ofA to row 2 to getB, how do you findB−1 fromA−1?

Notice the order. The inverse ofB =

[
1 0

1 1

]
A is .

B−1 = A−1

[
1 0
1 1

]−1

= A−1

[
1 0

−1 1

]
: subtract column 2 ofA−1 from column 1.

15 Prove that a matrix with a column of zeros cannot have an inverse.

If A has a column of zeros, so doesBA. ThenBA = I is impossible. There is noA−1.

16 Multiply
[
a b
c d

]
times

[
d −b

−c a

]
. What is the inverse of each matrix ifad 6= bc ?

[
a b
c d

] [
d −b

−c a

]
=

[
ad− bc 0

0 ad− bc

]
.

The inverse of each matrix is
the other divided byad− bc

17 (a) What3 by 3 matrix E has the same effect as these three steps? Subtract row 1
from row 2, subtract row 1 from row 3, then subtract row 2 from row 3.

(b) What single matrixL has the same effect as these three reverse steps? Add row 2
to row 3, add row 1 to row 3, then add row 1 to row 2.

E32E31E21 =

[
1

1
−1 1

] [
1

1
1 1

][
1

−1 1
1

]
=

[
1

−1 1
0 −1 1

]
= E. Re-

verse the order and change−1 to +1 to get inversesE−1
21 E−1

31 E−1
32 =

[
1
1 1
1 1 1

]
=

L = E−1. Notice the1’s unchanged by multiplying in this order.
18 If B is the inverse ofA2, show thatAB is the inverse ofA.

A2B = I can also be written asA(AB) = I. ThereforeA−1 isAB.
19 (Recommended)A is a4 by 4 matrix with 1’s on the diagonal and−a,−b,−c on the

diagonal above. FindA−1 for this bidiagonal matrix.

A−1 =




1 −a 0 0

1 −b 0

1 −c

1




−1

=




1 −a ab abc

1 b bc

1 c

1


.

20 Find the numbersa andb that give the inverse of5 ∗ eye(4) – ones(4,4) :

[ 5I−ones ]−1
=




4 − 1 −1 − 1

−1 4 −1 − 1

−1 − 1 4 − 1

−1 − 1 −1 4




−1

=




a b b b

b a b b

b b a b

b b b a


 .

What area andb in the inverse of6 ∗ eye(5) – ones(5,5) ? In MATLAB, I = eye.

The(1, 1) entry requires4a− 3b = 1; the(1, 2) entry requires2b−a = 0. Thenb = 1

5

anda = 2

5
. For the5 by 5 case5a− 4b = 1 and2b = a give b = 1

6
anda = 2

6
.
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21 Sixteen2 by 2 matrices contain only 1’s and 0’s. How many of them are invertible?

Six of the sixteen0− 1 matrices are invertible, including all four with three 1’s.

Questions 22–28 are about the Gauss-Jordan method for calculating A−1.

22 ChangeI intoA−1 as you reduceA to I (by row operations) :

[
A I

]
=

[
1 3 1 0

2 7 0 1

]
and

[
A I

]
=

[
1 4 1 0

3 9 0 1

]

[
1 3 1 0
2 7 0 1

]
→
[
1 3 1 0
0 1 −2 1

]
→
[
1 0 7 −3
0 1 −2 1

]
=
[
I A−1

]
;

[
1 4 1 0
3 9 0 1

]
→
[
1 4 1 0
0 −3 −3 1

]
→
[
1 0 −3 4/3
0 1 1 −1/3

]
=
[
I A−1

]
.

23 Follow the 3 by 3 text example of Gauss-Jordan but with all plus signs inA.
Eliminate above and below the pivots to reduce[A I ] to [ I A−1 ] :

[
A I

]
=



2 1 0 1 0 0

1 2 1 0 1 0

0 1 2 0 0 1


 .

[A I] =

[
2 1 0 1 0 0
1 2 1 0 1 0
0 1 2 0 0 1

]
→
[
2 1 0 1 0 0
0 3/2 1 −1/2 1 0
0 1 2 0 0 1

]
→

[
2 1 0 1 0 0
0 3/2 1 −1/2 1 0
0 0 4/3 1/3 −2/3 1

]
→
[
2 1 0 1 0 0
0 3/2 0 −3/4 3/2 −3/4
0 0 4/3 1/3 −2/3 1

]
→

[
2 0 0 3/2 −1 1/2
0 3/2 0 −3/4 3/2 −3/4
0 0 4/3 1/3 −2/3 1

]
→
[
1 0 0 3/4 −1/2 1/4
0 1 0 −1/2 1 −1/2
0 0 1 1/4 −1/2 3/4

]
=

[I A−1].
24 Use Gauss-Jordan elimination on[U I ] to find the upper triangularU−1 :

UU−1 = I



1 a b

0 1 c

0 0 1




x1 x2 x3


 =



1 0 0

0 1 0

0 0 1


 .

[
1 a b 1 0 0
0 1 c 0 1 0
0 0 1 0 0 1

]
→
[
1 a 0 1 0 −b
0 1 0 0 1 −c
0 0 1 0 0 1

]
→
[
1 0 0 1 −a ac− b
0 1 0 0 1 −c
0 0 1 0 0 1

]
.

25 FindA−1 andB−1 (if they exist) by elimination on[A I ] and[B I ] :

A =



2 1 1

1 2 1

1 1 2


 and B =




2 − 1 −1

−1 2 −1

−1 − 1 2


 .
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[
2 1 1
1 2 1
1 1 2

]−1
=

1

4

[
3 −1 −1

−1 3 −1
−1 −1 3

]
;

[
2 −1 −1

−1 2 −1
−1 −1 2

] [
1
1
1

]
=

[
0
0
0

]
soB−1 does

not exist.

26 What three matricesE21 and E12 and D−1 reduceA =

[
1 2
2 6

]
to the identity

matrix? MultiplyD−1E12E21 to findA−1.

E21A=

[
1 0

−2 1

] [
1 2
2 6

]
=

[
1 2
0 2

]
. E12E21A=

[
1 −1
0 1

] [
1 0

−2 1

]
A =

[
1 0
0 2

]
.

Multiply by D =

[
1 0
0 1/2

]
to reachDE12E21A = I. ThenA−1 = DE12E21 =

1

2

[
6 −2

−2 1

]
.

27 Invert these matricesA by the Gauss-Jordan method starting with[A I ] :

A =



1 0 0

2 1 3

0 0 1


 and A =



1 1 1

1 2 2

1 2 3


 .

A−1 =

[
1 0 0

−2 1 −3
0 0 1

]
(notice the pattern);A−1 =

[
2 −1 0

−1 2 −1
0 −1 1

]
.

28 Exchange rows and continue with Gauss-Jordan to findA−1 :

[
A I

]
=

[
0 2 1 0

2 2 0 1

]
.

[
0 2 1 0
2 2 0 1

]
→
[
2 2 0 1
0 2 1 0

]
→
[
2 0 −1 1
0 2 1 0

]
→
[
1 0 −1/2 1/2
0 1 1/2 0

]
.

This is
[
I A−1

]
: row exchanges are certainly allowed in Gauss-Jordan.

29 True or false (with a counterexample if false and a reason if true) :

(a) A 4 by 4 matrix with a row of zeros is not invertible.
(b) Every matrix with 1’s down the main diagonal is invertible.
(c) If A is invertible thenA−1 andA2 are invertible.

(a) True (IfA has a row of zeros, then everyAB has too, andAB = I is impossible)
(b) False (the matrix of all ones is singular even with diagonal 1’s: ones(3) has 3 equal
rows) (c) True (the inverse ofA−1 isA and the inverse ofA2 is (A−1)2).

30 For which three numbersc is this matrix not invertible, and why not?

A =



2 c c

c c c

8 7 c


 .

This A is not invertible forc = 7 (equal columns),c = 2 (equal rows),c = 0 (zero
column).
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31 Prove thatA is invertible ifa 6= 0 anda 6= b (find the pivots orA−1) :

A =



a b b

a a b

a a a


 .

Elimination produces the pivotsa anda−b anda−b. A−1 =
1

a(a− b)

[
a 0 −b

−a a 0
0 −a a

]
.

32 This matrix has a remarkable inverse. FindA−1 by elimination on[A I ]. Extend to a
5 by 5 “alternating matrix” and guess its inverse; then multiply to confirm.

InvertA =




1 − 1 1 − 1

0 1 −1 1

0 0 1 − 1

0 0 0 1


 and solveAv =




1

1

1

1


 .

A−1 =



1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1


. When the triangularA alternates 1 and−1 on its diagonal,

A−1 is bidiagonalwith 1’s on the diagonal and first superdiagonal.
33 (Puzzle) Could a4 by 4 matrix A be invertible if every row contains the numbers

0, 1, 2, 3 in some order? What if every row ofB contains0, 1, 2,−3 in some order?

A can be invertible with diagonal zeros.B is singular because each row adds to zero.
34 Find and check the inverses (assuming they exist) of these block matrices :

[
I 0

C I

] [
A 0

C D

] [
0 I

I D

]
.

[
I 0

−C I

]
and

[
A−1 0

−D−1CA−1 D−1

]
and

[
−D I

I 0

]
.

Problem Set 4.5, Page 245

Questions 1–9 are about transposesAT and symmetric matricesS = ST.

1 FindAT andA−1 and(A−1)T and(AT)−1 for

A =

[
1 0
9 3

]
and also A =

[
1 c
c 0

]
.

A =

[
1 0
9 3

]
hasAT =

[
1 9
0 3

]
, A−1 =

[
1 0

−3 1/3

]
, (A−1)T = (AT)−1 =

[
1 −3
0 1/3

]
;

A =

[
1 c
c 0

]
hasAT = A andA−1 =

1

c2

[
0 c
c −1

]
= (A−1)T.
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2 (a) Find2 by 2 symmetric matricesA andB so thatAB is not symmetric.

(b) With AT = A andBT = B, show thatAB = BA ensures thatAB will now
be symmetric. The product is symmetric only whenA commutes withB.

(a) A =

[
0 1
1 0

]
B =

[
1 0
0 0

]
giveAB =

[
0 0
1 0

]
andBA =

[
0 1
0 0

]
.

(b) If AB = BA andAT = A,BT = B then(AB)T = BTAT = BA = AB. Thus
AB is symmetric whenA andB commute.

3 (a) The matrix((AB)−1)T comes from(A−1)T and(B−1)T. In what order?

(b) If U is upper triangular then(U−1)T is triangular.

(a) ((AB)−1)T = (B−1A−1)T = (A−1)T(B−1)T. This is also(AT)−1(BT)−1.
(b) If U is upper triangular, so isU−1: then(U−1)T is lower triangular.

4 Show thatA2 = 0 is possible butATA = 0 is not possible (unlessA = zero matrix).

A =

[
0 1
0 0

]
hasA2 = 0. The diagonal ofATA has dot products of columns ofA with

themselves. IfATA = 0, zero dot products⇒ zero columns⇒ A = zero matrix.

5 Every square matrixA has a symmetric part and an antisymmetric part :

A = symmetric+ antisymmetric=

(
A+AT

2

)
+

(
A−AT

2

)
.

Transpose the antisymmetric part to getminusthat part. Split these in two parts :

A =

[
3 5
7 9

]
A =

[
1 4 8
0 2 6
0 0 3

]
.

Transposing12 (A−AT) gives 1
2 (A

T −A): this part is antisymmetric.[
3 5
7 9

]
=

[
3 6
6 9

]
+

[
0 −1
1 0

]

[
1 4 8
0 2 6
0 0 3

]
=

[
1 2 4
2 2 3
4 3 3

]
+

[
0 2 4

−2 0 3
−4 −3 0

]
.

6 The transpose of a block matrixM =
[
A B
C D

]
is MT = . Test an example

to be sure. Under what conditions onA, B, C, D is the block matrix symmetric?

MT =

[
AT CT

BT DT

]
; MT = M needsAT = A andBT = C andDT = D.

7 True or false:

(a) The block matrix
[
0 A
A 0

]
is automatically symmetric.

(b) If A andB are symmetric then their productAB is symmetric.

(c) If A is not symmetric thenA−1 is not symmetric.

(d) WhenA,B,C are symmetric, the transpose ofABC isCBA.



4.5. Symmetric Matrices and Orthogonal Matrices 125

(a) False:

[
0 A
A 0

]
is symmetric only ifA = AT. (b) False: The transpose ofAB

is BTAT = BA whenA andB are symmetric

[
0 A
A 0

]
transposes to

[
0 AT

AT 0

]
.

So(AB)T = AB needsBA = AB. (c) True: Invertible symmetric matrices have
symmetric in verses! Easiest proof is to transposeAA−1 = I. (d) True:(ABC)T is
CTBTAT(= CBA for symmetric matricesA,B, andC).

8 (a) How many entries ofS can be chosen independently, ifS = ST is 5 by 5?

(b) How many entries can be chosen ifA is skew-symmetric? (AT = −A).

Answers:15 and10. If S = ST is 5 by 5, its 5 diagonal entries and 10 entries above
the diagonal are free to choose. IfAT = −A, the 5 diagonal entries ofA must be zero.

9 Transpose the equationA−1A = I. The result shows that the inverse ofAT is .
If S is symmetric,how does this show thatS−1 is also symmetric?

A−1A = I transposes toAT(A−1)T = I. This shows that the inverse ofAT is
(AT)−1 = (A−1)T. If S is symmetric (ST = S) then this statement becomes
S−1 = (S−1)T. ThereforeS−1 is symmetric.

Questions 10–14 are about permutation matrices.

10 Why are theren! permutation matrices of sizen ? They given ! orders of1, . . . , n.

The1 in row 1 hasn choices; then the1 in row 2 hasn− 1 choices . . . (n! overall).

11 If P1 andP2 are permutation matrices, so isP1P2. This still has the rows ofI in some
order. Give examples withP1P2 6= P2P1 andP3P4 = P4P3.

P1P2 =

[
0 1 0
0 0 1
1 0 0

][
1 0 0
0 0 1
0 1 0

]
=

[
0 0 1
0 1 0
1 0 0

]
but P2P1 =

[
0 1 0
1 0 0
0 0 1

]
.

If P3 andP4 exchangedifferentpairs of rows,P3P4 = P4P3 does both exchanges.

12 There are12 “even” permutations of(1, 2, 3, 4), with an even number of exchanges.
Two of them are(1, 2, 3, 4) with no exchanges and(4, 3, 2, 1) with two exchanges. List
the other ten. Instead of writing each4 by 4 matrix, just order the numbers.

(3, 1, 2, 4) and(2, 3, 1, 4) keep4 in place;6 more evenP ’s keep 1 or 2 or 3 in place;
(2, 1, 4, 3) and(3, 4, 1, 2) exchange 2 pairs.(1, 2, 3, 4), (4, 3, 2, 1) make12 evenP ’s.

13 If P has1’s on the antidiagonal from(1, n) to (n, 1), describePAP . IsP even ?

The “reverse identity”P takes(1, . . . , n) into (n, . . . , 1). When rows and also columns
are reversed,(PAP )ij is (A)n−i+1,n−j+1. In particular(PAP )11 isAnn.

14 (a) Find a3 by 3 permutation matrix withP 3 = I (but notP = I).

(b) Find a4 by 4 permutation withP 4 6= I.

A cyclic P =

[
0 1 0
0 0 1
1 0 0

]
or its transpose will haveP 3 = I : (1, 2, 3) → (2, 3, 1) →

(3, 1, 2) → (1, 2, 3). P̂ =

[
1 0
0 P

]
for the sameP hasP̂ 4 = P̂ 6= I.
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Questions 15–18 are about first differencesA and second differencesATA andAAT.

15 Write down the5 by 4 backward difference matrixA.

(a) Compute the symmetric second difference matricesS = ATA andL = AAT.

(b) Show thatS is invertible by findingS−1. Show thatL is singular.

A =




1
−1 1
0 −1 1
0 0 −1 1
0 0 0 −1


 S = ATA =




2 −1
−1 2 −1

−1 2 −1
−1 2




L = AAT =




1 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 1


.

L (5 by 5) is singular:Lx = 0 for x = (1, 1, 1, 1, 1).

S (4 by 4) is invertible:S−1 =
1

5



4 3 2 1
3 6 4 2
2 4 6 3
1 2 3 4




16 In Problem15, find the pivots ofS andL (4 by 4 and5 by 5). The pivots ofS in
equation (8) are2, 3/2, 4/3. The pivots ofL in equation (10) are1, 1, 1, 0 (fail).

The pivots ofS are2, 32 ,
4
3 ,

5
4 . Multiply those pivots to find determinant= 5. This

explains 1/5 inS−1.

The pivots ofL are1, 1, 1, 1, 0 (no pivot).

17 (Computer problem) Create the9 by 10 backward difference matrixA. Multiply to find
S = ATA andL = AAT. If you have linear algebra software, ask for the determinants
det(S) and det(L).

Challenge: By experiment find det(S) whenS = ATA is n by n.

Correction The backward difference matrixA will be 10 by 9. ThenS = ATA is
9 by 9 (the−1, 2,−1 matrix) with detS = 10. In general detS = n whenA is n by
n− 1.
L = AAT is 10 by 10 (the−1, 2−−1 matrix except thatL11 = 1 andLnn = 1). Then
L is singular and detL = 0.

18 (Infinite computer problem) Imagine that the second difference matrixS is infinitely
large. The diagonals of2’s and−1’s go from minus infinity to plus infinity:

Infinite tridiagonal matrix S =




· ·
−1 2 −1

−1 2 −1
· ·




(a) Multiply S times the infiniteall-onesvectorv = (. . . , 1, 1, 1, 1, . . .)
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(b) Multiply S times the infinitelinear vectorw = (. . . , 0, 1, 2, 3, . . .)

(c) Multiply S times the infinitesquaresvectoru = (. . . , 0, 1, 4, 9, . . .).

(d) Multiply S times the infinitecubesvectorc = (. . . , 0, 1, 8, 27, . . .).

The answers correspond to second derivatives (with minus sign) of1 andx2 andx3.

S timesall-ones gives the zero vector
S timeslinear w gives the zero vector
S timessquaresu gives−2 timesall-ones
S timescubesc gives−6 timeslinear w

Those correspond to0, 0,−2,−6x = minus the second derivatives of1, x, x2, x3.

Questions 19–28 are about matrices withQTQ = I. If Q is square, then it is an
orthogonal matrix and QT = Q−1 and QQT = I.

19 Complete these matrices to be orthogonal matrices :

(a) Q =

[
1/2

1/2

]
(b) Q = 1

3

[ −1
2
2

]
(c) Q = 1

2




1 1
1 1
1 −1
1 −1


 .

Q =

[
1/2 −

√
3/2√

3/2 1/2

]
Q =

1

3

[−1 2 2
2 −1 2
2 2 −1

]
Q =

1

2



1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1


.

Note: You could complete toQ with different columns than these.

20 (a) SupposeQ is an orthogonal matrix. Why isQ−1 = QT also an orthogonalmatrix ?

(b) FromQTQ = I, the columns ofQ are orthogonal unit vectors (orthonormal
vectors). Why are the rows ofQ (square matrix) also orthonormal vectors ?

(a) Q−1 is also orthogonal because(Q−1)T(Q−1) = (QT)TQT = QQT = I.

(b) The rows ofQ are orthonormal vectors becauseQQT = I. For square matrices,
QT is a right-inverse ofQ whenever it is a left-inverse ofQ. So rows are orthonormal
when columns are orthonormal.

21 (a) Which vectors can be the first column of an orthogonal matrix ?

(b) If QT
1 Q1 = I andQT

2 Q2 = I, is it true that(Q1Q2)
T(Q1Q2) = I ? Assume that

the matrix shapes allow the multiplicationQ1Q2.

(a) Any unit vector (length 1) can be the first column ofQ.

(b) YES,(Q1Q2)
T(Q1Q2) = QT

2 (Q
T
1 Q1)Q2 = QT

2 Q2 = I.

22 If u is a unit column vector (length1, uTu = 1), show whyH = I − 2uuT is

(a) a symmetric matrix :H = HT (b) an orthogonal matrix :HTH = I.

The Householder matrixH = I − 2uuT is symmetric (becauseuuT is symmetric)
and also orthogonal (becauseuTu = 1) :

HTH = (I − 2uuT)2 = I − 4uuT + 4uuTuuT = I.
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23 If u = (cosθ, sinθ), what are the four entries inH = I − 2uuT? Show that
Hu = −u andHv = v for v = (−sinθ, cosθ). This H is a reflection matrix :
thev-line is a mirror and theu-line is reflected across that mirror.

H = I − 2

[
cos θ
sin θ

]
[cos θ sinθ ] =

[
1− 2 cos2 θ −2 sin θ cos θ

−2 sin θ cos θ 1− 2 sin2 θ

]

H =

[
cos 2θ − sin 2θ

− sin 2θ − cos2 θ

]
.

Hu = u− 2uuTu = −u Hv = v − 2uuTv = v sinceuTv = 0.

24 Suppose the matrixQ is orthogonal and also upper triangular. What canQ look like ?
Must it be diagonal ?

If Q is orthogonal and upper triangular, its first column must beq1 = (±1, 0, . . . , 0).
Then its second columnq2 must start with 0 to have the orthogonalityqT

1 q2 = 0. Then
q2 = (0,±1, 0, . . . , 0). Thenq3 must start with 0, 0 to haveqT

1 q3 = 0 andqT
2 q3 = 0

(and so onward). ThusQ is diagonal:Q = diag(±1, . . .,±1).

25 (a) To construct a3 by 3 orthogonal matrixQ whose first column is in the direction
w, what first columnq1 = cw would you choose ?

(b) The next columnq2 can be any unit vector perpendicular toq1. To findq3, choose
a solutionv = (v1, v2, v3) to the two equationsqT

1 v = 0 andqT
2 v = 0. Why is

there always a nonzero solutionv ?

(a) The first column ofQ will be q1 = w/||w|| to have length 1.

(b) The next columnq2 hasqT
1 q2 = 0 and||q2|| = 1. Then there will be a vectorv

orthogonal toq1 andq2 becauseqT
1 v = 0 andqT

2 v = 0 give 2 linear equations in 3
unknownsv1, v2, v3.

26 Why is every solutionv to Av = 0 orthogonal to every row ofA ?

Writing outAv = 0 shows that every row is orthogonal tov:[
row 1
· · ·

row n

][
v

]
=

[
0
· · ·
0

]
.

27 SupposeQTQ = I butQ is not square. The matrixP = QQT is notI. But show that
P is symmetric andP 2 = P . This is aprojection matrix .

If Q hasn orthogonal columns andn < m, then them by m matrixP = QQT is not
I. (Some vectorv in Rm will solve then equationsQTv = 0. ThenQQTv = 0 and
QQT 6= I.) But P is symmetric andP 2 = QQTQQT = QIQT = P . ThusP is a
projection matrix .

28 A 5 by 4 matrix Q can haveQTQ = I but it cannot possibly haveQQT = I.
Explain in words why the four equationsQTv = 0 must have a nonzero solutionv.
Thenv is not the same asQQTv andI is not the same asQQT.

The four equationsQTv = 0 have 5 unknownsv1, v2, v3, v4, v5. With only 4 rows,
QT cannot have more than 4 pivots. There must be a free column inQT and anonzero
special solution toQTv = 0.

Challenge Problems
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29 Can you find a rotation matrixQ so thatQDQT is a permutation ?
[

cosθ −sinθ
sinθ cosθ

] [
1

−1

] [
cosθ sinθ

−sinθ cosθ

]
equals

[
0 1
1 0

]
.

With θ = 45◦,
1√
2

[
1 −1
1 1

] [
1

−1

]
1√
2

[
1 1

−1 1

]
=

[
0 1
1 0

]
.

30 Split an orthogonal matrix(QTQ = QQT = I) into two rectangular submatrices :

Q = [Q1 | Q2 ] and QTQ =

[
QT

1 Q1 QT
1 Q2

QT
2 Q1 QT

2 Q2

]

(a) What are those four blocks inQTQ = I ?

(b) QQT = Q1Q
T
1 + Q2Q

T
2 = I is column times row multiplication. Insert

the diagonal matrixD =

[
I 0
0 −I

]
and do the same multiplication forQDQT.

Note: The description of all symmetric orthogonal matricesS in (??) becomes
S = QDQT = Q1Q

T
1 −Q2Q

T
2 . This is exactly the reflection matrixI − 2Q2Q

T
2 .

(a) The four blocks inQTQ areI, 0, 0, I because all the columns ofQ1 are orthogonal
to all the columns ofQ2. (All together they are the columns of the orthogonal matrix
Q.)

(b) Column times row multiplication gives[
Q1 Q2

] [
QT

1

QT
2

]
= Q1Q

T
1 +Q2Q

T
2 = I.

QDQT =

[
Q1 Q2

]
D

[
QT

1

QT
2

]
=

[
Q1 Q2

] [
QT

1

−QT
2

]
= Q1Q

T
1 −Q2Q

T
2

= I − 2Q2Q
T
2 .

ThenQDQT is both symmetric and orthogonal.

31 The real reason that the transpose “flipsA across its main diagonal” is to obey
this dot product law :(Av) · w = v · (ATw). That rule(Av)Tw = vT(ATw)
becomes integration by parts in calculus, whereA = d/dx andAT = −d/dx.

(a) For2 by 2 matrices, write out both sides (4 terms) and compare :
([

a b
c d

] [
v1
v2

])
·
[
w1

w2

]
is equal to

[
v1
v2

]
·
([

a c
b d

] [
w1

w2

])
.

(b) The rule(AB)T = BTAT comes slowly but directly from part (a) :

(AB)v · w = A(Bv) · w = Bv · ATw = v · BT(ATw) = v · (BTAT)w

Steps1 and 4 are the law. Steps2 and 3 are the dot product law.
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The connection between(Ax)T y = x
(
ATy

)
and integration by parts is developed

in the Chapter7 Notes. The idea is thatA becomes the derivatived/dx and the dot
product becomes an integral :

(Af)T g =

∫
df

dx
g(x) dx = −

∫
f(x)

dg

dx
dx = fT

(
ATg

)
.

That last step identifiesATg as−dg/dx. So the first derivativeA = d/dx is like an
antisymmetric matrix. Our functionsf andg are zero at the ends of the integration
interval, so the “by parts formula” above has zero from the other usual term[fg]10.

In 31(b), steps1 and4 are theassociative law(AB)v = A(Bv).

32 How is a matrix S = ST decided by its entries on and above the diagonal ?
How is Q with orthonormal columns decided by its entriesbelow the diagonal ?
Together this matches the number of entries in ann by n matrix. So it is reasonable
that every matrix can be factored intoA = SQ (like reiθ).

If S is symmetric, then the entries on and above the diagonal tellyou the entries below
the diagonal. IfQ is orthogonal, here is how the entriesbelow the diagonaldecide the
matrix. In column1, the top entryQ11 has to complete a unit vector (no choice except
a± sign). In column2, the two top entries are decided by (1) orthogonality to column
1 and (2) unit vector. Every column, in order, has no free numbers available on and
above the diagonal.

So there are a total ofn2 choices available : on and above the diagonal ofS and below
the diagonal ofQ. This n2 matches the number of equations inA = SQ (linear
equations inS = AQT). “polar factorization” of a matrix is possible.
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5

Problem Set 5.1, Page 258

Questions 1–10 are about the “subspace requirements” :v +w and cv (and then all
linear combinationscv + dw) stay in the subspace.

1 One requirement can be met while the other fails. Show this byfinding

(a) A set of vectors inR2 for whichv +w stays in the set but12v may be outside.

(b) A set of vectors inR2 (other than two quarter-planes) for which everycv stays in
the set butv +w may be outside.

(a) The set of vectors with integer components (addingv + w produces integers,
multiplying by 1

2 may not).

(b) One option for the set is to take two lines through(0, 0). Thencv stays on these
lines butv +w may not.

2 Which of the following subsets ofR3 are actually subspaces ?

(a) The plane of vectors(b1, b2, b3) with b1 = b2.

(b) The plane of vectors withb1 = 1.

(c) The vectors withb1b2b3 = 0.

(d) All linear combinations ofv = (1, 4, 0) andw = (2, 2, 2).

(e) All vectors that satisfyb1 + b2 + b3 = 0.

(f) All vectors with b1 ≤ b2 ≤ b3.

The only subspaces are (a) the plane withb1 = b2 (d) the linear combinations ofv
andw (e) the plane withb1 + b2 + b3 = 0.

3 Describe the smallest subspace of the matrix spaceM that contains

(a)

[
1 0
0 0

]
and

[
0 1
0 0

]
(b)

[
1 1
0 0

]
(c)

[
1 0
0 0

]
and

[
1 0
0 1

]
.

(a) All matrices

[
a b
0 0

]
(b) All matrices

[
a a
0 0

]
(c) All diagonal matrices.

4 Let P be the plane inR3 with equationx + y − 2z = 4. The origin(0, 0, 0) is not in
P ! Find two vectors inP and check that their sum is not inP.

For the planev+ y− 2z = 4, the sum of(4, 0, 0) and(0, 4, 0) is not on the plane. (The
key is that this plane does not go through(0, 0, 0).)

5 Let P0 be the plane through(0, 0, 0) parallel to the previous planeP. What is the
equation forP0 ? Find two vectors inP0 and check that their sum is inP0.

The parallel planeP0 has the equationv + y − 2z = 0. Pick two points, for example
(2, 0, 1) and(0, 2, 1), and their sum(2, 2, 2) is in P0.

6 The subspaces ofR3 are planes, lines,R3 itself, orZ containing only(0, 0, 0).
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(a) Describe the three types of subspaces ofR2.
(b) Describe all subspaces ofD, the space of2 by 2 diagonal matrices.

(a) The subspaces ofR2 areR2 itself, lines through(0, 0), and(0, 0) by itself (b) The
subspaces ofR4 areR4 itself, three-dimensional planesn · v = 0, two-dimensional
subspaces(n1 · v = 0 andn2 · v = 0), one-dimensional lines through(0, 0, 0, 0), and
(0, 0, 0, 0) by itself.

7 (a) The intersection of two planes through(0, 0, 0) is probably a but it could
be a . It can’t beZ !

(b) The intersection of a plane through(0, 0, 0) with a line through(0, 0, 0) is
probably a but it could be a .

(c) If S and T are subspaces ofR5, prove that their intersectionS ∩ T is a
subspace ofR5. HereS ∩ T consists of the vectors that lie in both subspaces.
Check the requirements onv +w andcv.

(a) Two planes through(0, 0, 0) probably intersect in a line through(0, 0, 0)
(b) The plane and line probably intersect in the point(0, 0, 0)
(c) If v andy are in bothS andT , v + y andcv are in both subspaces.

8 SupposeP is a plane through(0, 0, 0) andL is a line through(0, 0, 0). The smallest
vector spaceP+ L containing bothP andL is either or .

The smallest subspace containing a planeP and a lineL is eitherP (when the lineL
is in the planeP) or R3 (whenL is not inP).

9 (a) Show that the set ofinvertiblematrices inM is not a subspace.
(b) Show that the set ofsingularmatrices inM is not a subspace.

(a) The invertible matrices do not include the zero matrix, so they are not a subspace

(b) The sum of singular matrices

[
1 0
0 0

]
+

[
0 0
0 1

]
is not singular: not a subspace.

10 True or false (check addition in each case by an example) :

(a) The symmetric matrices inM (with AT = A) form a subspace.
(b) The skew-symmetric matrices inM (with AT = −A) form a subspace.

(c) The unsymmetric matrices inM (with AT 6= A) form a subspace.

(a) True: The symmetric matrices do form a subspace (b)True: The matrices with
AT = −A do form a subspace (c)False: The sum of two unsymmetric matrices
could be symmetric.

Questions 11–19 are about column spacesC(A) and the equationAv = b.

11 Describe the column spaces (lines or planes) of these particular matrices :

A =

[
1 2
0 0
0 0

]
B =

[
1 0
0 2
0 0

]
C =

[
1 0
2 0
0 0

]
.

The column space ofA is thex-axis= all vectors(x, 0, 0). The column space ofB
is thexy plane= all vectors(x, y, 0). The column space ofC is the line of vectors
(x, 2x, 0).
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12 For which right sides (find a condition onb1, b2, b3) are these systems solvable ?

(a)

[
1 4 2
2 8 4

−1 −4 −2

] [
v1
v2
v3

]
=

[
b1
b2
b3

]
(b)

[
1 4
2 9

−1 −4

][
v1
v2

]
=

[
b1
b2
b3

]

(a) Elimination leads to0 = b2 − 2b1 and 0 = b1 + b3 in equations 2 and 3:
Solution only ifb2 = 2b1 andb3 = −b1 (b) Elimination leads to0 = b1 + 2b3 in
equation 3: Solution only ifb3 = −b1.

13 Adding row 1 ofA to row 2 producesB. Adding column 1 to column 2 producesC.
Which matrices have the same column space ? Which have the same row space?

A =

[
1 3
2 6

]
and B =

[
1 3
3 9

]
and C =

[
1 4
2 8

]
.

A combination of the columns ofC is also a combination of the columns ofA. Then

C =

[
1 3
2 6

]
andA =

[
1 2
2 4

]
have the same column space.B =

[
1 2
3 6

]
has a

different column space.

14 For which vectors(b1, b2, b3) do these systems have a solution ?

[
1 1 1
0 1 1
0 0 1

][
x1

x2

x3

]
=

[
b1
b2
b3

]
and

[
1 1 1
0 1 1
0 0 0

][
x1

x2

x3

]
=

[
b1
b2
b3

]

and

[
1 1 1
0 0 1
0 0 1

][
x1

x2

x3

]
=

[
b1
b2
b3

]
.

(a) Solution for everyb (b) Solvable only ifb3 = 0 (c) Solvable only ifb3 = b2.

15 (Recommended) If we add an extra columnb to a matrixA, then the column space gets
larger unless . Give an example where the column space gets larger
and an example where it doesn’t. Why isAv = b solvable exactly when the
column spacedoesn’tget larger ? Then it is the same forA and

[
A b

]
.

The extra columnb enlarges the column space unlessb is already inthe column space.

[A b ] =

[
1 0 1
0 0 1

]
(larger column space)
(no solution toAv = b)

[
1 0 1
0 1 1

]
(b is in column space)
(Av = b has a solution)

16 The columns ofAB are combinations of the columns ofA. This means : The
column space ofAB is contained in(possibly equal to)the column space ofA.
Give an example where the column spaces ofA andAB are not equal.

The column space ofAB is contained in(possibly equal to) the column space ofA.
The exampleB = 0 andA 6= 0 is a case whenAB = 0 has a smaller column space
thanA.

17 SupposeAv = b andAw = b∗ are both solvable. ThenAz = b + b∗ is solvable.
What isz ? This translates into : Ifb andb∗ are in the column spaceC(A), then
b+ b∗ is also inC(A).

The solution toAz = b+ b∗ is z = x+ y. If b andb∗ are inC(A) so isb+ b∗.
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18 If A is any 5 by 5 invertible matrix, then its column space is . Why ?

The column space of any invertible 5 by 5 matrix isR5. The equationAx = b is
always solvable (byv = A−1b) so everyb is in the column space of that invertible
matrix.

19 True or false (with a counterexample if false) :

(a) The vectorsb that are not in the column spaceC(A) form a subspace.

(b) If C(A) contains only the zero vector, thenA is the zero matrix.

(c) The column space of2A equals the column space ofA.

(d) The column space ofA− I equals the column space ofA (test this).

(a) False: Vectors that arenot in a column space don’t form a subspace.
(b) True: Only the zero matrix hasC(A) = {0}. (c) True: C(A) = C(2A).

(d) False: C(A− I) 6= C(A) whenA = I orA =

[
1 0
0 0

]
(or other examples).

20 Construct a 3 by 3 matrix whose column space contains(1, 1, 0) and(1, 0, 1) but not
(1, 1, 1). Construct a3 by 3 matrix whose column space is only a line.

A =

[
1 1 0
1 0 0
0 1 0

]
and

[
1 1 2
1 0 1
0 1 1

]
do not have(1, 1, 1) in C(A). A =

[
1 2 0
2 4 0
3 6 0

]

hasC(A) = line.

21 If the 9 by 12 systemAv = b is solvable for everyb, thenC(A) must be .

WhenAv = b is solvable for allb, everyb is in the column space ofA. So that space
is R9.

Challenge Problems

22 SupposeS andT are two subspaces of a vector spaceV. ThesumS+T contains all
sumss+ t of a vectors in S and a vectort in T. ThenS+T is a vector space.

If S andT are lines inRm, what is the difference betweenS + T andS ∪ T?
That union contains all vectors fromS and all vectors fromT. Explain this statement :
The span ofS ∪T is S+T.

(a) If u andv are both inS + T , thenu = s1 + t1 andv = s2 + t2. Sou + v =
(s1 + s2) + (t1 + t2) is also inS + T . And so iscu = cs1 + ct1: a subspace.

(b) If S andT are different lines, thenS ∪T is just the two lines (not a subspace) but
S + T is the whole plane that they span.

23 If S is the column space ofA andT is C(B), thenS + T is the column space of
what matrixM ? The columns ofA andB andM are all inRm. (I don’t think
A+B is always a correctM .)

If S = C(A) andT = C(B) thenS + T is the column space ofM = [A B ].
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24 Show that the matricesA and
[
A AB

]
(this has extra columns) have the same

column space. But find a square matrix withC(A2) smaller thanC(A).

The columns ofAB are combinations of the columns ofA. So all columns of[A AB ]

are already inC(A). ButA =

[
0 1
0 0

]
has a larger column space thanA2 =

[
0 0
0 0

]
.

For square matrices, the column space isRn whenA is invertible.

25 An n by n matrix hasC(A) = Rn exactly whenA is an matrix.

(Key question) The column space of ann by n matrixA is all of Rn exactly whenA
is invertible. In this invertible case, every vectorb is in C(A) because we can solve
Av = b. And if A were not invertible, elimination would lead to a row of zeros—then
Av = b could not be solved for some (most !) vectorsb.

Problem Set 5.2, Page 269

Questions 1–4 and 5–8 are about the matrices in Problems 1 and5.

1 Reduce these matrices to their ordinary echelon formsU :

A =

[
1 2 2 4 6
1 2 3 6 9
0 0 1 2 3

]
B =

[
2 4 2
0 4 4
0 8 8

]
.

Which are the free variables and which are the pivot variables ?

(a) U=

[
1 2 2 4 6
0 0 1 2 3
0 0 0 0 0

]
Free variablesv2, v4, v5
Pivot variablesv1, v3

(b) U=

[
2 4 2
0 4 4
0 0 0

]
Freev3
Pivotv1, v2

2 For the matrices in Problem 1, find a special solution for eachfree variable. (Set the
free variable to 1. Set the other free variables to zero.)

(a) Free variablesv2, v4, v5 and solutions(−2, 1, 0, 0, 0), (0, 0,−2, 1, 0), (0, 0,−3, 0, 1)
(b) Free variablev3: solution(1,−1, 1). Special solution for each free variable.

3 By combining the special solutions in Problem 2, describe every solution toAv = 0
andBv = 0. The nullspace contains onlyv = 0 when there are no .

The complete solution toAv = 0 is (−2v2, v2,−2v4−3v5, v4, v5) with v2, v4, v5 free.
The complete solution toBv = 0 is (2v3,−v3, v3). The nullspace contains onlyv = 0
when there are no free variables.

4 By further row operations on eachU in Problem 1, find the reduced echelon formR.
True or false: The nullspace ofR equals the nullspace ofU .

R =

[
1 2 0 0 0
0 0 1 2 3
0 0 0 0 0

]
, R =

[
1 0 −1
0 1 1
0 0 0

]
, R has the same nullspace asU andA.
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5 By row operations reduce this newA andB to triangular echelon formU . Write down
a 2 by 2 lower triangularL such thatB = LU .

A =

[
−1 3 5
−2 6 10

]
B =

[
−1 3 5
−2 6 7

]
.

A =

[
−1 3 5
−2 6 10

]
=

[
1 0
2 1

] [
−1 3 5
0 0 0

]
; B =

[
−1 3 5
−2 6 7

]
=

[
1 0
2 1

]

[
−1 3 5
0 0 −3

]
= LU .

6 For the sameA andB, find the special solutions toAv=0 andBv=0. For anm by
n matrix, the number of pivot variables plus the number of freevariables is .

(a) Special solutions(3, 1, 0) and(5, 0, 1) (b) (3, 1, 0). Total of pivot and free isn.

7 In Problem 5, describe the nullspaces ofA andB in two ways. Give the equations for
the plane or the line, and give all vectorsv that satisfy those equations as combinations
of the special solutions.

(a) The nullspace ofA in Problem 5 is the plane−v + 3y + 5z = 0; it contains all
the vectors(3y+5z, y, z) = y(3, 1, 0)+ z(5, 0, 1) = combination of special solutions.
(b) Theline through(3, 1, 0) has equations−v+3y+5z = 0 and−2v+6y+7z = 0.
The special solution for the free variablev2 is (3, 1, 0).

8 Reduce the echelon formsU in Problem 5 toR. For eachR draw a box around the
identity matrix that is in the pivot rows and pivot columns.

R =

[
1 −3 −5
0 0 0

]
with I = [ 1 ]; R =

[
1 −3 0
0 0 1

]
with I =

[
1 0
0 1

]
.

Questions 9–17 are about free variables and pivot variables.

9 True or false (with reason if true or example to show it is false) :

(a) A square matrix has no free variables.

(b) An invertible matrix has no free variables.

(c) Anm by n matrix has no more thann pivot variables.

(d) Anm by n matrix has no more thanm pivot variables.

(a) False: Any singular square matrix would have free variables (b)True: An in-
vertible square matrix hasno free variables. (c)True(onlyn columns to hold pivots)
(d) True(onlym rows to hold pivots)

10 Construct 3 by 3 matricesA to satisfy these requirements (if possible) :

(a) A has no zero entries butU = I.

(b) A has no zero entries butR = I.

(c) A has no zero entries butR = U .

(d) A = U = 2R.

(a) Impossible row 1 (b)A = invertible (c) A = all ones (d)A = 2I, R = I.
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11 Put as many1’s as possible in a 4 by 7 echelon matrixU whose pivot columns are

(a) 2, 4, 5

(b) 1, 3, 6, 7

(c) 4 and 6.



0 1 1 1 1 1 1
0 0 0 1 1 1 1
0 0 0 0 1 1 1
0 0 0 0 0 0 0






1 1 1 1 1 1 1
0 0 1 1 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1






0 0 0 1 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0




12 Put as many1’s as possible in a 4 by 8reducedechelon matrixR so that the free
columns are

(a) 2, 4, 5, 6

(b) 1, 3, 6, 7, 8.



1 1 0 1 1 1 0 0
0 0 1 1 1 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


,



0 1 1 0 0 1 1 1
0 0 0 1 0 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0


. Notice the identity

matrix in the pivot columns of thesereducedrow echelon formsR.

13 Suppose column 4 of a 3 by 5 matrix is all zero. Thenv4 is certainly a variable.
The special solution for this variable is the vectors = .

If column 4 of a 3 by 5 matrix is all zero thenv4 is a freevariable. Its special solution
is v = (0, 0, 0, 1, 0), because 1 will multiply that zero column to giveAv = 0.

14 Suppose the first and last columns of a 3 by 5 matrix are the same(not zero). Then
is a free variable. Find the special solution for this variable.

If column 1= column 5 thenv5 is a free variable. Its special solution is(−1, 0, 0, 0, 1).

15 Suppose anm byn matrix hasr pivots. The number of special solutions is . The
nullspace contains onlyv = 0 whenr = . The column space is all ofRm when
r = .

If a matrix hasn columns andr pivots, there aren−r special solutions. The nullspace
contains onlyv = 0 whenr = n. The column space is all ofRm whenr = m. All
important!

16 The nullspace of a 5 by 5 matrix contains onlyv = 0 when the matrix has
pivots. The column space isR5 when there are pivots. Explain why.

The nullspace contains onlyv = 0 whenA has 5 pivots. Also the column space isR5,
because we can solveAv = b and everyb is in the column space.

17 The equationx − 3y − z = 0 determines a plane inR3. What is the matrixA in this
equation ? Which are the free variables ? The special solutions are(3, 1, 0) and .

A = [ 1 − 3 − 1 ] gives the planev − 3y − z = 0; y andz are free variables. The
special solutions are(3, 1, 0) and(1, 0, 1).
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18 (Recommended) The planex − 3y − z = 12 is parallel to the planex − 3y − z = 0
in Problem 17. One particular point on this plane is(12, 0, 0). All points on the plane
have the form (fill in the first components)

[
x
y
z

]
=

[
0
0

]
+ y

[
1
0

]
+ z

[
0
1

]
.

Fill in 12 then4 then1 to get the complete solution tov − 3y − z = 12:

[
v
y
z

]
=

[
12
0
0

]
+ y

[
4
1
0

]
+ z

[
1
0
1

]
= vparticular+ vnullspace.

19 Prove thatU andA = LU have the same nullspace whenL is invertible :

If Uv = 0 then LUv = 0. If LUv = 0, how do you knowUv = 0 ?

If LUv = 0, multiply by L−1 to find Uv = 0. ThenU andLU have the same
nullspace.

20 Suppose column1 + column3 + column5 = 0 in a 4 by 5 matrix with four pivots.
Which column is sure to have no pivot (and which variable is free) ? What is the special
solution ? What is the nullspace ?

Column 5 is sure to have no pivot since it is a combination of earlier columns. With
4 pivots in the other columns, the special solution iss = (1, 0, 1, 0, 1). The nullspace
contains all multiples of this vectors (a line inR5).

Questions 21–28 ask for matrices (if possible) with specificproperties.

21 Construct a matrix whose nullspace consists of all combinations of(2, 2, 1, 0)and(3, 1, 0, 1).

For special solutions(2, 2, 1, 0) and (3, 1, 0, 1) with free variablesv3, v4: R =[
1 0 −2 −3
0 1 −2 −1

]
andA can be any invertible 2 by 2 matrix times thisR.

22 Construct a matrix whose nullspace consists of all multiples of (4, 3, 2, 1).

The nullspace ofA =

[
1 0 0 −4
0 1 0 −3
0 0 1 −2

]
is the line through(4, 3, 2, 1).

23 Construct a matrix whose column space contains(1, 1, 5)and(0, 3, 1) and whose nullspace
contains(1, 1, 2).

A =

[
1 0 −1/2
1 3 −2
5 1 −3

]
has(1, 1, 5) and(0, 3, 1) in C(A) and(1, 1, 2) in N (A). Which

otherA’s?
24 Construct a matrix whose column space contains(1, 1, 0)and(0, 1, 1) and whose nullspace

contains(1, 0, 1) and(0, 0, 1).

This construction is impossible: 2 pivot columns and 2 free variables, only 3 columns.
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25 Construct a matrix whose column space contains(1, 1, 1) and whose nullspace is the
line of multiples of(1, 1, 1, 1).

A =

[
1 −1 0 0
1 0 −1 0
1 0 0 −1

]
has(1, 1, 1) in C(A) and only the line(c, c, c, c) in N(A).

26 Construct a 2 by 2 matrix whose nullspace equals its column space. This is possible.

A=

[
0 1
0 0

]
hasN(A)=C(A) and also (a)(b)(c) are all false. Noticerref(AT)=

[
1 0
0 0

]
.

27 Why does no 3 by 3 matrix have a nullspace that equals its column space ?

If nullspace= column space (withr pivots) thenn − r = r. If n = 3 then3 = 2r is
impossible.

28 (Important) IfAB = 0 then the column space ofB is contained in the of A.
Give an example ofA andB.

If A times every column ofB is zero, the column space ofB is contained in thenullspace

of A. An example isA =

[
1 1
1 1

]
andB =

[
1 1

−1 −1

]
. HereC(B) equalsN(A).

(ForB = 0,C(B) is smaller.)
29 The reduced formR of a 3 by 3 matrix with randomly chosen entries is almost sure to

be . What reduced formR is virtually certain if the randomA is 4 by 3 ?

ForA = random 3 by 3 matrix,R is almost sure to beI. For 4 by 3,R is most likely
to beI with fourth row of zeros. What about a random 3 by 4 matrix?

30 Show by example that these three statements are generallyfalse:

(a) A andAT have the same nullspace.

(b) A andAT have the same free variables.

(c) If R is the reduced form ofA thenRT is the reduced form ofAT.

A =

[
0 1
0 0

]
shows that (a)(b)(c) are all false. Noticerref(AT) =

[
1 0
0 0

]
.

31 If the nullspace ofA consists of all multiples ofv = (2, 1, 0, 1), how many pivots
appear inU ? What isR ?

If N(A) = line throughv = (2, 1, 0, 1), A hasthree pivots(4 columns and 1 special

solution). Its reduced echelon form can beR =

[
1 0 0 −2
0 1 0 −1
0 0 1 0

]
(add any zero rows).

32 If the special solutions toRv = 0 are in the columns of theseN , go backward to find
the nonzero rows of the reduced matricesR :

N =

[
2 3
1 0
0 1

]
and N =

[
0
0
1

]
and N =

[ ]
(empty3 by 1).

Any zero rows come after these rows:R = [ 1 −2 −3 ], R =

[
1 0 0
0 1 0

]
, R = I.
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33 (a) What are the five 2 by 2 reduced echelon matricesR whose entries are all 0’s and
1’s ?

(b) What are the eight 1 by 3 matrices containing only 0’s and 1’s ? Are all eight of
them reduced echelon matricesR ?

(a)

[
1 0
0 1

]
,

[
1 0
0 0

]
,

[
1 1
0 0

]
,

[
0 1
0 0

]
,

[
0 0
0 0

]
(b) All 8 matrices areR’s !

34 Explain whyA and−A always have the same reduced echelon formR.

One reason thatR is the same forA and−A: They have the same nullspace. They also
have the same column space, but that is not required for two matrices to share the same
R. (R tells us the nullspace and row space.)

Challenge Problems

35 If A is 4 by 4 and invertible, describe all vectors in the nullspace of the4 by 8 matrix
B = [A A].

The nullspace ofB = [A A ] contains all vectorsv =

[
y

−y

]
for y in R4.

36 How is the nullspaceN (C) related to the spacesN(A) andN (B), if C =

[
A
B

]
?

If Cv = 0 thenAv = 0 andBv = 0. SoN(C) = N(A) ∩N(B) = intersection.

37 Kirchhoff’s Law says thatcurrent in= current outat every node. This network has
six currentsy1, . . . , y6 (the arrows show the positive direction, eachyi could be
positive or negative). Find the four equationsAy = 0 for Kirchhoff’s Law at the
four nodes. Reduce toUy = 0. Find three special solutions in the nullspace ofA.

Currents: y1 − y3 + y4 = −y1 + y2 ++y5 = −y2 + y4 + y6 = −y4 − y5 − y6 = 0.
These equations add to0 = 0. Free variablesy3, y5, y6: watch for flows around loops.
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Problem Set 5.3, Page 280

1 (Recommended) Execute the six steps of Worked Example3.4 A to describe the column
space and nullspace ofA and the complete solution toAv = b :

A =

[
2 4 6 4
2 5 7 6
2 3 5 2

]
b =

[
b1
b2
b3

]
=

[
4
3
5

]

[
2 4 6 4 b1

2 5 7 6 b2

2 3 5 2 b3

]
→
[
2 4 6 4 b1

0 1 1 2 b2 − b1

0 −1 −1 −2 b3 − b1

]
→
[
2 4 6 4 b1

0 1 1 2 b2 − b1

0 0 0 0 b3 + b2 − 2b1

]

Av = b has a solution whenb3 + b2 − 2b1 = 0; the column space contains all combi-
nations of(2, 2, 2) and(4, 5, 3). This is the planeb3+ b2− 2b1 = 0 (!). The nullspace
contains all combinations ofs1 = (−1,−1, 1, 0) ands2 = (2,−2, 0, 1); vcomplete =
vp + c1s1 + c2s2;

[R d ] =

[
1 0 1 −2 4
0 1 1 2 −1
0 0 0 0 0

]
gives the particular solutionvp = (4,−1, 0, 0).

2 Carry out the same six steps for this matrixA with rank one. You will findtwo condi-
tions onb1, b2, b3 for Av = b to be solvable. Together these two conditions putb into
the space.

A =

[
1
3
2

]
[ 2 1 3 ]

=

[
2 1 3
6 3 9
4 2 6

]
b =

[
b1
b2
b3

]
=

[
10
30
20

]

[
2 1 3 b1

6 3 9 b2

4 2 6 b3

]
→
[
2 1 3 b1

0 0 0 b2 − 3b1

0 0 0 b3 − 2b1

]
Then[R d ] =

[
1 1/2 3/2 5
0 0 0 0
0 0 0 0

]

Av = b has a solution whenb2 − 3b1 = 0 andb3 − 2b1 = 0; C(A) = line through
(2, 6, 4) which is the intersection of the planesb2 − 3b1 = 0 and b3 − 2b1 = 0;
the nullspace contains all combinations ofs1 = (−1/2, 1, 0) ands2 = (−3/2, 0, 1);
particular solutionvp = d = (5, 0, 0) and complete solutionvp + c1s1 + c2s2.

Questions 3–15 are about the solution ofAv = b. Follow the steps in the text tovp
and vn. Start from the augmented matrix

[
A b

]
.

3 Write the complete solution asvp plus any multiple ofs in the nullspace :

x+ 3y + 3z = 1

2x+ 6y + 9z = 5

−x− 3y + 3z = 5.

v
complete

=

[−2
0
1

]
+ v2

[−3
1
0

]
. The matrix is singular but the equations are

still solvable;b is in the column space. Our particular solution has free variabley = 0.
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4 Find the complete solution (also called thegeneral solution) to

[
1 3 1 2
2 6 4 8
0 0 2 4

]


x
y
z
t


 =

[
1
3
1

]
.

v
complete

= vp + vn = (1
2
, 0, 1

2
, 0) + v2(−3, 1, 0, 0) + v4(0, 0,−2, 1).

5 Under what condition onb1, b2, b3 is this system solvable ? Includeb as a fourth column
in elimination. Find all solutions when that condition holds :

x+ 2y − 2z = b1

2x+ 5y − 4z = b2

4x+ 9y − 8z = b3.

[
1 2 −2 b1
2 5 −4 b2
4 9 −8 b3

]
→
[
1 2 −2 b1
0 1 0 b2 − 2b1
0 0 0 b3 − 2b1 − b2

]
solvable ifb3 − 2b1 − b2 = 0.

Back-substitution gives the particular solution toAv = b and the special solution to

Av = 0: v =

[
5b1 − 2b2
b2 − 2b1

0

]
+ v3

[
2
0
1

]
.

6 What conditions onb1, b2, b3, b4 make each system solvable ? Findv in that case :



1 2
2 4
2 5
3 9



[

v1

v2

]
=




b1
b2
b3
b4







1 2 3
2 4 6
2 5 7
3 9 12



[

v1

v2

v3

]
=




b1
b2
b3
b4


 .

(a) Solvable ifb2 = 2b1 and3b1 − 3b3 + b4 = 0. Thenv =

[
5b1 − 2b3
b3 − 2b1

]
= vp

(b) Solvable ifb2 = 2b1 and3b1 − 3b3 + b4 = 0. v =

[
5b1 − 2b3
b3 − 2b1

0

]
+ v3

[−1
−1
1

]
.

7 Show by elimination that(b1, b2, b3) is in the column space ifb3 − 2b2 + 4b1 = 0.

A =

[
1 3 1
3 8 2
2 4 0

]
.

What combinationy1(row 1) + y2(row 2) + y3(row 3) gives the zero row ?
[
1 3 1 b1
3 8 2 b2
2 4 0 b3

]
→
[
1 3 1 b2
0 −1 −1 b2 − 3b1
0 −2 −2 b3 − 2b1

]
One more step gives[ 0 0 0 0 ] =
row 3− 2 (row 2)+ 4(row 1)
provided b3−2b2+4b1=0.

8 Which vectors(b1, b2, b3) are in the column space ofA? Which combinations of the
rows ofA give zero ?
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(a) A =

[
1 2 1
2 6 3
0 2 5

]
(b) A =

[
1 1 1
1 2 4
2 4 8

]
.

(a) Everyb is inC(A): independent rows, only the zero combination gives0.
(b) We needb3 = 2b2, because(row 3)− 2(row2) = 0.

9 In Worked Example5.3 A, combine the pivot columns ofA with the numbers
−9 and3 in the particular solutionvp. What is that linear combination and why ?

L [U c ] =

[
1 0 0
2 1 0
3 −1 1

][
1 2 3 5 b1
0 0 2 2 b2 − 2b1
0 0 0 0 b3 + b2 − 5b1

]
=

[
1 2 3 5 b1
2 4 8 12 b2
3 6 7 13 b3

]

= [A b ]; particularvp = (−9, 0, 3, 0) means−9(1, 2, 3) + 3(3, 8, 7) = (0, 6,−6).
This isAvp = b.

10 Construct a 2 by 3 systemAv = b with particular solutionvp = (2, 4, 0) and
null (homogeneous) solutionvn = any multiple of(1, 1, 1).
[
1 0 −1
0 1 −1

]
x =

[
2
4

]
hasxp = (2, 4, 0) andxnull = (c, c, c).

11 Why can’t a 1 by 3 system havevp = (2, 4, 0) andvn = any multiple of(1, 1, 1)?

A 1 by 3 system has at leasttwo free variables. Butxnull in Problem 10 only hasone.
12 (a) If Av = b has two solutionsv1 andv2, find two solutions toAv = 0.

(b) Then find another solution toAv = b.

(a) x1 − x2 and0 solveAx = 0 (b) A(2x1 − 2x2) = 0, A(2x1 − x2) = b

13 Explain why these are all false :

(a) The complete solution is any linear combination ofvp andvn.

(b) A systemAv = b has at most one particular solution.

(c) The solutionvp with all free variables zero is the shortest solution (minimum
length‖v‖). Find a2 by 2 counterexample.

(d) If A is invertible there is no solutionvn in the nullspace.

(a) The particular solutionxp is always multiplied by 1 (b) Any solution can bexp

(c)

[
3 3
3 3

] [
x
y

]
=

[
6
6

]
. Then

[
1
1

]
is shorter (length

√
2) than

[
2
0

]
(length 2)

(d) The only “homogeneous” solution in the nullspace isxn = 0 whenA is invertible.
14 Suppose column 5 has no pivot. Thenv5 is a variable. The zero vector (is)

(is not) the only solution toAv = 0. If Av = b has a solution, then it has
solutions.

If column 5 has no pivot,v5 is a freevariable. The zero vectoris not the only solution
to Ax = 0. If this systemAx = b has a solution, it hasinfinitely manysolutions.

15 Suppose row 3 has no pivot. Then that row is . The equationRv = d is only
solvable provided . The equationAv = b (is) (is not) (might not be) solvable.

If row 3 of U has no pivot, that is azero row. Ux = c is only solvable provided
c3 = 0. Ax = b might not be solvable, becauseU may have other zero rows needing
moreci = 0.



144 Chapter 5. Vector Spaces and Subspaces

Questions 16–21 are about matrices of “full rank”r = m or r = n.

16 The largest possible rank of a 3 by 5 matrix is . Then there is a pivot in
every of U and R. The solution toAv = b (always exists) (is unique).
The column space ofA is . An example isA = .

The largest rank is 3. Then there is a pivot in everyrow. The solutionalways exists.
The column space isR3. An example isA = [ I F ] for any3 by 2 matrixF .

17 The largest possible rank of a 6 by 4 matrix is . Then there is a pivot in every
of U and R. The solution toAv = b (always exists) (is unique).

The nullspace ofA is . An example isA = .

The largest rank of a 6 by 4 matrix is 4. Then there is a pivot in every column. The
solution isunique. The nullspace contains only the zerovector. An example isA =
R = [ I F ] for any 4 by 2 matrixF .

18 Find by elimination the rank ofA and also the rank ofAT :

A =

[
1 4 0
2 11 5

−1 2 10

]
and A =

[
1 0 1
1 1 2
1 1 q

]
(rank depends onq).

Rank= 2; rank= 3 unlessq = 2 (then rank= 2). Transpose has the same rank!

19 Find the rank ofA and also ofATA and also ofAAT :

A =

[
1 1 5
1 0 1

]
and A =

[
2 0
1 1
1 2

]
.

Both matricesA have rank 2. AlwaysATA andAAT havethe same rankasA.

20 ReduceA to its echelon formU . Then find a triangularL so thatA = LU .

A =

[
3 4 1 0
6 5 2 1

]
and A =

[
1 0 1 0
2 2 0 3
0 6 5 4

]
.

A = LU =

[
1 0
2 1

] [
3 4 1 0
0 −3 0 1

]
;A = LU

[
1 0 0
2 1 0
0 3 1

][
1 0 1 0
0 2 −2 3
0 0 11 −5

]
.

21 Find the complete solution in the formvp + vn to these full rank systems :

(a) x+ y + z = 4 (b)
x+ y + z = 4

x− y + z = 4.

(a)

[
x
y
z

]
=

[
4
0
0

]
+ y

[−1
1
0

]
+ z

[−1
0
1

]
(b)

[
x
y
z

]
=

[
4
0
0

]
+ z

[−1
0
1

]
. The second

equation in part (b) removed one special solution.
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22 If Av = b has infinitely many solutions, why is it impossible forAv = B (new right
side) to have only one solution ? CouldAv = B have no solution ?

If Ax1 = b and alsoAx2 = b then we can addx1 − x2 to any solution ofAx = B:
the solutionx is not unique. But there will beno solution to Ax = B if B is not in
the column space.

23 Choose the numberq so that (if possible) the ranks are (a) 1, (b) 2, (c) 3 :

A =

[
6 4 2

−3 −2 −1
9 6 q

]
and B =

[
3 1 3
q 2 q

]
.

ForA, q = 3 gives rank 1, every otherq gives rank 2. ForB, q = 6 gives rank 1, every
otherq gives rank 2. These matrices cannot have rank 3.

24 Give examples of matricesA for which the number of solutions toAv = b is

(a) 0 or 1, depending onb

(b) ∞, regardless ofb

(c) 0 or∞, depending onb

(d) 1, regardless ofb.

(a)

[
1
1

]
[x ] =

[
b1
b2

]
has 0 or 1 solutions, depending onb (b)

[1 1]
[
x1

x2

]
= [ b ]

has infinitely many solutions for everyb (c) There are 0 or∞ solutions whenA has
rankr < m andr < n: the simplest example is a zero matrix. (d)onesolution for
all b whenA is square and invertible (likeA = I).

25 Write down all known relations betweenr andm andn if Av = b has

(a) no solution for someb

(b) infinitely many solutions for everyb

(c) exactly one solution for someb, no solution for otherb

(d) exactly one solution for everyb.

(a) r < m, alwaysr ≤ n (b) r = m, r < n (c) r < m, r = n (d) r = m = n.

Questions 26–33 are about Gauss-Jordan elimination (upwards as well as downwards)
and the reduced echelon matrixR.

26 Continue elimination fromU to R. Divide rows by pivots so the new pivots are all 1.
Then produce zerosabovethose pivots to reachR :

U =

[
2 4 4
0 3 6
0 0 0

]
and U =

[
2 4 4
0 3 6
0 0 5

]
.

[
2 4 4
0 3 6
0 0 0

]
→ R =

[
1 0 −2
0 1 2
0 0 0

]
and

[
2 4 4
0 3 6
0 0 5

]
→ R = I.
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27 SupposeU is square withn pivots (an invertible matrix).Explain whyR = I.

If U hasn pivots, thenR hasn pivotsequal to1. Zeros above and below those pivots
makeR = I.

28 Apply Gauss-Jordan elimination toUv = 0 andUv = c. ReachRv = 0 andRv = d :

[
U 0

]
=

[
1 2 3 0
0 0 4 0

]
and

[
U c

]
=

[
1 2 3 5
0 0 4 8

]
.

SolveRv = 0 to find vn (its free variable isv2 = 1). SolveRv = d to find vp
(its free variable isv2 = 0).
[
1 2 3 0
0 0 4 0

]
→
[
1 2 0 0
0 0 1 0

]
; vn =

[−2
1
0

]
;

[
1 2 3 5
0 0 4 8

]
→
[
1 2 0 −1
0 0 1 2

]
.

Freev2 = 0 givesvp = (−1, 0, 2) because the pivot columns containI.

29 Apply Gauss-Jordan elimination to reduce toRv = 0 andRv = d :

[
U 0

]
=

[
3 0 6 0
0 0 2 0
0 0 0 0

]
and

[
U c

]
=

[
3 0 6 9
0 0 2 4
0 0 0 5

]
.

SolveUv = 0 or Rv = 0 to find vn (free variable= 1). What are the solutions to
Rv = d?

[R d ] =

[
1 0 0 0
0 0 1 0
0 0 0 0

]
leads to xn =

[
0
1
0

]
; [R d ] =

[
1 0 0 −1
0 0 1 2
0 0 0 5

]
:

no solution because of the 3rd equation

30 Reduce toUv = c (Gaussian elimination) and thenRv = d (Gauss-Jordan) :

Av =

[
1 0 2 3
1 3 2 0
2 0 4 9

]


v1

v2

v3

v4


 =

[
2
5
10

]
= b.

Find a particular solutionvp and all homogeneous (null) solutionsvn.

[
1 0 2 3 2
1 3 2 0 5
2 0 4 9 10

]
→
[
1 0 2 3 2
0 3 0−3 3
0 0 0 3 6

]
→
[
1 0 2 0 −4
0 1 0 0 3
0 0 0 1 2

]
;



−4
3
0
2


; xn = x3



−2
0
1
0


.

31 Find matricesA andB with the given property or explain why you can’t :

(a) The only solution ofAv =

[
1
2
3

]
is v =

[
0
1

]
.

(b) The only solution ofBv =

[
0
1

]
is v =

[
1
2
3

]
.
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ForA =

[
1 1
0 2
0 3

]
, the only solution toAx =

[
1
2
3

]
isx =

[
0
1

]
. B cannot exist since 2

equations in 3 unknowns cannot have a unique solution.

32 Reduce
[
A b

]
to
[
R d

]
and find the complete solution toAv = b :

A =




1 3 1
1 2 3
2 4 6
1 1 5


 and b =




1
3
6
5


 and then b =




1
0
0
0


 .

A =



1 3 1
1 2 3
2 4 6
1 1 5


 factors intoLU =



1
1 1
2 2 1
1 2 0 1






1 3 1
0 −1 2
0 0 0
0 0 0


 and the rank is

r = 2. The special solution toAx = 0 andUx = 0 is s = (−7, 2, 1). Since
b = (1, 3, 6, 5) is also the last column ofA, a particular solution toAx = b is
(0, 0, 1) and the complete solution isx = (0, 0, 1)+ cs. (Or use the particular solution
xp = (7,−2, 0) with free variablex3 = 0.)

For b = (1, 0, 0, 0) elimination leads toUx = (1,−1, 0, 1) and the fourth equa-
tion is0 = 1. No solution for thisb.

33 The complete solution toAv =

[
1
3

]
is v =

[
1
0

]
+ c

[
0
1

]
. FindA.

If the complete solution toAx =

[
1
3

]
isx =

[
1
0

]
+

[
0
c

]
thenA =

[
1 0
3 0

]
.

Challenge Problems

34 Suppose you know that the3 by 4 matrixA has the vectors = (2, 3, 1, 0) as the only
special solution toAv = 0.

(a) What is therank of A and the complete solution toAv = 0?

(b) What is the exact row reduced echelon formR of A ? Good question.

(c) How do you know thatAv = b can be solved for allb ?

(a) If s = (2, 3, 1, 0) is the only special solution toAx = 0, the complete solution is
x = cs (line of solution!). The rank ofA must be4− 1 = 3.

(b) The fourth variablex4 is not freein s, andR must be

[
1 0 −2 0
0 1 −3 0
0 0 0 1

]
.

(c) Ax = b can be solve for allb, becauseA andR havefull row rank r = 3.

35 If you have this information about the solutions toAv = b for a specificb, what does
that tell you about theshapeof A (m andn) ? And possibly aboutr andb.

1. There is exactly one solution.
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2. All solutions toAv = b have the formv =
[
2
1

]
+ c
[
1
1

]
.

3. There are no solutions.

4. All solutions toAv = b have the formv =
[
1
1
0

]
+ c

[
1
0
1

]

5. There are infinitely many solutions.

1. r = n (no special solutions) andb is in the column space

2. n− r = 1 (one special solution)

3. b is not in the column space (sor < m)

4. Same conclusion as part2

5. r < n (there are special solutions) andb is in the column space

36 SupposeAv = b and Cv = b have the same (complete) solutions for everyb.
Is it true thatA = C ?

If Ax = b andCx = b have the same solutions,A andC have the same shape and
the same nullspace (takeb = 0). If b = column1 of A, x = (1, 0, . . . , 0) solves
Ax=b so it solvesCx=b. ThenA andC share column1. Other columns too:A=C!

Problem Set 5.4, page 295

Questions 1–10 are about linear independence and linear dependence.

1 Show thatu1,u2,u3 are independent butu1,u2,u3,u4 are dependent :

u1 =

[
1
0
0

]
u2 =

[
1
1
0

]
u3 =

[
1
1
1

]
u4 =

[
2
3
4

]
.

Solvec1u1 + c2u2 + c3u3 + c4u4 = 0 orAc = 0. Theu’s go in the columns ofA.
[
1 1 1
0 1 1
0 0 1

][
c1
c2
c3

]
= 0 gives c3 = c2 = c1 = 0. So those 3 column vectors are

independent. But

[
1 1 1 2
0 1 1 3
0 0 1 4

]
[ c ] =

[
0
0
0

]
is solved byc = (1, 1,−4, 1). Then

u1 + u2 − 4u3 + u4 = 0 (dependent).

2 (Recommended) Find the largest possible number of independent vectors among

u1 =




1
−1
0
0


u2 =




1
0

−1
0


u3 =




1
0
0

−1


u4 =




0
1

−1
0


u5 =




0
1
0

−1


u6 =




0
0
1

−1




u1,u2,u3 are independent (the−1’s are in different positions). All six vectors are on
the plane(1, 1, 1, 1) · u = 0 so no four of these six vectors can be independent.
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3 Prove that ifa = 0 or d = 0 or f = 0 (3 cases), the columns ofU are dependent :

U =

[
a b c
0 d e
0 0 f

]
.

If a = 0 then column1 = 0; if d = 0 thenb(column1) − a(column2) = 0; if f = 0
then all columns end in zero (they are all in thexy plane, they must be dependent).

4 If a, d, f in Question 3 are all nonzero, show that the only solution toUv = 0 is v = 0.
Then the upper triangularU has independent columns.

Uv =

[
a b c
0 d e
0 0 f

] [
x
y
z

]
=

[
0
0
0

]
givesz = 0 theny = 0 thenx = 0. A square

triangular matrix has independent columns (invertible matrix) when its diagonal has no
zeros.

5 Decide the dependence or independence of

(a) the vectors(1, 3, 2) and(2, 1, 3) and(3, 2, 1)

(b) the vectors(1,−3, 2) and(2, 1,−3) and(−3, 2, 1).

(a)

[
1 2 3
3 1 2
2 3 1

]
→
[
1 2 3
0 −5 −7
0 −1 −5

]
→
[
1 2 3
0 −5 −7
0 0 −18/5

]
: invertible⇒ independent

columns.

(b)

[
1 2 −3

−3 1 2
2 −3 1

]
→
[
1 2 −3
0 7 −7
0 −7 7

]
→
[
1 2 −3
0 7 −7
0 0 0

]
;A

[
1
1
1

]
=

[
0
0
0

]
, columns

add to0.

6 Choose three independent columns ofU andA. Then make two other choices.

U =




2 3 4 1
0 6 7 0
0 0 0 9
0 0 0 0


 and A =




2 3 4 1
0 6 7 0
0 0 0 9
4 6 8 2


 .

Columns 1, 2, 4 are independent. Also 1, 3, 4 and 2, 3, 4 and others (but not 1, 2, 3).
Same column numbers (not same columns!) forA.

7 If w1,w2,w3 are independent vectors, show that the differencesv1 = w2 −w3 and
v2 = w1 −w3 andv3 = w1 −w2 aredependent. Find a combination of thev’s that
gives zero. Which singular matrix gives[ v1 v2 v3 ] = [ w1 w2 w3 ] A?

The sumv1−v2+v3 = 0 because(w2−w3)− (w1−w3)+(w1−w2) = 0. So the

difference aredependentand the difference matrix is singular:A =

[
0 1 −1
1 0 −1
1 −1 0

]
.
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8 If w1,w2,w3 are independent vectors, show that the sumsv1 = w2 +w3 andv2 =
w1 + w3 andv3 = w1 + w2 are independent. (Write c1v1 + c2v2 + c3v3 = 0 in
terms of thew’s. Find and solve equations for thec’s, to show they are zero.)

If c1(w2+w3)+c2(w1+w3)+c3(w1+w2) = 0 then(c2+c3)w1+(c1+c3)w2+
(c1 + c2)w3 = 0. Since thew’s are independent,c2 + c3 = c1 + c3 = c1 + c2 = 0.
The only solution isc1 = c2 = c3 = 0. Only this combination ofv1,v2,v3 gives0.

9 Supposeu1,u2,u3,u4 are vectors inR3.

(a) These four vectors are dependent because .
(b) The two vectorsu1 andu2 will be dependent if .
(c) The vectorsu1 and(0, 0, 0) are dependent because .

(a) The four vectors inR3 are the columns of a 3 by 4 matrixA. There is a nonzero
solution toAx = 0 because there is at least one free variable (b) Two vectors are
dependent if[u1 u2 ] has rank 0 or 1. (OK to say “they are on the same line” or “one
is a multiple of the other” butnot “u2 is a multiple ofu1” —sinceu1 might be0.)
(c) A nontrivial combination ofu1 and0 gives0: 0u1 + 3(0, 0, 0) = 0.

10 Find two independent vectors on the planex+ 2y− 3z − t = 0 in R4. Then find three
independent vectors. Why not four? This plane is the nullspace of what matrix?

The plane is the nullspace ofA = [ 1 2− 3− 1 ]. Three free variables give three
solutions(x, y, z, t) = (2,−1 − 0 − 0) and(3, 0, 1, 0) and(1, 0, 0, 1). Combinations
of those special solutions give more solutions (all solutions).

Questions 11–14 are about the spacespanned by a set of vectors. Take all linear com-
binations of the vectors, to find the space they span.

11 Describe the subspace ofR3 (is it a line or plane orR3?) spanned by

(a) the two vectors(1, 1,−1) and(−1,−1, 1)

(b) the three vectors(0, 1, 1) and(1, 1, 0) and(0, 0, 0)
(c) all vectors inR3 with whole number components
(d) all vectors with positive components.

(a) Line inR3 (b) Plane inR3 (c) All of R3 (d) All of R3.
12 The vectorb is in the subspace spanned by the columns ofA when has a solu-

tion. The vectorc is in the row space ofA when has a solution.

True or false: If the zero vector is in the row space, the rows are dependent.

b is in the column space whenAx = b has a solution;c is in the row space when
ATy = c has a solution.False. The zero vector is always in the row space.

13 Find the dimensions of these 4 spaces. Which two of the spacesare the same?
(a) column space ofA (b) column space ofU (c) row space ofA (d) row space
of U :

A =

[
1 1 0
1 3 1
3 1 −1

]
and U =

[
1 1 0
0 2 1
0 0 0

]
.

The column space and row space ofA andU all have the same dimension =2. The row
spaces ofA andU are the same, because the rows ofU are combinations of the rows
of A (and vice versa!).
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14 v + w andv − w are combinations ofv andw. Write v andw as combinations of
v +w andv −w. The two pairs of vectors the same space. When are they a
basis for the same space?

v = 1
2 (v +w) + 1

2 (v −w) andw = 1
2 (v +w)− 1

2 (v −w). The two pairsspanthe
same space. They are a basis whenv andw areindependent.

Questions 15–25 are about the requirements for a basis.

15 If v1, . . . ,vn are linearly independent, the space they span has dimension . These
vectors are a for that space. If the vectors are the columns of anm byn matrix,
thenm is thann. If m = n, that matrix is .

Then independent vectors span a space of dimensionn. They are abasisfor that space.
If they are the columns ofA thenm is not lessthann (m ≥ n).

16 Supposev1,v2, . . . ,v6 are six vectors inR4.

(a) Those vectors (do) (do not) (might not) spanR4.

(b) Those vectors (are) (are not) (might be) linearly independent.

(c) Any four of those vectors (are) (are not) (might be) a basis forR4.

(a) The 6 vectorsmight notspanR4 (b) The 6 vectorsare notindependent
(c) Any fourmight bea basis.

17 Find three different bases for the column space ofU =

[
1 0 1 0 1
0 1 0 1 0

]
. Then

find two different bases for the row space ofU .

The column space ofU =

[
1 0 1 0 1
0 1 0 1 0

]
is R2 so take any bases forR2; (row 1

and row2) or (row1 and row1+ row 2) and (row1 and− row 2) are bases for the row
spaces ofU .

18 Find a basis for each of these subspaces ofR4 :

(a) All vectors whose components are equal.

(b) All vectors whose components add to zero.

(c) All vectors that are perpendicular to(1, 1, 0, 0) and(1, 0, 1, 1).

(d) The column space and the nullspace ofI (4 by 4).

These bases are not unique! (a)(1, 1, 1, 1) for the space of all constant vectors
(c, c, c, c) (b) (1,−1, 0, 0), (1, 0,−1, 0), (1, 0, 0,−1) for the space of vectors with
sum of components =0 (c) (1,−1,−1, 0), (1,−1, 0,−1) for the space perpendic-
ular to(1, 1, 0, 0) and(1, 0, 1, 1) (d) The columns ofI are a basis for its column
space, the empty set is a basis (by convention) forN (I) = {zero vector}.

19 The columns ofA aren vectors fromRm. If they are linearly independent, what
is the rank ofA? If they spanRm, what is the rank? If they are a basis forRm,
what then?Looking ahead: The rankr counts the number of columns.

n-independent columns⇒ rankn. Columns spanRm ⇒ rankm. Columns are basis
for Rm ⇒ rank= m = n. The rank counts the number ofindependentcolumns.
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20 Find a basis for the planex−2y+3z = 0 in R3. Find a basis for the intersection of that
plane with thexy plane. Then find a basis for all vectors perpendicular to the plane.

One basis is(2, 1, 0), (−3, 0, 1). A basis for the intersection with thexy plane is
(2, 1, 0). The normal vector(1,−2, 3) is a basis for the line perpendicular to the plane.

21 Suppose the columns of a 5 by 5 matrixA are a basis forR5.

(a) The equationAv = 0 has only the solutionv = 0 because .

(b) If b is in R5 thenAv = b is solvable because the basis vectors R5.

Conclusion :A is invertible. Its rank is5. Its rows are also a basis forR5.

(a) The only solution toAv = 0 is v = 0 becausethe columns are independent
(b) Av = b is solvable becausethe columns spanR5. Key point: A basis gives
exactly one solution for everyb.

22 SupposeS is a5-dimensional subspace ofR6. True or false (example if false) :

(a) Every basis forS can be extended to a basis forR6 by adding one more vector.

(b) Every basis forR6 can be reduced to a basis forS by removing one vector.

(a) True (b) False because the basis vectors forR6 might not be inS.

23 U comes fromA by subtracting row 1 from row 3 :

A =

[
1 3 2
0 1 1
1 3 2

]
and U =

[
1 3 2
0 1 1
0 0 0

]
.

Find bases for the two column spaces. Find bases for the two row spaces. Find bases
for the two nullspaces. Which spaces stay fixed in elimination?

Columns1 and2 are bases for the (different ) column spaces ofA andU ; rows1 and
2 are bases for the (equal) row spaces ofA andU ; (1,−1, 1) is a basis for the (equal)
nullspaces.

24 True or false (give a good reason) :

(a) If the columns of a matrix are dependent, so are the rows.

(b) The column space of a 2 by 2 matrix is the same as its row space.

(c) The column space of a 2 by 2 matrix has the same dimension asits row space.

(d) The columns of a matrix are a basis for the column space.

(a) FalseA = [ 1 1 ] has dependent columns, independent row (b)Falsecolumn

space6= row space forA =

[
0 1
0 0

]
(c) True: Both dimensions= 2 if A is invert-

ible, dimensions= 0 if A = 0, otherwise dimensions= 1 (d) False, columns may
be dependent, in that case not a basis forC(A).
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25 For which numbersc andd do these matrices have rank2?

A =

[
1 2 5 0 5
0 0 c 2 2
0 0 0 d 2

]
and B =

[
c d
d c

]
.

A has rank2 if c = 0 andd = 2; B =

[
c d
d c

]
has rank2 except whenc = d or

c = −d.

Questions 26–28 are about spaces where the “vectors” are matrices.

26 Find a basis (and the dimension) for these subspaces of3 by 3 matrices :

(a) All diagonal matrices.

(b) All skew-symmetric matrices(AT = −A).

(a)

[
1 0 0
0 0 0
0 0 0

]
,

[
0 0 0
0 1 0
0 0 0

]
,

[
0 0 0
0 0 0
0 0 1

]

(b)

[
0 1 0

−1 0 0
0 0 0

]
,

[
0 0 1
0 0 0
−1 0 0

]
,

[
0 0 0
0 0 1
0 −1 0

]
.

These are simple bases (among many others) for (a) diagonal matrices (b) skew-
symmetric matrices. The dimensions are3, 6, 3.

27 Construct six linearly independent3 by 3 echelon matricesU1, . . . , U6. What space of
3 by 3 matrices do they span?

I,

[
1 0 0
0 1 0
0 0 2

]
,

[
1 0 0
0 2 0
0 0 1

]
,

[
1 1 0
0 1 0
0 0 1

]
,

[
1 0 1
0 1 0
0 0 1

]
,

[
1 0 0
0 1 1
0 0 1

]
; echelon matri-

ces donot form a subspace; theyspan the upper triangular matrices (not everyU is
echelon).

The echelon matrices span all upper traingular matrices. (How could you produce the
matrix witha22 = 1 as its only nanzero entry ?)

28 Find a basis for the space of all2 by 3 matrices whose columns add to zero.
Find a basis for the subspace whose rows also add to zero.
[

1 0 0
−1 0 0

]
,

[
0 1 0
0 −1 0

]
,

[
0 0 1
0 0 −1

]
;

[
1 −1 0

−1 1 0

]
and

[
1 0 −1

−1 0 1

]
.

Questions 29–32 are about spaces where the “vectors” are functions.

29 (a) Find all functions that satisfydydx = 0.

(b) Choose a particular function that satisfiesdy
dx = 3.
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(c) Find all functions that satisfydydx = 3.

(a) y(x) = constantC (b) y(x) = 3x this is one basis for the2 by 3 matrices with
(2, 1, 1) in their nullspace (4-dim subspace). (c)y(x) = 3x + C = yp + yn solves
dy/dx = 3.

30 The cosine spaceF3 contains all combinationsy(x) = A cosx+B cos 2x+C cos 3x.
Find a basis for the subspaceS with y(0) = 0. What is the dimension ofS ?

y(0) = 0 requiresA+B + C = 0. One basis iscosx− cos 2x andcosx− cos 3x.

31 Find a basis for the space of functions that satisfy

(a) dy
dx − 2y = 0 (b) dy

dx − y
x = 0.

(a) y(x) = e2x is a basis for, all solutions toy′ = 2y (b) y = x is a basis for all
solutions tody/dx = y/x (First-order linear equation⇒ 1 basis function in solution
space).

32 Supposey1, y2, y3 are three different functions ofx. The space they span could
have dimension1, 2, or 3. Give an example ofy1, y2, y3 to show each possibility.

y1(x), y2(x), y3(x) can bex, 2x, 3x (dim1) or x, 2x, x2 (dim2) or x, x2, x3 (dim3).

33 Find a basis for the spaceS of vectors(a, b, c, d) with a + c + d = 0 and also for the
spaceT with a+ b = 0 andc = 2d. What is the dimension of the intersectionS∩ T?

Basis forS: (1, 0,−1, 0), (0, 1, 0, 0), (1, 0, 0,−1); basis forT: (1,−1, 0, 0)and(0, 0, 2, 1);
S∩T = multiples of(3,−3, 2, 1) = nullspace for3 equation inR4 has dimension 1.

34 Which of the following are bases forR3?

(a) (1, 2, 0) and(0, 1,−1)

(b) (1, 1,−1), (2, 3, 4), (4, 1,−1), (0, 1,−1)

(c) (1, 2, 2), (−1, 2, 1), (0, 8, 0)

(d) (1, 2, 2), (−1, 2, 1), (0, 8, 6)

(a) No,2 vectors don’t spanR3 (b) No,4 vectors inR3 are dependent (c) Yes, a
basis (d) No, these three vectors are dependent

35 SupposeA is 5 by 4 with rank4. Show thatAv = b has no solution when the5 by 5
matrix [A b ] is invertible. Show thatAv = b is solvable when[A b ] is singular.

If the 5 by 5 matrix [A b ] is invertible,b is not a combination of the columns ofA.
If [A b ] is singular, and the4 columns ofA are independent,b is a combination of
those columns. In this caseAv = b has a solution.

36 (a) Find a basis for all solutions tod4y/dx4 = y(x).

(b) Find a particular solution tod4y/dx4 = y(x) + 1. Find the complete solution.

(a) The functionsy = sinx, y = cosx, y = ex, y = e−x are a basis for solutions to
d4y/dx4 = y(x).

(b) A particular solution tod4y/dx4 = y(x)+1 isy(x) = −1. The complete solution
is y(x) = −1 + c, sinx + c2 cosx + c3e

x + c4e
−x (or use another basis for the

nullspace of the4th derivative).
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Challenge Problems

37 Write the 3 by 3 identity matrix as a combination of the other five permutation
matrices ! Then show that those five matrices are linearly independent. (Assume a
combination givesc1P1 + · · ·+ c5P5 = zero matrix, and prove that eachci = 0.)

I =

[
1

1
1

]
−
[

1
1

1

]
+

[
1

1
1

]
+

[
1

1
1

]
−
[

1
1
1

]
.

The sixP ’s
are dependent.

Those five are independent: The4th hasP11 = 1 and cannot be a combination of the
others. Then the2nd cannot be (fromP32 = 1) and also5th (P32 = 1). Continuing,
a nonzero combination of all five could not be zero. Further challenge: How many
independent4 by 4 permutation matrices?

38 Intersections and sums havedim(V) + dim(W) = dim(V ∩W) + dim(V +W).
Start with a basisu1, . . . ,ur for the intersectionV ∩W. Extend withv1, . . . ,vs to a
basis forV, and separately withw1, . . . ,wt to a basis forW. Prove that theu’s, v’s and
w’s together areindependent. The dimensions have(r+s)+(r+t) = (r)+(r+s+t)
as desired.

The problem is to show that theu’s, v’s, w’s together are independent. We know the
u’s andv’s together are a basis forV , and theu’s andw’s together are a basis forW .
Suppose a combination ofu’s, v’s, w’s gives0. To be proved: All coefficients= zero.

Key idea: In that combination giving0, the partx from theu’s andv’s is in V . So
the part from thew’s is −x. This part is now inV and also inW . But if −x is in
V ∩ W it is a combination ofu’s only. Now the combination uses onlyu’s andv’s
(independent inV !) so all coefficients ofu’s andv’s must be zero. Thenx = 0 and
the coefficients of thew’s are also zero.

39 InsideRn, suppose dimension (V) + dimension (W) > n. Why is some nonzero vector
in bothV andW? Start with basesv1, . . . ,vp andw1, . . . ,wq, p+ q > n.

If the left side ofdim(V) + dim(W) = dim(V ∩W) + dim(V+W) is greater than
n, thendim(V ∩W) must be greater than zero. SoV ∩W contains nonzero vectors.

40 SupposeA is 10 by 10 andA2 = 0 (zero matrix) :A times each column ofA is 0.
This means that the column space ofA is contained in the . If A has rankr,
those subspaces have dimensionr ≤ 10− r. So the rank ofA is r ≤ 5, if A2 = 0.

If A2 = zero matrix, this says that each column ofA is in the nullspace ofA. If the
column space has dimensionr, the nullspace has dimension10− r, and we must have
r ≤ 10− r andr ≤ 5.

Problem Set 5.5, page 308

1 (a) Row and column space dimensions= 5, nullspace dimension= 4, dim(N(AT))
= 2 sum= 16 = m+ n (b) Column space isR3; left nullspace contains only0.

2 A: Row space basis= row 1 = (1, 2, 4); nullspace(−2, 1, 0) and(−4, 0, 1); column
space basis= column1 = (1, 2); left nullspace(−2, 1). B: Row space basis=
both rows= (1, 2, 4) and(2, 5, 8); column space basis= two columns= (1, 2) and
(2, 5); nullspace(−4, 0, 1); left nullspace basis is empty because the space contains
only y = 0.
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3 Row space basis= rows ofU = (0, 1, 2, 3, 4) and(0, 0, 0, 1, 2); column space basis=
pivot columns (ofA notU ) = (1, 1, 0) and (3, 4, 1); nullspace basis(1, 0, 0, 0, 0),
(0, 2,−1, 0, 0), (0, 2, 0,−2, 1); left nullspace(1,−1, 1) = last row ofE−1!

4 (a)

[
1 0
1 0
0 1

]
(b) Impossible:r+(n−r) must be 3 (c)[ 1 1 ] (d)

[
−9 −3
3 1

]

(e) ImpossibleRow space= column space requiresm = n. Thenm − r = n −
r; nullspaces have the same dimension. Section 4.1 will proveN (A) andN (AT)
orthogonal to the row and column spaces respectively—here those are the same space.

5 A =

[
1 1 1
2 1 0

]
has those rows spanning its row spaceB = [1 −2 1] has the same

rows spanning its nullspace andBAT = 0.

6 A: dim 2,2,2,1: Rows (0, 3, 3, 3) and (0, 1, 0, 1); columns(3, 0, 1) and (3, 0, 0);
nullspace(1, 0, 0, 0) and(0,−1, 0, 1); N (AT) (0, 1, 0). B: dim 1,1,0,2 Row space
(1), column space(1, 4, 5), nullspace: empty basis,N (AT) (−4, 1, 0) and(−5, 0, 1).

7 Invertible3 by 3 matrixA: row space basis= column space basis= (1, 0, 0), (0, 1, 0),
(0, 0, 1); nullspace basis and left nullspace basis areempty. Matrix B = [A A ]: row
space basis(1, 0, 0, 1, 0, 0), (0, 1, 0, 0, 1, 0) and (0, 0, 1, 0, 0, 1); column space basis
(1, 0, 0), (0, 1, 0), (0, 0, 1); nullspace basis(−1, 0, 0, 1, 0, 0) and(0,−1, 0, 0, 1, 0) and
(0, 0,−1, 0, 0, 1); left nullspace basis is empty.

8 [I 0] and[I I; 0 0] and[0 ] = 3 by 2 haverow space dimensions= 3, 3, 0 =
column space dimensions;nullspace dimensions2, 3, 2; left nullspace dimensions0, 2, 3.

9 (a) Same row space and nullspace. So rank (dimension of row space) is the same
(b) Same column space and left nullspace. Same rank (dimension of column space).

10 Forrand (3), almost surely rank= 3, nullspace and left nullspace contain only(0, 0, 0).
For rand (3, 5) the rank is almost surely3 and the dimension of the nullspace is2.

11 (a) No solution means thatr < m. Always r ≤ n. Can’t comparem andn here.
(b) Sincem− r > 0, the left nullspace must contain a nonzero vector.

12 A neat choice is

[
1 1
0 2
1 0

] [
1 0 1
1 2 0

]
=

[
2 2 1
2 4 0
1 0 1

]
; r + (n − r) = n = 3 does

not match2 + 2 = 4. Onlyv = 0 is in bothN(A) andC(AT).

13 (a) False: Usually row space6= column space (same dimension!) (b)True: A and−A
have the same four subspaces (c)False(chooseA andB same size and invertible: then
they have the same four subspaces)

14 Row space basis can be the nonzero rows ofU : (1, 2, 3, 4), (0, 1, 2, 3), (0, 0, 1, 2);
nullspace basis(0, 1,−2, 1) as forU ; column space basis(1, 0, 0), (0, 1, 0), (0, 0, 1)
(happen to haveC(A) = C(U) = R3); left nullspace has empty basis.

15 After a row exchange, the row space and nullspace stay the same; (2, 1, 3, 4) is in the
new left nullspace after the row exchange.

16 If Av = 0 andv is a row ofA thenv · v = 0.

17 Row space= yz plane; column space= xy plane; nullspace= x axis; left nullspace
= z axis. ForI + A: Row space= column space= R3, both nullspaces contain only
the zero vector.
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18 Row3−2 row 2+ row 1 = zero row so the vectorsc(1,−2, 1) are in the left nullspace.
The same vectors happen to be in the nullspace (an accident for this matrix).

19 (a) Elimination onAx = 0 leads to0 = b3 − b2 − b1 so (−1,−1, 1) is in the left
nullspace. (b)4 by 3: Elimination leads tob3 − 2b1 = 0 andb4 + b2 − 4b1 = 0, so
(−2, 0, 1, 0) and(−4, 1, 0, 1) are in the left nullspace.Why? Those vectors multiply the
matrix to givezero rows. Section 4.1 will show another approach:Ax = b is solvable
(b is in C(A)) whenb is orthogonal to the left nullspace.

20 (a) Special solutions(−1, 2, 0, 0) and(− 1
4 , 0,−3, 1) are perpendicular to the rows of

R (and thenER). (b) ATy = 0 has1 independent solution= last row ofE−1.
(E−1A = R has a zero row, which is just the transpose ofATy = 0).

21 (a) u andw (b) v andz (c) rank< 2 if u andw are dependent or ifv andz
are dependent (d) The rank ofuvT +wzT is 2.

22 A = [u w ]
[
vT zT

]
=

[
1 2
2 2
4 1

] [
1 0
1 1

]
=

[
3 2
4 2
5 1

]
has column space spanned
byu andw, row space
spanned byv andz.

23 As in Problem 22: Row space basis(3, 0, 3), (1, 1, 2); column space basis(1, 4, 2),
(2, 5, 7); the rank of (3 by 2) times (2 by 3) cannot be larger than the rank of either
factor, so rank≤ 2 and the 3 by 3 product is not invertible.

24 ATy = d putsd in therow spaceof A; unique solution if theleft nullspace(nullspace
of AT) contains onlyy = 0.

25 (a) True(A andAT have the same rank) (b)FalseA = [ 1 0 ] andAT have very
different left nullspaces (c)False (A can be invertible and unsymmetric even if
C(A) = C(AT)) (d) True(The subspaces forA and−A are always the same. If
AT = A orAT = −A they are also the same forAT)

26 The rows ofC = AB are combinations of the rows ofB. So rankC ≤ rankB. Also
rankC ≤ rankA, because the columns ofC are combinations of the columns ofA.

27 Choosed = bc/a to make
[
a b
c d

]
a rank-1 matrix. Then the row space has basis(a, b)

and the nullspace has basis(−b, a). Those two vectors are perpendicular !
28 B andC (checkers and chess) both have rank 2 ifp 6= 0. Row 1 and 2 are a basis for the

row space ofC, BTy = 0 has 6 special solutions with−1 and 1 separated by a zero;
N(CT) has(−1, 0, 0, 0, 0, 0, 0, 1) and(0,−1, 0, 0, 0, 0, 1, 0) and columns3, 4, 5, 6 of
I; N(C) is a challenge.

29 a11 = 1, a12 = 0, a13 = 1, a22 = 0, a32 = 1, a31 = 0, a23 = 1, a33 = 0, a21 = 1.
30 There are vectors along the floor and along a wall that arenot perpendicular. In fact

the vectors where the wall meets the floor are in both subspaces (and not perpendicular
to themselves).

31 Everyy in N(AT) hasATy = 0. Each row ofAT (= each column ofA) has azerodot
product withy—those dot products are the zeros on the right hand side ofATy = 0.

32 The planeP is exactly the nullspace of the matrixA = [1 1 1 1]. ThenP⊥ is the row
space ofA, and the vectorv = (1, 1, 1, 1) is a basic forP+.

33 The vector(1, 4, 5) in the row space ofA would have to be orthogonal to(4, 5, 1) in
the nullspace—and it’s not. So no matrixA.

34 The subspaces forA = uvT are pairs of orthogonal lines (v andv⊥, u andu⊥).
If B has those same four subspaces thenB = cA with c 6= 0.
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35 (a) AX = 0 if each column ofX is a multiple of(1, 1, 1); dim(nullspace) = 3.
(b) If AX = B then all columns ofB add to zero; dimension of theB’s = 6.
(c) 3 + 6 = dim(M3×3) = 9 entries in a3 by 3 matrix.

36 The key is equal row spaces. First row ofA = combination of the rows ofB: only
possible combination (noticeI) is 1 (row 1 ofB). Same for each row soF = G.

37 If a vectorv is in the subspaceS, thenv is perpendicular to every vector inS⊥. There-
fore v belongs to(S⊥)⊥. Those lines show thatS is contained in (S⊥)⊥. But if
S has dimensiond, S⊥ will have dimensionn − d and(S⊥)⊥ will have dimension
n− (n− d) = d.

If the d-dimensional spaceS is contained in thed-dimensional space(S⊥)⊥, the two
spaces must be the same ! (Why is that true ?)

38 This problem shows thatA andATA have the same nullspace (a very important fact,
proved again on page 391). The proof here starts fromATAv = 0, which putsAv
in the nullspace ofAT. But Av is also in the column space ofA (Av is always a
combination of the columns, by matrix multiplication). SoAv is inN(AT) andC(A),
perpendicular to itself and thereforeAv = 0.

Conclusion :ATAv = 0 leads toAv = 0. And certainlyAv = 0 leads toATAv = 0
(just multiply byA). SoN(ATA) = N (A).

Problem Set 5.6, page 319

1 A =

[−1 1 0
−1 0 1
0 −1 1

]
; nullspace contains

[
c
c
c

]
;

[
1
0
0

]
is not orthogonal to that nullspace.

2 ATy = 0 for y = (1,−1, 1); current along edge 1, edge 3, back on edge 2 (full loop).

3 Elimination leads to

−v1 + v2 = b1
−v2 + v3 = b2 − b1
−v2 + v3 = b3

and then
−v1 + v2 = b1
−v2 + v3 = b2 − b1

0 = b3 − b2 + b1

The two nonzero rows ofR are1 −1 0 and0 1 −1 (signs were reversed to make the
pivot= +1). Row3 of R is zero. The tree has edges from node1 to 2 and node2 to 3.

4 The equations in 5.6.3 can be solved whenb3−b2+b1 = 0 (this is actually Kirchhoff’s
Voltage Law). These are exactly all the vectorsb that are orthogonal toy = (1,−1, 1).
(If Y Tb 6= 0, then KVL fails andAv = b has no solution.)

5 Kirchhoff’s Current LawATy = f is solvable forf = (1,−1, 0) and not solvable for
f = (1, 0, 0); f must be orthogonal to(1, 1, 1) in the nullspace:f1 + f2 + f3 = 0.

6 ATAv =

[
2 −1 −1

−1 2 −1
−1 −1 2

]
v =

[
3

−3
0

]
= f producesv =

[
1

−1
0

]
+

[
c
c
c

]
; potentials

v = 1,−1, 0 and currents−Av = 2, 1, −1; f sends 3 units from node 2 into node 1.
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7 The triangle graph hasATA = graph Laplacian :

[ −1 −1 0
1 0 −1
0 1 1

] [ −1 1 0
−1 0 1
0 −1 1

]
=

[
2 −1 −1

−1 2 −1
−1 −1 2

]
.

All vectors(c, c, c) are in nullspace ofA = nullspace ofATA.

8 A =




−1 1 0 0
−1 0 1 0
0 −1 1 0
0 −1 0 1
0 0 −1 1


 leads tov =



1
1
1
1


 andy =




−1
1

−1
0
0


 and




0
0
1

−1
1


 solving

ATy = 0.

9 Elimination onAv = b always leads toyTb = 0 in the zero rows ofU andR:
−b1 + b2 − b3 = 0 and b3 − b4 + b5 = 0 (thosey’s are from Problem 8 in the
left nullspace). This is Kirchhoff’sVoltageLaw around the twoloops.

10 The echelon form ofA isU =




−1 1 0 0
0 −1 1 0
0 0 −1 1
0 0 0 0
0 0 0 0




The nonzero rows ofU keep
edges 1, 2, 4. Other spanning trees
from edges, 1, 2, 5; 1, 3, 4; 1, 3, 5;
1, 4, 5; 2, 3, 4; 2, 3, 5; 2, 4, 5.

11 (a) The diagonal2, 3, 3, 2 counts edges that go in or out of nodes1, 2, 3, 4 on the
graph. WhenAT multipliesA, those diagonal entries are dot products (rowi of
AT) · (columni of A) = ||column i||2 = number of−1’s or 1’s in columni =
degree of nodei.

(b) Columni (from nodei) overlays columnj (from nodej) only when an edge
connects nodesi andj. Then the row ofA for that edge has−1 and1 in those
columns—those numbers multiply to give−1.

12 The nullspace ofATA contains(1, 1, 1, 1) just likeN (A). The rank is4 − 1 = 3. A
vectorf is in the column space ofATA (= row space by symmetry) exactly whenf is
orthogonal to the nullspace—which means thatf1 + f2 + f3 + f4 = 0. If you add up
the4 equationsATAv = f , you see this again.

13 Then by n adjacency matrixfor the4 node graph is

W =




0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0


 W 2 =




2 1 1 2
1 3 2 1
1 2 3 1
2 1 1 2




You can check that thei, j entry ofW 2 is the number of2-step pathsfrom i to j. When
i = j those paths go out and back. Only one2-step path connects nodes1 and2, going
through node3.

14 The number of loops in this connected graph isn − m + 1 = 7 − 7 + 1 = 1.
What answer if the graph has two separate components (no edges between)?
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15 Start from (4 nodes)− (6 edges)+ (3 loops)= 1. If a new node connects to1 old
node,5 − 7 + 3 = 1. If the new node connects to2 old nodes, a new loop is formed:
5− 8 + 4 = 1.

16 (a) 8 independent columns (b)f must be orthogonal to the nullspace sof ’s add
to zero (c) Each edge goes into 2 nodes, 12 edges make diagonalentries sum to 24.

17 A complete graphhas5 + 4 + 3 + 2 + 1 = 15 edges. Withn nodes that count is
1 + · · ·+ (n− 1) = n(n− 1)/2. Tree has5 edges.

18 N (A) contains all multiplies of(1, 1, . . . , 1) andno other vectors. The equationsAv =
0 tell you thatvi = vj when nodesi and j are connected by an edge. Thenevery
vi = vj whenever the graph is connected—just go from nodei to nodej using edges
in the graph.

19 (a) Withn nodes and all edges,ATA will haven − 1 along its diagonal (the degree
of every edge). It will gave−1 in every off-diagonal entry (a complete graph has
an edge between every pair of nodesi andj).

(b) If the edge connecting nodes1 and3 is removed, this reduces by1 the degrees
(ATA)11 and (ATA)33 on the diagonal : those degrees are nown − 2. And
(ATA)13 = (ATA)31 = 0 because that edge is gone.

20 With batteriesb1 to b5 in the5 edges of the square graph, the equationAT(Av−b) = 0
gives the voltagesv1, v2, v3, v4 at the4 nodes. Hereb = (1, 1, 1, 1, 1).

ATAv = ATb is




2 −1 −1 0
−1 3 −1 −1
−1 −1 3 −1
0 −1 −1 2






v1
v2
v3
v4


 =



−1 −1 0 0 0
1 0 −1 −1 0
0 1 1 0 −1
0 0 0 1 1







1
1
1
1
1


 =



−2
−1
1
2




Notice that adding the4 equations gives0 = 0 : good. The solutionv gives voltages

v = vp + vn =




−2
−5/4
−3/4
0


+ c




1
1
1
1




where the particular
solution
was chosen to
havev4 = 0.

Chapter 5 Notes, page 321

1 x+ y 6= y + x andx+ (y + z) 6= (x+ y) + z and(c1 + c2)x 6= c1x+ c2x.

2 Whenc(x1, x2) = (cx1, 0), the only broken rule is 1 timesx equalsx. Rules (1)-(4)
for additionx+ y still hold since addition is not changed.

3 (a) cx may not be in our set: not closed under multiplication. Also no 0 and no−x
(b) c(x+ y) is the usual(xy)c, while cx+ cy is the usual(xc)(yc). Those are equal.
With c = 3, x = 2, y = 1 this is3(2+ 1) = 8. The zero vector is the number 1.

4 The zero vector in matrix spaceM is

[
0 0
0 0

]
; 1
2A =

[
1 −1
1 −1

]
and−A =

[
−2 2
−2 2

]
.

The smallest subspace ofM containing the matrixA consists of all matricescA.
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5 Whenf(x) = x2 andg(x) = 5x, the combination3f − 4g in function space is
h(x) = 3f(x) − 4g(x) = 3x2 − 20x.

6 Rule 8 is broken: Ifcf(x) is defined to be the usualf(cx) then(c1+c2)f = f ((c1+
c2)x) is not generally the same asc1f + c2f = f(c1x) + f(c2x).
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6

Problem Set 6.1, page 333

1 A has eigenvalues1 and 1
2 , A2 has eigenvalues1 and(12 )

2 = 1
4 , A∞ has eigenvalues1

and0 (notice(12 )
∞ = 0).

(a) Exchange the rows ofA to getB:

B =

[
.2 .7
.8 .3

]
has eigenvalues1 and− 1

2 .

B is still a Markov matrix, soλ = 1 is still an eigenvalue. The sum down the main
diagonal (the “trace”) is now.5 so the second eigenvalue must be−.5. Then
trace= .2 + .3 = 1− .5.

Zero eigenvalues remain zero after elimination because thematrix remains singular and
its determinant remains zero.

2 A hasλ1 = −1 andλ2 = 5 with eigenvectorsx1 = (−2, 1) andx2 = (1, 1). The
matrixA + I has the same eigenvectors, with eigenvalues increased by1 to 0 and6.
That zero eigenvalue correctly indicates thatA+ I is singular.

3 A hasλ1 = 2 andλ2 = −1 (check trace and determinant) withx1 = (1, 1) and
x2 = (2,−1). A−1 has the same eigenvectors, with eigenvalues1/λ = 1

2 and−1.

4 A hasλ1 = −3 andλ2 = 2 (check trace= −1 and determinant= −6) with x1 =
(3,−2) andx2 = (1, 1). A2 has thesame eigenvectorsasA, with eigenvaluesλ2

1 = 9
andλ2

2 = 4.

5 A andB have eigenvalues1 and3. A+B hasλ1 = 3, λ2 = 5. Eigenvalues ofA+B
are not equalto eigenvalues ofA plus eigenvalues ofB.

6 A andB haveλ1 = 1 andλ2 = 1. AB andBA haveλ = 2±
√
3. Eigenvalues ofAB

are not equalto eigenvalues ofA times eigenvalues ofB. Eigenvalues ofAB andBA
are equal (this is proved in section 6.6, Problems 18-19).

7 U is triangular so its eigenvalues are the diagonal entriesu11, u22, . . . , unn. (This is
because det(U − λI) will be just the product(u11 − λ)(u22 − λ) . . . (unn − λ) from
the main diagonal.)

A =

[
1 1
1 1

]
with λ = 2 and0 U =

[
1 1
0 0

]
hasλ = 1 and0.

8 (a) Multiply Ax to seeλx which revealsλ (b) Solve(A− λI)x = 0 to findx.

9 (a) Multiply by A: A(Ax) = A(λx) = λAx givesA2x = λ2x (b) Multiply by
A−1: x = A−1Ax = A−1λx = λA−1x givesA−1x = 1

λ
x (c) Add Ix = x:

(A+ I)x = (λ + 1)x.

10 A hasλ1 = 1 andλ2 = .4 with x1 = (1, 2) andx2 = (1,−1). A∞ hasλ1 = 1 and
λ2 = 0 (same eigenvectors).A100 hasλ1 = 1 andλ2 = (.4)100 which is near zero. So
A100 is very nearA∞: same eigenvectors and close eigenvalues.

11 With λ = 0, 1, 2 the rank is2. The eigenvalues ofB2 are0, 1, 4. The eigenvalues of
(B2 + I)−1 are(0 + 1)−1 = 1, (1 + 1)−1 = 1

2 , (4 + 1)−1 = 1
5 .
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12 The projection matrixP hasλ = 1, 0, 1 with eigenvectors(1, 2, 0), (2,−1, 0), (0, 0, 1).
Add the first and last vectors:(1, 2, 1) also hasλ = 1. NoteP 2 = P leads toλ2 = λ
soλ = 0 or 1.

13 (a) Pu = (uuT)u = u(uTu) = u soλ = 1 (b) Pv = (uuT)v = u(uTv) =
0 (c) x1 = (−1, 1, 0, 0), x2 = (−3, 0, 1, 0), x3 = (−5, 0, 0, 1) all havePx = 0x =
0.

14 Two eigenvectors of this rotation matrix arex1 = (1, i) andx2 = (1,−i) (more
generallycx1, anddx2 with cd 6= 0).

15 These matrices all haveλ1 = 0 andλ2 = 0 (which we can see from trace= 0 and
determinant= 0):

A =

[
0 0
0 0

]
A =

[
0 1
0 0

]
hasA2 = 0 A =

[
a −a
a −a

]
hasA2 = 0.

16 λ = 0, 0, 6 (notice rank1 and trace6) with x1 = (0,−2, 1), x2 = (1,−2, 0), x3 =
(1, 2, 1).

17

[
5 1
4 2

] [
1
1

]
=

[
6
6

]
soλ1 = 6. Thenλ2 = 1 to make trace= 5 + 2 = 6 + 1.

[
a b
c d

] [
1
1

]
=

[
a+ b
c+ d

]
= (a+ b)

[
1
1

]
so

[
1
1

]
is an eigenvector.

The other eigenvalue isd− b to make trace= a+ d = (a+ b) + (d− b).

18 These3 matrices haveλ = 4 and5, trace9, det 20:

[
4 0
0 5

]
,

[
3 2

−1 6

]
,

[
2 2

−3 7

]
.

19 (a) u is a basis for the nullspace,v andw give a basis for the column space
(b) x = (0, 1

3 ,
1
5 ) is a particular solution. Add anycu from the nullspace

(c) If Ax = u had a solution,u would be in the column space: wrong dimension 3.

20 (a) A =

[
0 −1

−28 11

]
has trace11 and determinant28, soλ = 4 and7.

(b) A =

[
0 1

−λ1λ2 λ1 + λ2

]
has traceλ1 + λ2 and determinantλ1λ2 so its eigenval-

ues must beλ1 andλ2. This is a typicalcompanion matrix.

21 (A− λI) has the same determinant as(A− λI)T

because every square matrix hasdetM = detMT.

[
1 0
1 0

]
and

[
1 1
0 0

]
havedifferent
eigenvectors.

22 λ = 1 (for Markov), 0 (for singular),− 1
2 (so sum of eigenvalues= trace= 1

2 ).

23 If you known independent eigenvectors and their eigenvalues, you know the matrixA.
In Section 6.2, thex’s andλ’s go intoV andΛ, and the matrix must beA = V ΛV −1.
In this section, Problem 23 suggests thatAv = Bv for every vectorv (which proves
A = B) because

v = c1x1 + · · ·+ cnxn Av = c1λ1x1 + · · ·+ cnλnxn = Bv.

24 The block matrix hasλ = 1, 2 fromB and5, 7 fromD. All entries ofC are multiplied
by zeros indet(A− λI), soC has no effect on the eigenvalues.
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25 A has rank 1 with eigenvalues0, 0, 0, 4 (the 4 comes from the trace ofA). C has rank
2 (ensuring two zero eigenvalues) and(1, 1, 1, 1) is an eigenvector withλ = 2. With
trace 4, the other eigenvalue is alsoλ = 2, and its eigenvector is(1,−1, 1,−1).

26 B hasλ = −1, −1, −1, 3 andC hasλ = 1, 1, 1,−3. Both havedet = −3.

27 Triangular matrix:λ(A) = 1, 4, 6; λ(B) = 2,
√
3, −

√
3; Rank-1 matrix:λ(C) =

0, 0, 6.

28 det

[
0− λ 1 0
0 0− λ 1
1 0 0− λ

]
= −λ3 + 1 = 0 for λ = 1, e2πi/3, e−2πi/3.

Those complex eigenvaluesλ2, λ3 arecos 120◦ ± i sin 120◦ = 1
2 ± i

√
3
2 .

The trace ofP is λ1 + λ2 + λ3 = 0.

det

[
0− λ 0 1
0 1− λ 0
1 0 0− λ

]
= −λ3 + λ2 + λ − 1 = 0 for λ = 1, 1,−1. The trace is

1 + 1− 1 = 1. Three eigenvectors are(1, 1, 1) and(1, 0, 1) and(1, 0,−1). SinceP is
symmetric we could have chosen orthogonal eigenvectors—change the first to(0, 1, 0).

29 Setλ = 0 in det(A− λI) = (λ1 − λ) . . . (λn − λ) to finddetA = (λ1)(λ2) · · · (λn).

30 λ1 = 1
2 (a + d +

√
(a− d)2 + 4bc) andλ2 = 1

2 (a + d −
√

) add toa + d.
If A hasλ1 = 3 andλ2 = 4 then det(A− λI) = (λ − 3)(λ− 4) = λ2 − 7λ+ 12.

Problem Set 6.2, page 345

Questions 1–7 are about the eigenvalue and eigenvector matricesΛ and V .

1 (a) Factor these two matrices intoA = V ΛV −1 :

A =

[
1 2
0 3

]
and A =

[
1 1
3 3

]
.

(b) If A = V ΛV −1 thenA3 = (V )(Λ3)(V −1) andA−1 = (V )(Λ−1)(V −1).
[
1 2
0 3

]
=

[
1 1
0 1

] [
1 0
0 3

] [
1 −1
0 1

]
;

[
1 1
3 3

]
=

[
1 1

−1 3

] [
0 0
0 4

] [ 3
4 − 1

4
1
4

1
4

]
.

2 If A has λ1 = 2 with eigenvectorx1 =
[
1
0

]
and λ2 = 5 with x2 =

[
1
1

]
,

useV ΛV −1 to findA. No other matrix has the sameλ’s andx’s.
Put the eigenvectors inV
and eigenvalues inΛ. A = V ΛS−1 =

[
1 1
0 1

] [
2 0
0 5

] [
1 −1
0 1

]
=

[
2 3
0 5

]
.

3 SupposeA = V ΛV −1. What is the eigenvalue matrix forA + 2I ? What is the
eigenvector matrix ? Check thatA+ 2I = (V )(Λ + 2I)(V )−1.

If A = V ΛV −1 then the eigenvalue matrix forA + 2I is Λ + 2I and the eigenvector
matrix is stillV . V (Λ + 2I)V −1 = V ΛV −1 + V (2I)V −1 = A+ 2I.

4 True or false : If the columns ofV (eigenvectors ofA) are linearly independent, then
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(a) A is invertible (b) A is diagonalizable

(c) V is invertible (d) V is diagonalizable.

(a) False: don’t knowλ’s (b) True (c) True (d) False: need eigenvectors ofV

5 If the eigenvectors ofA are the columns ofI, thenA is a matrix. If the eigen-
vector matrixV is triangular, thenV −1 is triangular. Prove thatA is also triangular.

With V = I, A = V ΛV −1 = Λ is a diagonal matrix. IfV is triangular, thenV −1 is
triangular, soV ΛV −1 is also triangular.

6 Describe all matricesV that diagonalize this matrixA (find all eigenvectors) :

A =

[
4 0
1 2

]
.

Then describe all matrices that diagonalizeA−1.

The columns ofV are nonzero multiples of(2,1) and(0,1): in either order. The same
matricesV will diagonizeA−1.

7 Write down the most general matrix that has eigenvectors
[
1
1

]
and

[
1

−1

]
.

A = V ΛV −1 =

[
1 1
1 −1

] [
λ1

λ2

] [
1 1
1 −1

]
/2 =

[
λ1 + λ2 λ1 − λ2

λ1 − λ2 λ1 + λ2

]
/2 =

[
a b
b a

]
for anya andb.

Questions 8–10 are about Fibonacci and Gibonacci numbers.

8 Diagonalize the Fibonacci matrix by completingV −1 :
[

1 1
1 0

]
=

[
λ1 λ2

1 1

] [
λ1 0
0 λ2

] [ ]
.

Do the multiplicationV ΛkV −1
[
1
0

]
to find its second component. This is thekth Fi-

bonacci numberFk =
(
λk
1 − λk

2

)/(
λ1 − λ2

)
.

A = V ΛV −1 =

[
1 1
1 0

]
=

1

λ1 − λ2

[
λ1 λ2

1 1

] [
λ1 0
0 λ2

] [
1 −λ2

−1 λ1

]
. V ΛkV −1 =

1

λ1 − λ2

[
λ1 λ2

1 1

] [
λk
1 0
0 λk

2

] [
1 −λ2

−1 λ1

] [
1
0

]
=

[
2nd componentis Fk

(λk
1 − λk

2)/(λ1 − λ2)

]
.

9 SupposeGk+2 is theaverageof the two previous numbersGk+1 andGk :

Gk+2 = 1
2Gk+1 +

1
2Gk

Gk+1 = Gk+1
is

[
Gk+2

Gk+1

]
=

[
A

] [
Gk+1

Gk

]
.

(a) FindA and its eigenvalues and eigenvectors.

(b) Find the limit asn → ∞ of the matricesAn = V ΛnV −1.

(c) If G0 = 0 andG1 = 1 show that the Gibonacci numbers approach2
3 .
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(a) A =

[
.5 .5
1 0

]
hasλ1 = 1, λ2 = − 1

2 with x1 = (1, 1), x2 = (1,−2)

(b) An =

[
1 1
1 −2

] [
1n 0
0 (−.5)n

][ 2
3

1
3

1
3 − 1

3

]
→ A∞ =

[
2
3

1
3

2
3

1
3

]

10 Prove that every third Fibonacci number in0, 1, 1, 2, 3, . . . is even.

The ruleFk+2 = Fk+1 + Fk produces the pattern: even, odd, odd, even, odd, odd,. . .

Questions 11–14 are about diagonalizability.

11 True or false : If the eigenvalues ofA are2, 2, 5 then the matrix is certainly

(a) invertible (b) diagonalizable (c) not diagonalizable.

(a) True (no zero eigenvalues) (b)False(repeatedλ = 2 may have only one line of
eigenvectors) (c)False(repeatedλ may have a full set of eigenvectors)

12 True or false : If the only eigenvectors ofA are multiples of(1, 4) thenA has

(a) no inverse (b) a repeated eigenvalue (c) no diagonalizationV ΛV −1.

(a) False: don’t knowλ (b) True: an eigenvector is missing (c) True.

13 Complete these matrices so thatdetA = 25. Then check thatλ = 5 is repeated—
the trace is10 so the determinant ofA − λI is (λ − 5)2. Find an eigenvector with
Ax = 5x. These matrices will not be diagonalizable because there isno second line of
eigenvectors.

A =

[
8

2

]
and A =

[
9 4

1

]
and A =

[
10 5
−5

]

A =

[
8 3

−3 2

]
(or other),A =

[
9 4

−4 1

]
, A =

[
10 5
−5 0

]
;

only eigenvectors
arex = (c,−c).

14 The matrixA =
[
3 1
0 3

]
is not diagonalizable because the rank ofA − 3I is .

Change one entry to makeA diagonalizable. Which entries could you change ?

The rank ofA − 3I is r = 1. Changing any entry excepta12 = 1 makesA
diagonalizable (A will have unequal eigenvalues, so eigenvectors are independent.)

Questions 15–19 are about powers of matrices.

15 Ak = V ΛkV −1 approaches the zero matrix ask → ∞ if and only if everyλ has
absolute value less than . Which of these matrices hasAk → 0?

A1 =

[
.6 .9
.4 .1

]
and A2 =

[
.6 .9
.1 .6

]
.

Ak = V ΛkV −1 approaches zeroif and only if every |λ| < 1; Ak
1 → A∞

1 , Ak
2 → 0.



6.2. Diagonalizing a Matrix 167

16 (Recommended) FindΛ andV to diagonalizeA1 in Problem 15. What is the limit
of Λk ask → ∞ ? What is the limit ofV ΛkV −1 ? In the columns of this limiting
matrix you see the .

Λ =

[
1 0

0 .2

]
andV =

[
1 1

1 −1

]
; Λk →

[
1 0

0 0

]
andV ΛkV −1 →

[
1
2

1
2

1
2

1
2

]
:

steady
state .

17 FindΛ andV to diagonalizeA2 in Problem 15. What is(A2)
10u0 for theseu0 ?

u0 =

[
3
1

]
and u0 =

[
3

−1

]
and u0 =

[
6
0

]
.

Λ =

[
.9 0
0 .3

]
, S =

[
3 −3
1 1

]
; A10

2

[
3
1

]
= (.9)10

[
3
1

]
, A10

2

[
3

−1

]
= (.3)10

[
3

−1

]
,

A10
2

[
6
0

]
= (.9)10

[
3
1

]
+ (.3)10

[
3

−1

]
because

[
6
0

]
is the sum of

[
3
1

]
+

[
3

−1

]
.

18 DiagonalizeA and computeV ΛkV −1 to prove this formula forAk :

A =

[
2 −1

−1 2

]
has Ak =

1

2

[
1 + 3k 1− 3k

1− 3k 1 + 3k

]
.

[
2 −1

−1 2

]
=

1

2

[
1 −1
1 1

] [
1 0
0 3

] [
1 1

−1 1

]
and Ak =

1

2

[
1 −1
1 1

] [
1 0
0 3k

]

[
1 1

−1 1

]
. Multiply those last three matrices to getAk =

1

2

[
1 + 3k 1− 3k

1− 3k 1 + 3k

]
.

19 DiagonalizeB and computeV ΛkV −1 to prove this formula forBk :

B =

[
5 1
0 4

]
has Bk =

[
5k 5k − 4k

0 4k

]
.

Bk =

[
1 1
0 −1

] [
5 0
0 4

]k [
1 1
0 −1

]
=

[
5k 5k − 4k

0 4k

]
.

20 SupposeA = V ΛV −1. Take determinants to provedetA = detΛ = λ1λ2 · · ·λn.
This quick proof only works whenA can be .

detA = (detV )(det Λ)(detV −1) = detΛ = λ1 · · ·λn. This proof works whenA is
diagonalizable.

21 Show that traceV T = traceTV , by adding the diagonal entries ofV T andTV :

V =

[
a b
c d

]
and T =

[
q r
s t

]
.

ChooseT asΛV −1. ThenV ΛV −1 has the same trace asΛV −1V = Λ. The trace ofA
equals the trace ofΛ, which is certainly the sum of the eigenvalues.

traceV T = (aq + bs) + (cr + dt) is equal to(qa + rc) + (sb + td) = traceTV .
Diagonalizable trace ofV ΛV −1 = trace of(ΛV −1)V = trace ofΛ: sum of theλ’s.
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22 AB − BA = I is impossible since the left side has trace= . But find an
elimination matrix so thatA = E andB = ET give

AB −BA =

[
−1 0
0 1

]
which has trace zero.

AB − BA = I is impossible since traceAB − traceBA = zero 6= trace I.
AB −BA = C is possible when trace(C) = 0.

E =

[
1 0
1 1

]
hasEET − ETE =

[
−1 0
0 1

]
.

23 If A = V ΛV −1, diagonalize the block matrixB =
[

A 0
0 2A

]
. Find its eigenvalue and

eigenvector (block) matrices.

If A = V ΛV −1 thenB =

[
A 0
0 2A

]
=

[
V 0
0 V

] [
Λ 0
0 2Λ

] [
V −1 0
0 V −1

]
. SoB

has the additional eigenvalues2λ1, . . . , 2λn.
24 Consider all 4 by 4 matricesA that are diagonalized by the same fixed eigenvector

matrix V . Show that theA’s form a subspace(cA andA1 + A2 have this sameV ).
What is this subspace whenV = I ? What is its dimension ?

TheA’s form a subspace sincecA andA1 + A2 all have the sameV . WhenV = I
theA’s with those eigenvectors give the subspace of diagonal matrices. Dimension 4.

25 SupposeA2 = A. On the left sideA multiplies each column ofA. Which of our four
subspaces contains eigenvectors withλ = 1? Which subspace contains eigenvectors
with λ = 0? From the dimensions of those subspaces,A has a full set of independent
eigenvectors. So every matrix withA2 = A can be diagonalized.

If A has columnsx1, . . . ,xn then column by column,A2 = A means everyAxi = xi.
All vectors in the column space (combinations of those columnsxi) are eigenvectors
with λ = 1. Always the nullspace hasλ = 0 (A might have dependent columns, so
there could be less thann eigenvectors withλ = 1). Dimensions of those spaces add
to n by the Fundamental Theorem, soA is diagonalizable(n independent eigenvectors
altogether).

26 (Recommended) SupposeAx = λx. If λ = 0 thenx is in the nullspace. Ifλ 6= 0 then
x is in the column space. Those spaces have dimensions(n − r) + r = n. So why
doesn’t every square matrix haven linearly independent eigenvectors?

Two problems: The nullspace and column space can overlap, sox could be in both.
There may not ber independent eigenvectors in the column space.

27 The eigenvalues ofA are 1 and 9, and the eigenvalues ofB are−1 and 9 :

A =

[
5 4
4 5

]
and B =

[
4 5
5 4

]
.

Find a matrix square root ofA from R = V
√
ΛV −1. Why is there no real matrix

square root ofB ?

R=V
√
ΛV −1=

[
2 1
1 2

]
hasR2=A.

√
B needsλ =

√
9 and

√
−1, trace is not real.

Note that

[
−1 0
0 −1

]
can have

√
−1 = i and−i, trace0, real square root

[
0 1

−1 0

]
.
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28 The powersAk approach zero if all|λi| < 1 and they blow up if any|λi| > 1.
Peter Lax gives these striking examples in his bookLinear Algebra:

A =

[
3 2
1 4

]
B =

[
3 2

−5 −3

]
C =

[
5 7

−3 −4

]
D =

[
5 6.9

−3 −4

]

‖A1024‖ > 10700 B1024 = I C1024 = −C ‖D1024‖ < 10−78

Find the eigenvaluesλ = eiθ of B andC to showB4 = I andC3 = −I.

B hasλ = i and−i, soB4 hasλ4 = 1 and 1 andB4 = I. C hasλ = (1 ±
√
3i)/2.

This isexp(±πi/3) soλ3 = −1 and−1. ThenC3 = −I andC1024 = −C.

29 If A andB have the sameλ’s with the same full set of independent eigenvectors,
their factorizations into are the same. SoA = B.

The factorizations ofA andB into V ΛV −1 are the same. SoA = B. (This is
the same as Problem 6.1.25, expressed in matrix form.)

30 Suppose the sameV diagonalizes bothA andB. They have the same eigenvectors in
A = V Λ1V

−1 andB = V Λ2V
−1. Prove thatAB = BA.

A = V Λ1V
−1 andB = V Λ2V

−1. Diagonal matrices always giveΛ1Λ2 = Λ2Λ1.
ThenAB = BA from V Λ1V

−1V Λ2V
−1 = VΛ1Λ2V

−1 = VΛ2Λ1V
−1. This is

V Λ2V
−1V Λ1V

−1 = BA.

31 (a) If A =
[
a b
0 d

]
then the determinant ofA − λI is (λ − a)(λ − d). Check the

“Cayley-Hamilton Theorem” that(A− aI)(A− dI) = zero matrix.

(b) Test the Cayley-Hamilton Theorem on Fibonacci’sA =
[
1 1
1 0

]
. The theorem

predicts thatA2 −A− I = 0, since the polynomialdet(A− λI) is λ2 − λ− 1.

(a) A =

[
a b
0 d

]
hasλ = a andλ = d: (A−aI)(A−dI) =

[
0 b
0 d− a

] [
a− d b
0 0

]

=

[
0 0
0 0

]
. (b) A =

[
1 1
1 0

]
hasA2 =

[
2 1
1 1

]
andA2 − A − I = 0 is true,

matchingλ2 − λ− 1 = 0 as the Cayley-Hamilton Theorem predicts.

32 SubstituteA = V ΛV −1 into the product(A−λ1I)(A−λ2I) · · · (A−λnI) and explain
why this produces the zero matrix. We are substituting the matrix A for the numberλ
in the polynomialp(λ) = det(A− λI). TheCayley-Hamilton Theorem says that this
product is alwaysp(A) = zero matrix, even ifA is not diagonalizable.

WhenA = V ΛV −1 is diagonalizable, the matrixA−λjI = V (Λ−λjI)V
−1 will have

0 in thej, j diagonal entry ofΛ−λjI. In the productp(A) = (A−λ1I) · · · (A−λnI),
each insideV −1 cancelsV . This leavesV times (product of diagonal matricesΛ−λjI)
timesV −1. That product is the zero matrix because the factors producea zero in each
diagonal position. Thenp(A) = zero matrix, which is the Cayley-Hamilton Theorem.
(If A is not diagonalizable, one proof is to take a sequence of diagonalizable matrices
approachingA.)

Comment I have also seen the following reasoning but I am not convinced:
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Apply the formulaACT = (detA)I from Section 5.3 toA − λI with variableλ. Its
cofactor matrixC will be a polynomial inλ, since cofactors are determinants:

(A− λI) cof (A− λI)T = det(A− λI)I = p(λ)I.

“For fixedA, this is an identity between two matrix polynomials.” Setλ = A to find
the zero matrix on the left, sop(A) = zero matrix on the right—which is the Cayley-
Hamilton Theorem.

I am not certain about the key step of substituting a matrix for λ. If other matrices
B are substituted, does the identity remain true? IfAB 6= BA, even the order of
multiplication seems unclear. . .

Challenge Problems

33 Thenth power of rotation throughθ is rotation throughnθ :

An =

[
cos θ − sin θ
sin θ cos θ

]n
=

[
cosnθ − sinnθ
sinnθ cosnθ

]
.

Prove that neat formula by diagonalizingA = V ΛV −1. The eigenvectors (columns of
V ) are(1, i) and(i, 1). You need to know Euler’s formulaeiθ = cos θ + i sin θ.

The eigenvalues ofA =

[
cos θ − sin θ
sin θ cos θ

]
areλ = eiθ ande−iθ (trace2 cos θ and

det = 1). Their eigenvectors are(1,−i) and(1, i):

An = V ΛnV −1 =

[
1 1

−i i

] [
einθ

e−inθ

] [
i −1
i 1

]
/2i

=

[
(einθ + e−inθ)/2 · · ·
(einθ − e−inθ)/2i · · ·

]
=

[
cosnθ − sinnθ
sinnθ cosnθ

]
.

Geometrically,n rotations byθ give one rotation bynθ.

34 The transpose ofA = V ΛV −1 isAT = (V −1)TΛV T. The eigenvectors inATy = λy
are the columns of that matrix(V −1)T. They are often calledleft eigenvectors.

How do you multiply three matricesV ΛV −1 to find this formula forA?

Sum of rank-1 matrices A = V ΛV −1 = λ1x1y
T
1 + · · ·+ λnxny

T
n .

Columns ofV times rows ofΛV −1 will give r rank-1 matrices(r = rank ofA).

35 The inverse ofA = eye(n)+ones(n) isA−1 = eye(n)+C ∗ones(n). Multiply AA−1

to find that numberC (depending onn).

Note thatones(n) ∗ ones(n) = n ∗ ones(n). This leads toC = 1/(n+ 1).

AA−1 = (eye(n) + ones(n)) ∗ (eye(n) + C ∗ ones(n))

= eye(n) + (1 + C + Cn) ∗ ones(n) = eye(n).
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Problem Set 6.3, page 357

1 Find all solutionsy = c1e
λ1tx1 + c2e

λ2tx2 to y′ =

[
3 1
3 5

]
y. Which solution

starts fromy(0) = c1x1 + c2x2 = (2, 2)?

The eigenvalues come fromdet(A− λI) = 0. This is

λ2 − 8λ+ 12 = (λ− 2)(λ− 6) = 0 soλ = 2, 6

Eigenvectors :(A−2I)x1 = 0 and(A−6I)x2 = 0 givex1 = (1,−1) andx2 = (1, 3)

Solutions arey(t) = c1e
2t

[
1

−1

]
+ c2e

−6t

[
1
3

]

Constantsc1, c2 come from

[
1 1

−1 3

][
c1
c2

]
= y(0) =

[
2
2

]
. Thenc1 = c2 = 1.
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2 Find two solutions of the formy = eλtx to y′ =

[
3 10
2 4

]
y.

The eigenvalues come fromλ2 − 7λ − 8 = 0. Factor into(λ − 8)(λ + 1) to see
λ = 8, and−1.

(A− 8I)x1 =

[
−5 10
2 −1

]
x1 = 0 gives x1 =

[
2

−1

]

(A+ I)x2 =

[
−4 10
2 −5

]
x2 = 0 gives x2 =

[
5

−2

]

The two solutions arey(t) = e8tx1 ande−tx2

3 If a 6= d, find the eigenvalues and eigenvectors and the complete solution to y′ =Ay.
This equation is stable whena andd are .

y′ =

[
a b
0 d

]
y.

The eigenvalues areλ = a andλ = d. The eigenvectors come from

(A− aI)x1 =

[
0 b
0 d− a

]
x1 = 0. x1 =

[
1
0

]

(A− dI)x2 =

[
a− d b
0 0

]
x2 = 0. x2 =

[
b

d− a

]

Two solutions arey = eatx1 andy = edtx2. Stability fornegativea andd.

4 If a 6= −b, find the solutionseλ1tx1 and eλ2tx2 to y′ = Ay :

A =

[
a b
a b

]
. Why is y′ = Ay not stable?

A is singular soλ1 = 0. Trace isa+ b soλ2 = a+ b. (A− 0I)x1 = 0 gives

x1 =

[
b

−a

]
(A− (a+ b)I)x2 =

[
−b b
a −a

]
x2 = 0 givesx2 =

[
1
1

]
.

The system is not stable becauseλ = 0 is an eigenvalue. Ifλ2 = a+ b is negative, the
system is “neutral” and the solution approaches a steady state (a multiple ofx1).

5 Find the eigenvaluesλ1, λ2, λ3 and the eigenvectorsx1, x2, x3 of A. Write
y(0) = (0, 1, 0) as a combinationc1x1 + c2x2 + c3x3 = V c and solvey′ = Ay.
What is the limit ofy(t) ast → ∞ (the steady state) ?Steady states come fromλ = 0.

A =

[ −1 1 0
1 −2 1
0 1 −1

]
.

Calculation givesdet(A− λI) = −(λ+ 1)λ(λ + 3) and eigenvaluesλ = 0,−1,−3.
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λ=0 has eigenvectorx1=

[
1
1
1

]
λ=−1 has x2=

[
1
0

−1

]
λ=−3 has x3=

[
1

−2
1

]

Notice: Those eigenvectors are orthogonal (becauseA is symmetric). Theny(0) is

(0, 1, 0) =
1

3
(x1 − x3) soy(t) =

1

3
e0tx1 −

1

3
e−3tx2 approachesy(∞) =

1

3

[
1
1
1

]
.

6 The simplest2 by 2 matrix without two independent eigenvectors hasλ = 0, 0 :

[
y1
y2

]′
= Ay =

[
0 1
0 0

] [
y1
y2

]
has a first solution

[
y1
y2

]
= e0t

[
1
0

]
.

Find a second solution to these equationsy1
′ = y2 andy2′ = 0. That second solution

starts witht times the first solution to givey1 = t. What isy2 ?

Note A complete discussion ofy′ = Ay for all cases of repeatedλ’s would involve
theJordan formof A : too technical. Section 6.4 shows that a triangular form is suffi-
cient, as Problems 6 and 8 confirm. We can solve fory2 and theny1.

The first solution toy
′

1 = y2 andy
′

2 = 0 is (y1(t), y2(t)) = (1, 0) = eigenvector.

A second solution has(y1, y2) = (t, 1). The factort appears when there is nox2.

7 Find twoλ’s andx’s so thaty = eλtx solves

dy

dt
=

[
4 3
0 1

]
y.

What combinationy = c1e
λ1tx1 + c2e

λ2tx2 starts fromy(0) = (5,−2)?

y1 = e4t
[
1
0

]
, y2 = et

[
1

−1

]
. If y(0) =

[
5

−2

]
, theny(t) = 3e4t

[
1
0

]
+ 2et

[
1

−1

]
.

8 Solve Problem 7 fory = (y, z) by back substitution,z beforey :

Solve
dz

dt
= z from z(0) = −2. Then solve

dy

dt
= 4y + 3z from y(0) = 5.

The solution fory will be a combination ofe4t andet. λ = 4 and1. z(t) = −2et.

Thendy/dt = 4y − 6et with y(0) = 5 givesy(t) = 3e4t + 2et as in Problem 7.
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9 (a) If every column ofA adds to zero, why isλ = 0 an eigenvalue?

(b) With negative diagonal and positive off-diagonal adding to zero,y ′ = Ay
will be a “continuous” Markov equation. Find the eigenvalues and eigenvectors,
and thesteady stateast → ∞ :

Solve
dy

dt
=

[
−2 3
2 −3

]
y with y(0) =

[
4
1

]
. What isy(∞) ?

(a) If every column ofA adds to zero, this means that the rows add to the zero row. So
the rows are dependent, andA is singular, andλ = 0 is an eigenvalue.

(b) The eigenvalues ofA =

[
−2 3
2 −3

]
areλ1 = 0 with eigenvectorx1 = (3, 2) and

λ2 = −5 (to give trace= −5) with x2 = (1,−1). Then the usual 3 steps:

1. Writey(0) =

[
4
1

]
as

[
3
2

]
+

[
1

−1

]
= x1 + x2

2. Follow those eigenvectors bye0tx1 ande−5tx2

3. The solutiony(t) = x1 + e−5tx2 has steady statex1 = (3, 2).

10 A door is opened between rooms that holdv(0) = 30 people andw(0) = 10 people.
The movement between rooms is proportional to the differencev − w:

dv

dt
= w − v and

dw

dt
= v − w.

Show that the totalv + w is constant (40 people). Find the matrix indy/dt = Ay and
its eigenvalues and eigenvectors. What arev andw at t = 1 andt = ∞?

d(v+w)/dt = (w− v)+ (v−w) = 0, so the totalv+w is constant.A =

[
−1 1
1 −1

]

has
λ1 = 0
λ2 = −2

with x1 =

[
1
1

]
, x2 =

[
1

−1

]
;

v(1) = 20 + 10e−2

w(1) = 20− 10e−2
v(∞) = 20
w(∞) = 20

11 Reverse the diffusion of people in Problem 10 todz/dt = −Az :

dv

dt
= v − w and

dw

dt
= w − v.

The totalv +w still remains constant. How are theλ’s changed now thatA is changed
to −A? But show thatv(t) grows to infinity fromv(0) = 30.

d

dt

[
v
w

]
=

[
1 −1

−1 1

]
hasλ = 0 and+2: v(t) = 20 + 10e2t → ∞ ast → ∞.

12 A has real eigenvalues butB has complex eigenvalues:

A =

[
a 1
1 a

]
B =

[
b −1
1 b

]
(a andb are real)

Find the stability conditions ona and b so that all solutions ofdy/dt = Ay
anddz/dt = Bz approach zero ast → ∞.
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A =

[
a 1
1 a

]
has real eigenvaluesa+1 anda−1. These are both negative ifa < −1,

and the solutions ofy′ = Ay approach zero.B =

[
b −1
1 b

]
has complex eigenvalues

b + i andb − i. These have negative real parts ifb < 0, and all solutions ofz′ = Bz
approach zero.

13 SupposeP is the projection matrix onto the45◦ line y = x in R2. Its eigenvalues are1
and0 with eigenvectors(1, 1) and(1,−1). If dy/dt = −Py (notice minus sign) can
you find the limit ofy(t) at t = ∞ starting fromy(0) = (3, 1)?

A projection matrix has eigenvaluesλ = 1 andλ = 0. EigenvectorsPx = x fill
the subspace thatP projects onto: herex = (1, 1). EigenvectorsPx = 0 fill the
perpendicular subspace: herex = (1,−1). For the solution toy′ = −Py,

y(0) =

[
3
1

]
=

[
2
2

]
+

[
1

−1

]
y(t) = e−t

[
2
2

]
+ e0t

[
1

−1

]
approaches

[
1

−1

]
.

14 The rabbit population shows fast growth (from6r) but loss to wolves (from−2w).
The wolf population always grows in this model (−w2 would control wolves):

dr

dt
= 6r − 2w and

dw

dt
= 2r + w.

Find the eigenvalues and eigenvectors. Ifr(0) = w(0) = 30 what are the populations
at timet? After a long time, what is the ratio of rabbits to wolves?
[
6 −2
2 1

]
hasλ1 = 5, x1 =

[
2
1

]
, λ2 = 2, x2 =

[
1
2

]
; rabbitsr(t) = 20e5t + 10e2t,

w(t) = 10e5t+20e2t. The ratio of rabbits to wolves approaches20/10; e5t dominates.

15 (a) Write(4, 0) as a combinationc1x1 + c2x2 of these two eigenvectors ofA:
[

0 1
−1 0

] [
1
i

]
= i

[
1
i

] [
0 1

−1 0

] [
1

−i

]
= −i

[
1

−i

]
.

(b) The solution tody/dt = Ay starting from(4, 0) is c1eitx1+c2e
−itx2. Substitute

eit = cos t+ i sin t ande−it = cos t− i sin t to findy(t).

(a)

[
4
0

]
= 2

[
1
i

]
+2

[
1

−i

]
. (b) Theny(t) = 2eit

[
1
i

]
+2e−it

[
1

−i

]
=

[
4 cos t
4 sin t

]
.

Questions 16–19 reduce second-order equations to first-order systems for(y, y′).

16 Find A to change the scalar equationy ′′ = 5y ′ + 4y into a vector equation fory =
(y, y ′):

dy

dt
=

[
y ′

y ′′

]
=

[ ] [
y
y ′

]
= Ay.

What are the eigenvalues ofA? Find them also by substitutingy = eλt into y′′ =
5y′ + 4y.
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d

dt

[
y
y′

]
=

[
y′

y′′

]
=

[
0 1
4 5

] [
y
y′

]
. A =

[
0 1
4 5

]
hasdet(A−λI) = λ2−5λ−4 = 0.

Directly substitutingy = eλt into y′′ = 5y′ + 4y also givesλ2 = 5λ+ 4 and the same
two values ofλ. Those values areλ = 1

2
(5 ±

√
41) by the quadratic formula.

17 Substitutey = eλt into y′′ = 6y′ − 9y to show thatλ = 3 is a repeated root. This is
trouble; we need a second solution aftere3t. The matrix equation is

d

dt

[
y
y ′

]
=

[
0 1

−9 6

] [
y
y ′

]
.

Show that this matrix hasλ = 3, 3 and only one line of eigenvectors.Trouble here too.
Show that the second solution toy′′ = 6y′ − 9y is y = te3t.

A =

[
0 1

−9 6

]
has trace 6,det 9,λ = 3 and 3 withoneindependent eigenvector(1, 3).

18 (a) Write down two familiar functions that solve the equationd2y/dt2 = −9y. Which
one starts withy(0) = 3 andy′(0) = 0?

(b) This second-order equationy′′ = −9y produces a vector equationy′ = Ay:

y =

[
y
y ′

]
dy

dt
=

[
y ′

y ′′

]
=

[
0 1

−9 0

] [
y
y ′

]
= Ay.

Findy(t) by using the eigenvalues and eigenvectors ofA: y(0) = (3, 0).

(a) y(t) = cos 3t andsin 3t solvey′′ = −9y. It is 3 cos 3t that starts withy(0) = 3

andy′(0) = 0. (b) A =

[
0 1

−9 0

]
hasdet = 9: λ = 3i and−3i with x = (1, 3i)

and(1,−3i). Theny(t) = 3

2
e3it

[
1
3i

]
+ 3

2
e−3it

[
1

−3i

]
=

[
3 cos 3t

−9 sin 3t

]
.

19 If c is not an eigenvalue ofA, substitutey = ectv and find a particular solution to
dy/dt = Ay − ectb. How does it break down whenc is an eigenvalue ofA?

Substitutingy = ectv gives cectv = Aectv − ectb or (A − cI)v = b or v =
(A−cI)−1b = particular solution. Ifc is an eigenvalue thenA− cI is not invertible.

20 A particular solution tody/dt = Ay − b is yp = A−1b, if A is invertible. The usual
solutions tody/dt = Ay giveyn. Find the complete solutiony = yp + yn:

(a)
dy

dt
= y − 4 (b)

dy

dt
=

[
1 0
1 1

]
y −

[
4
6

]
.

yp = 4 andy(t) = cet + 4; yp =

[
4
2

]
andy(t) = c1e

t

[
1
t

]
+ c2e

t

[
0
1

]
+

[
4
2

]
.

21 Find a matrixA to illustrate each of the unstable regions in the stability picture :

(a) λ1 < 0 andλ2 > 0 (b) λ1 > 0 andλ2 > 0 (c) λ = a± ib with a > 0.
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(a)

[
1 0
0 −1

]
(b)

[
1 0
0 1

]
(c)

[
1 1

−1 1

]
. These show the unstable cases

(a) λ1 < 0 andλ2 > 0 (b) λ1 > 0 andλ2 > 0 (c) λ = a± ib with a > 0

22 Which of these matrices are stable ? Then Reλ < 0, trace< 0, and det> 0.

A1 =

[
−2 −3
−4 −5

]
A2 =

[
−1 −2
−3 −6

]
A3 =

[
−1 2
−3 −6

]
.

A1 is unstable (trace= −7 but determinant= −2; λ1 < 0 butλ2 > 0).

A2 is unstable (singular soλ1 = 0).

A3 is stable (trace= −7 and determinant12; λ1 < 0 andλ2 < 0).
23 For ann by n matrix with trace(A) = T and det(A) = D, find the trace and determi-

nant of−A. Why isz′ = −Az unstable whenevery′ = Ay is stable ?

If trace(A) = T then trace(−A) = −T

If determinant(A) = D then determinant(−A) = (−1)nD

The eigenvalues of−A are−(eigenvalues ofA).
24 (a) For a real3 by 3 matrix with stable eigenvalues (Reλ < 0), show that trace< 0

and det< 0. Either three real negativeλ or elseλ2 = λ1 andλ3 is real.

(b) The trace and determinant of a3 by 3 matrix do not determine all three eigenval-
ues ! Show thatA is unstable even with trace< 0 and determinant< 0 :

A =

[
1 2 3
0 1 4
0 0 −5

]
.

(a) If all three real parts are negative (stability), trace= sum of real parts< 0.

Alsodet=λ1λ2λ3<0 from 3 negativeλ’s or from(a+ib)(a−ib)λ3=(a2+b2)λ3<0.

If a real matrix has a complex eigenvalueλ = a + ib, thenλ = a − ib is also an
eigenvalue. The third eigenvalue must be real to make the trace real.

(b) The triangular matrixA hasλ = 1, 1,−5 even with trace= −3 anddet = −5.
There must be a third test for3 by 3 matrices and that test must fail for this matrix.

25 You might think thaty′ = −A2y would always be stable because you are squaring the

eigenvalues ofA. But why is that equation unstable forA =

[
0 1

−1 0

]
?

This real matrixA hasλ = i and−i. Thenλ2 = −1 and−1. Soy ′ = −A2y has
eigenvalues1 and1 (unstable).

26 Find the three eigenvalues ofA and the three roots ofs3 − s2 + s − 1 = 0 (including
s = 1). The equationy′′′ − y ′′ + y ′ − y = 0 becomes




y
y ′

y ′′



′
=

[
0 1 0
0 0 1
1 −1 1

]


y
y ′

y ′′


 or z ′ = Az.

Each eigenvalueλ has an eigenvectorx = (1, λ, λ2).
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s3 − s2 + s− 1 = 0 comes from substitutingy = est into y ′′′ − y ′′ + y ′ − y = 0.

λ3 − λ2 + λ− 1 = 0 comes from computingdet(A− λI) for the3 by 3 matrix.

One root iss = 1 (andλ = 1). The full cubic polynomial is

s3 − s2 + s− 1 = (s− 1)(s2 + 1) with roots1, i,−i.

Eigenvectors(1, λ, λ2) = (1, 1, 1), (1, i,−1), (1,−i,−1) for this companion matrix.

27 Find the two eigenvalues ofA and the double root ofs2 + 6s+ 9 = 0 :

y ′′ + 6y ′ + 9y = 0 becomes

[
y
y ′

]′
=

[
0 1
9 6

] [
y
y ′

]
or z ′ = Az.

The repeated eigenvalue gives only one solutionz = eλtx. Find a second solutionz
from the second solutiony = teλt.

The matrix hasdet(A − λI) = λ2 + 6λ + 9. This is (λ + 3)2 so eigenvalues
λ = rootss = −3,−3. The two solutions arey = e−3t andy = te−3t. Those

translate toz =

[
y
y ′

]
= e−3t

[
1

−3

]
andz =

[
y
y ′

]
= e−3t

[
t

1− 3t

]

28 Explain why a 3 by 3 companion matrix has eigenvectorsx = (1,λ,λ2).

First Way: If the first component isx1 = 1, the first row ofAx = λx gives the
second componentx2 = . Then the second row ofAx = λx gives the third
componentx3 = λ2.

Second Way: y ′ = Ay starts withy ′

1 = y2 and y ′

2 = y3. y = eλtx solves
those equations. Att = 0 the equations becomeλx1 = x2 and .

Ax =

[
0 1 0
0 0 1

−D −C −B

]


1
λ
λ2


 = λ




1
λ
λ2


 because rows1 and2 are true and

row 3 is −D − Cλ − Bλ2 = λ3. That isλ3 + Bλ2 + Cλ +D = 0 corresponding to
y ′′′ +By ′′ + Cy ′ +Dy = 0.

29 Find A to change the scalar equationy′′ = 5y′ − 4y into a vector equation forz =
(y, y′):

dz

dt
=

[
y′

y′′

]
=

[ ] [
y
y′

]
= Az.

What are the eigenvalues of the companion matrixA? Find them also by substituting
y = eλt into y′′ = 5y′ − 4y.

dz

dt
=

[
y′

y′′

]
=

[
y ′

5y ′ − 4y

]
=

[
0 1

−4 5

] [
y
y′

]
= Az.

The eigenvalues come fromλ2 − 5λ + 4 = 0. Thenλ = 1 and4. Unstable because
y ′′ − 5y ′ + 4y has negative damping.

30 (a) Write down two familiar functions that solve the equationd2y/dt2 = −9y. Which
one starts withy(0) = 3 andy ′(0) = 0?
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(b) This second-order equationy′′ = −9y produces a vector equationz ′ = Az :

z =

[
y
y ′

]
dz

dt
=

[
y ′

y ′′

]
=

[
0 1

−9 0

] [
y
y ′

]
= Az.

Findz(t) by using the eigenvalues and eigenvectors ofA: z(0) = (3, 0).

(a) y1 = cos 3t andy2 = sin 3t and their combinations solvey ′′ = −9y. The initial
conditionsy(0) = 3, y ′(0) = 0 are satisfied byy = 3 cos 3t.

(b) The matrixA hasdet

[
−λ 1
−9 −λ

]
= λ2 +9 = 0 andλ = 3i,−3i. Eigenvectors

(1,3i), (1,−3i).

z(t) = c1e
3it

[
1
3i

]
+ c2e

−3it

[
1

−3i

]
givesc1 + c2 = 3 and3ic1 − 3ic2 = 0 at t = 0.

Thenc1 = c2 =
3

2
gives

[
y
y ′

]
=

3

2
e3it

[
1
3i

]
+
3

2
e−3it

[
1

−3i

]
=

[
3 cos 3t

−9 sin 3t

]
.

31 (a) Change the third order equationy′′′ − 2y′′ − y′ + 2y = 0 to a first order system
z′ = Az for the unknownz = (y, y′, y′′). The companion matrixA is 3 by 3.

(b) Substitutey = eλt and also find det(A− λI). Those lead to the sameλ’s.

(c) One root isλ = 1. Find the other roots and these complete solutions :

y = c1e
λ1t + c2e

λ2t + c3e
λ3t z = C1e

λ1tx1 + C2e
λ2tx2 + C3e

λ3tx3.

(a)z ′ =




y
y ′

y ′′




′

=

[
0 1 0
0 0 1

−2 1 2

]


y
y ′

y ′′


 = Az

(b) The characteristic equation isdet(A− λI) = −(λ3 − 2λ2 − λ+ 2) = 0.

(c) λ = 1 is a root so we can factor out(λ − 1) :

λ3 − 2λ2 −λ+2 = (λ− 1)(λ2 −λ− 2) = (λ− 1)(λ− 2)(λ+1) has roots1,2,−1.

The complete solution isy = c1e
t + c2e

2t + c3e
−t.

This vectorizes intoz = C1e
t

[
1
1
1

]
+ C2e

2t

[
1
2
4

]
+ C3e

−t

[
1

−1
1

]

32 These companion matrices haveλ = 2, 1 andλ = 4, 1. Find their eigenvectors :

A =

[
0 1

−2 3

]
and B =

[
0 1

−4 5

]
Notice trace and determinant !

A hasλ2 − 3λ+2 = 0 = (λ− 2)(λ− 1). λ = 2,1 with eigenvectors

[
1
2

]
and

[
1
1

]
.

B hasλ2− 5λ+4 = 0 = (λ− 4)(λ− 1). λ = 4,1 with eigenvectors

[
1
4

]
and

[
1
1

]
.
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Problem Set 6.4, page 369

1 If Ax = λx, find an eigenvalue and an eigenvector ofeAt and also of−e−At.

If Ax = λx theneAtx = eλtx and−e−Atx = −e−λtx. Use the infinite series :

eAtx = (I + At+ 1
2 (At)

2 + · · · )x
= (I + λt+ 1

2 (λt)
2 + · · · )x = eλtx.

2 (a) From the infinite serieseAt = I +At+ · · · show that its derivative isAeAt.

(b) The series foreAt ends quickly ifA =

[
0 1
0 0

]
becauseA2 =

[
0 0
0 0

]
.

FindeAt and take its derivative (which should agree withAeAt).

(a) The time derivative of the matrixeAt isAeAt :
d
dt (I +At+ 1

2 (At)
2 + 1

6 (At)
3 + · · · ) = A+A2t+ 1

2A
3t2 + · · · ) = AeAt.

(b) If A =

[
0 1
0 0

]
thenA2 = 0 andeAt = I +At =

[
1 t
0 1

]
.

The derivative ofeAt =

[
1 t
0 1

]
is

[
0 1
0 0

]
which agrees withAeAt.

This derivative also agrees withA itself but that is an accident.

3 ForA =

[
1 1
0 2

]
with eigenvectors inV =

[
1 1
0 1

]
, computeeAt = V eΛtV −1.

eAt = V eΛtV −1 =

[
1 1
0 1

] [
et

e2t

] [
1 −1
0 1

]
=

[
et e2t − et

0 e2t

]
.

CheckeAt = I at t = 0.
4 Why ise (A+ 3I)t equal toeAt multiplied bye3t ?

If AB = BA thene(A+B)t = eAteBt. (This usually fails ifAB 6= BA.)

HereB = 3I always givesAB = BA soe(A+3I)t = eAte3It = eAte3t is true.

5 Why iseA
−1

not the inverse ofeA ? What is the correct inverse ofeA ?

The correct inverse ofeA is e−A. In generaleAteAT = eA(t+T ). Chooset=1, T = −1.

The matrixeA
−1

is a series of powers ofA−1 and(eA)(eA
−1

) = eA+A−1

: not wanted.

6 ComputeAn =

[
1 c
0 0

]n
. Add the series to findeAt =

[
et c(et − 1)
0 1

]
.

Start by assuming

[
1 c
0 0

]n
=

[
1 nc
0 0

]
(certainly true for (n = 1).

Then by induction

[
1 c
0 0

]n+1

=

[
1 c
0 0

] [
1 nc
0 0

]
=

[
1 (n+ 1) c
0 0

]
.

The first equation is true forn = 1. Then the second equation says that every matrix
multiplication addsc to the off-diagonal entry. So the first equation is true forn =
2, 3, 4, . . .
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Now add up the series foreAt :

I+At+ 1
2 (At)

2+· · ·=
[
1 + t+ 1

2 t
2 + · · · 0 + ct+ 1

22ct
2 + · · ·

0 1 + 0 + 0 + · · ·

]
=

[
et c(et − 1)
0 1

]

7 Find eA andeB by using Problem 6 forc = 4 andc = −4. Multiply to show that the
matriceseAeB andeBeA andeA+Bare all different.

A =

[
1 4
0 0

]
B =

[
1 −4
0 0

]
A+B =

[
2 0
0 0

]
.

With t = 1 in Problem 6, A =

[
1 −4
0 0

]
haseA =

[
e −4(e− 1)
0 1

]

B =

[
1 −4
0 0

]
haseB =

[
e −4(e− 1)
0 1

]

TheneAeB =

[
e2 (−4e+ 4)(e − 1)
0 1

]
andeBeA =

[
e2 (4e− 4)(e− 1)
0 1

]
and

eA+B =

[
e2 0
0 1

]
. Those three off-diagonal entries are different becauseAB and

BA have off-diagonals−4 and4.

8 Multiply the first termsI +A+ 1
2A

2 of eA by the first termsI +B + 1
2B

2 of eB. Do
you get the correct first three terms ofeA+B ? Conclusion: eA+B is not always equal
to (eA)(eB). The exponent rule only applies whenAB = BA.
(
I +A+ 1

2A
2
) (

I +B + 1
2B

2
)

= I + A + B + 1
2A

2 + AB + 1
2B

2 + · · ·
The correct three terms ofeA+B are I + A + B + 1

2A
2 + 1

2AB + 1
2BA + 1

2B
2.

ThenAB agrees with12AB + 1
2BA only if AB = BA.

9 Write A =
[
1 4
0 0

]
in the formV ΛV −1. FindeAt from V eΛtV −1.

This is Problem 6 using diagonalizationA = V ΛV −1 by the eigenvector matrixV :

A =

[
1 4
0 0

]
=

[
1 −4
0 1

] [
1 0
0 0

] [
1 4
0 1

]

eAt =

[
1 −4
0 1

] [
et 0
0 1

] [
1 4
0 1

]
=

[
et 4(et − 1)
0 1

]

10 Starting fromy(0) the solution at timet is eAty(0). Go an additional timet
to reacheAt eAty(0). Conclusion:eAt timeseAt equals .

The conclusion is thateAt timeseAt equalse2At. No problem withAB 6= BA because
hereB is the same asA.

11 DiagonalizeA by V and confirm this formula foreAt by usingV eΛtV −1 :

A =

[
2 4
0 3

]
eAt =

[
e2t 4(e3t − e2t)
0 e3t

]
At t = 0 this matrix is .
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A =

[
2 4
0 3

]
=

[
1 4
0 1

] [
2 0
0 3

] [
1 −4
0 1

]
= V ΛV −1

eAt =

[
1 4
0 1

] [
e2t 0
0 e3t

] [
1 −4
0 1

]
=

[
e2t 4(e3t − e2t)
0 e3t

]
= I at t = 0.

12 (a) FindA2 andA3 andAn for A =

[
1 1
0 1

]
with repeated eigenvaluesλ = 1, 1.

(b) Add the infinite series to findeAt. (TheV eΛtV −1 method won’t work.)

(a)A2 =

[
1 2
0 1

]
andA3 =

[
1 3
0 1

]
andAn =

[
1 n
0 1

]
. (b) eAt =

[
1 + t+ 1

2 t
2 + · · · t+ 1

22t
2 + 1

63t
3 + · · ·

0 1 + t+ 1
2 t

2 + · · ·

]
=

[
et t(1 + t+ 1

2 t
2 + · · · )

0 et

]

=

[
et tet

0 et

]

Notice the factort appearing as usual when there are equal roots (or equal eigenvalues).

13 (a) Solvey′ = Ay as a combination of eigenvectors of this matrixA :

y′ =

[
0 1
1 0

]
y with y(0) =

[
3
5

]

(b) Write the equations asy′1 = y2 andy′2 = y1. Find an equation fory′′1 with y2
eliminated. Solve fory1(t) and compare with part (a).

(a)A =

[
0 1
1 0

]
hasλ = 1 with x1 =

[
1
1

]
andλ = −1 with x2 =

[
1

−1

]
.

Theny(0) = 4x1 − x2 andy(t) = 4et
[

1
1

]
− e−t

[
1

−1

]
.

(b) If y ′

1 = y2 andy ′

2 = y1 theny ′′

1 = y ′

2 = y1.

The second order equationy ′′

1 = y1 hasy1 = c1e
t + c2e

−t.

The initial conditions produce the solution of part (a).

14 Similar matricesA andB = V −1AV have thesame eigenvaluesif V is invertible.

Second proof det(V −1AV − λI) = (detV −1) (det(A− λI)) (detV ).

Why is this equation true ? Then both sides are zero when det(A− λI) = 0.

We use the ruledetABC = (detA)(detB)(detC).

HereA = V −1 andC = V have(detA)(detC) = 1.

This only leavesdetB which isdet(A − λI).

Conclusion: V −1AV has the same eigenvalues asA. Similar matrices!
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15 If B is similar to A, the growth rates forz′ = Bz are the same as fory′ = Ay.
That equation converts to the equation forz whenB = V −1AV andz = .

If y ′ = Ay just sety = V z to get V z ′ = AV z which is z ′ = V −1AV z.
Similar matrices come from a change of variable in the differential equation.

16 If Ax = λx 6= 0, what is an eigenvalue and eigenvector of(eAt − I)A−1 ?

The samex is an eigenvector, with eigenvalue in

(eAt − I)A−1x =
1

λ
(eAt − I)x =

eλt − 1

λ
x.

17 The matrixB =
[
0 −4
0 0

]
hasB2 = 0. Find eBt from a (short) infinite series.

Check that the derivative ofeBt isBeBt.

eBt = I +Bt+ 0 =

[
1 −4t
0 1

]
. The derivative is

[
0 −4
0 0

]
.

The derivative is alwaysBeBt; here it also equalsB.

18 Starting fromy(0) = 0, solvey′ = Ay + q as a combination of the eigenvectors.
Suppose the source isq = q1x1 + · · · + qnxn. Solve for one eigenvector at a time,
using the solutiony(t) = (eat − 1)q/a to the scalar equationy′ = ay + q.

Theny(t) = (eAt − I)A−1q is a combination of eigenvectors when allλi 6= 0.

For each eigenvectorx, a solution toy ′ = Ay+x isy(t) =
eλt − 1

λ
x by Problem 16.

Then by linearityy(t) = Σ
eλit − 1

λi
qixi is the solution whenq = q1x1 + · · ·+ qnxn.

This is the same asyp(t) = (eAt − I)A−1q.

19 Solve fory(t) as a combination of the eigenvectorsx1 = (1, 0) andx2 = (1, 1) :

y′ = Ay + q

[
y′1
y′2

]
=

[
1 1
0 2

] [
y1
y2

]
+

[
4
3

]
with

y1(0) = 0
y2(0) = 0

Write q =

[
4
3

]
as a combination3x1+x2 of the eigenvectors ofA. By Problem 18,

yp(t) =
et − 1

1
3x1 +

e2t − 1

2
x2.

20 Solvey′ = Ay =

[
2 3
2 1

]
y in three steps. First find theλ’s andx’s.

(1) Write y(0) = (3, 1) as a combinationc1x1 + c2x2

(2) Multiply c1 andc2 by eλ1t andeλ2t.

(3) Add the solutionsc1eλ1tx1 + c2e
λ2tx2.
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Th eigenvalues come fromdet

[
2− λ 3
2 1− λ

]
= λ2−3λ−4 = (λ−4)(λ+1) = 0.

Thenλ = 4 and−1.

The eigenvectors are found to bex1 =

[
3
2

]
andx2 =

[
1

−1

]
.

Step (1) y(0) =

[
3
1

]
=

4

5

[
3
2

]
+

3

5

[
1

−1

]
.

Step (2) Two solutions
4

5
e4t
[

3
2

]
and

3

5
e−t

[
1

−1

]
.

Step (3) y(t) =
4

5
e4t
[

3
2

]
+

3

5
e−t

[
1

−1

]
.

21 Write five terms of the infinite series foreAt. Take thet derivative of each term. Show
that you have four terms ofAeAt. Conclusion:eAty(0) solvesdy/dt = Ay.

eAt = I +At+
1

2
(At)2 +

1

6
(At)3 +

1

24
(At)4 + · · ·

d

dt
(eAt = A+A2t+

1

2
A3t2 +

1

4
A4t3 + · · · = AeAt.

Problems 22-25 are about time-varying systemsy ′ = A(t)y. Success then failure.

22 Suppose the constant matrixC hasCx = λx, and p(t) is the integral ofa(t).
Substitutey = eλp(t)x to show thatdy/dt = a(t)Cy. Eigenvectors still solve
this special time-varying system : constant matrixC multiplied by the scalara(t).

Here the time-varying coefficient matrix has the special form a(t)C, with the matrixC
constant in time. Its eigenvalues and eigenvectors area(t)λ andx (main point:λ and
x are constant). Then we can solvey ′ = a(t)Cy starting with an eigenvector :

y(t) = e
∫
a(t)λdtx solves

dy

dt
= a(t)λy = a(t)Cy.

A combination of these solutions is also a solution—and can matchy(0).

23 Continuing Problem 22, show from the series forM(t) = ep(t)C thatdM/dt = a(t)CM .
ThenM is the fundamental matrix for the special systemy ′ = a(t)Cy. If a(t) = 1
then its integral isp(t) = t and we recoverM = eCt.

This question puts together the “fundamental matrix”M(t) from Problem 22. Write

p(t) =

∫
a(t) dt.

M = ep(t)C = I + p(t)C +
1

2
p2(t)C2 + · · · and

dp

dt
= a(t) give

dM

dt
= a(t)C + a(t)C2p(t) + · · · = a(t)CM .

24 The integral ofA =

[
1 2t
0 0

]
is P =

[
t t2

0 0

]
. The exponential ofP is

eP =

[
et t(et − 1)
0 1

]
. From the chain rule we might hope that the derivative of
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eP (t) is P ′eP (t) = AeP (t). Compute the derivative ofeP (t) and compare with the
wrong answerAeP (t). (One reason this feels wrong : Writing the chain rule as
(d/dt)eP = ePdP/dt would giveePA instead ofAeP . That is wrong too.)

Now the matrixA(t) does not have the special formA = a(t)C of problems 22–23.
The problem shows that the simple formula doesn’t solvey ′ = A(t)y. We can’t just
integrateA(t) and use the matrixe

∫
A(t)dt.

P =

∫
A(t) dt =

[
t t2

0 0

]
has P 2 =

[
t2 t3

0 0

]
and Pn =

[
tn tn+1

0 0

]

Then
dP

dt
=

[
1 2t
0 0

]
= A andeP = I + P +

1

2
P 2 + · · · =

[
et tet − t
0 1

]
.

But the derivative of eP is not eP dP
dt . This matrixeP (t) is not solvingy ′ = A(t)y.

25 Find the solution toy ′ = A(t)y in Problem 24 by solving fory2 and theny1 :

Solve

[
dy1/dt
dy2/dt

]
=

[
1 2t
0 0

] [
y1
y2

]
starting from

[
y1(0)
y2(0)

]
.

Certainly y2(t) stays aty2(0). Find y1(t) by “undetermined coefficients”A,B,C :
y ′

1 = y1 + 2ty2(0) is solved by y1 = yp + yn = At+B + Cet.

ChooseA,B,C to satisfy the equation and match the initial conditiony1(0).

The wrong answer in Problem 24 included the incorrect factortet in eP (t).

To solvey ′ = A(t)y in Problem 24 we can start with its second equation :

y ′ = A(t)y is
dy1/dt = y1 + 2ty2

dy2/dt = 0
Theny2(t) = y2(0) = constant and the first equation becomesdy1/dt = y1+2ty2(0).
A particular solution has the formy1 = At + B. Substitute thisy1 to findA andB :

dy1
dt

= y1 + 2ty2(0) givesA = At+B + 2ty2(0) and thenA = −2y2(0) = B.

Now add a null solutionCet to start fromy1(0) :

y1(t) = (y1(0) + 2y2(0))e
t − 2y2(0)t− 2y2(0).

This correct solution has no factortet.

Problem Set 6.5, page 379

Problems 1–14 are about eigenvalues. Then come differential equations.

1 Which ofA,B,C have two realλ’s ? Which have two independent eigenvectors ?

A =

[
7 −11

−11 7

]
B =

[
7 −11
11 7

]
C =

[
7 −11
0 7

]

A is symmetric: Realλ’s with a full set of two eigenvectors.

B = 7I+ antisymmetric: Complexλ = 7± 11i, full set of (complex) eigenvectors.

C = 7I − 11

[
0 1
0 0

]
: Eigenvalues7, 7 but only one eigenvector.
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2 Show thatA has real eigenvalues ifb ≥ 0 and nonreal eigenvalues ifb < 0 :

A =

[
0 b
1 0

]
and A =

[
1 b
1 1

]
.

The eigenvalues of

[
0 b
1 0

]
haveλ2 − b = 0. Thenλ = ±

√
b if b ≥ 0.

[
1 b
1 1

]
hasλ = 1 ±

√
b.

3 Find the eigenvalues and the unit eigenvectors of the symmetric matrices

(a) S =

[
2 2 2
2 0 0
2 0 0

]
and (b) S =

[
1 0 2
0 −1 −2
2 −2 0

]
.

(a)det

[
2− λ 2 2
2 −λ 0
2 0 −λ

]
= (2− λ)λ2 + 4λ+ 4λ = −λ3 + 2λ2 + 8λ

= −λ(λ− 4)(λ+ 2). λ = 0,4,−2.

Unit (orthonormal!) eigenvectors
1√
2

[
0
1

−1

]
,

1√
6

[
2
1
1

]
,

1√
3

[
1

−1
−1

]
.

(b) det

[
1− λ 0 2
0 −1− λ −2
2 −2 −λ

]
= λ(1 − λ2) + 4(1 + λ)− 4(1− λ) = 9λ− λ3

= −λ(λ− 3)(λ+ 3).

λ = 0,3,−3 with orthonormal eigenvectors
1

3

[
2
2

−1

]
,

1

3

[
2

−1
2

]
,

1

3

[ −1
2
2

]
.

4 Find an orthogonal matrixQ that diagonalizesS =

[
−2 6
6 7

]
. What isΛ?

The eigenvalues fromλ2 − 5λ− 50 = 0 = (λ− 10)(λ+ 5) areλ1 = 10 andλ2 = 5.
The unit eigenvectors are inQ :

Q =

[
1/

√
5 −2/

√
5

2/
√
5 1/

√
5

]
with Λ =

[
10 0
0 −5

]
.

5 Show that thisA (symmetric but complex) has only one line of eigenvectors :

A =

[
i 1
1 −i

]
is not even diagonalizable. Its eigenvalues are0 and0.

AT = A is not so special for complex matrices.The good property isA
T
= A.

det(A − λI) = λ2 givesλ = 0, 0. But A − λI = A hasrank 1 : Only one line of
eigenvectors in its nullspace.
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6 Findall orthogonal matrices from allx1,x2 to diagonalizeS =

[
9 12
12 16

]
.

λ2 − 25λ = 0 gives eigenvalues0 and25. The (real) eigenvectors inQ can be

Q =
1

5

[
4 3

−3 4

]
or

1

5

[
−4 3
3 4

]
or

1

5

[
4 −3

−3 −4

]
or

1

5

[
−4 −3
3 −4

]
.

7 (a) Find a symmetric matrixS =

[
1 b
b 1

]
that has a negative eigenvalue.

(b) How do you know thatS must have a negative pivot?

(c) How do you know thatS can’t have two negative eigenvalues?

The determinant ofS is negative ifb2 > 1. This determinant is (pivot1)(pivot 2).
Also detS = λ1 timesλ2. So exactly one eigenvalue is negative ifb2 > 1.

8 If A2 = 0 then the eigenvalues ofA must be . Give an example withA 6= 0. But
if A is symmetric, diagonalize it to prove that the matrix isA = 0.

If Ax = λx thenA2x = λ2x. HereA2 = 0 soλ must be zero.

Nonsymmetric example :A =

[
0 1
0 0

]
is not diagonalizable.

The only symmetric example isA =

[
0 0
0 0

]
becauseA = QΛQT andA =

[
0 0
0 0

]
.

9 If λ = a+ ib is an eigenvalue of a real matrixA, then its conjugateλ = a− ib is also
an eigenvalue. (IfAx = λx then alsoAx = λx.) Prove that every real3 by 3 matrix
has at least one real eigenvalue.

A real 3 by 3 matrix hasdet(A − λI) = −λ3 + c2λ
2 + c1λ + c2 = 0. If λ1 satisfies

this equation so doesλ2 = λ1 (take the conjugate of every term). But the sumλ1 +
λ2 + λ3 = trace ofA = real number. Soλ3 must be real.

10 Here is a quick “proof” that the eigenvalues ofall real matrices are real:

False proof Ax = λx gives xTAx = λxTx so λ =
xTAx

xTx
is real.

Find the flaw in this reasoning—a hidden assumption that is not justified. You could
test those steps on the90◦ rotation matrix[ 0 −1; 1 0 ] with λ = i andx = (i, 1).

The flaw is to expect thatxTAx andxTx are real andxTx > 0. When complex
numbers are involved, it isxTx that is real and positive for every vectorx 6= 0.

11 Write A and B in the form λ1x1x
T
1 + λ2x2x

T
2 of the spectral theoremQΛQT :

A =

[
3 1
1 3

]
B =

[
9 12
12 16

]
(keep‖x1‖ = ‖x2‖ = 1).

A hasλ = 4,2 with unit eigenvectors inQ. Multiply columns times rows :
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[
3 1
1 3

]
= QΛQT =

1√
2

[
1 1

−1 1

] [
4

2

]
1√
2

[
1 −1
1 1

]

= 4

[
1/

√
2

−1/
√
2

] [
1/

√
2 −1/

√
2
]
+ 2

[
1/

√
2

1/
√
2

] [
1/

√
2 1/

√
2
]

B hasλ = 0, 25 with these unit eigenvectors inQ :

[
9 12

12 16

]
=

[
4/5 3/5

−3/5 4/5

] [
0

25

] [
4/5 −3/5
3/5 4/5

]
= 0+25

[
3/5
4/5

]
[ 3/4 4/5 ] .

12 What numberb in
[
2 b
1 0

]
makesA = QΛQT possible? What number makesA =

V ΛV −1 impossible? What number makesA−1 impossible?

b = 1 makesA symmetric and thenA = QΛQT. b = −1 makesλ = 1, 1 with only
one eigenvector.b = 0 makes the matrix singular.

13 ThisA is nearly symmetric. But its eigenvectors are far from orthogonal:

A =

[
1 10−15

0 1 + 10−15

]
has eigenvectors

[
1
0

]
and [ ? ]

What is the dot product of the two unit eigenvectors ? A small angle !

The unit eigenvector forλ = 1 + 10−15 is
1√
2

[
1
1

]
.

The two eigenvectors are at a45 ◦ angle, far from orthogonal (even ifA is nearly sym-
metric).

14 (Recommended) This matrixM is skew-symmetric and also orthogonal. Then all its
eigenvalues are pure imaginary and they also have|λ| = 1. They can only bei or −i.
Find all four eigenvalues from the trace ofM :

M =
1√
3




0 1 1 1
−1 0 −1 1
−1 1 0 −1
−1 −1 1 0


 can only have eigenvaluesi or − i.

The four eigenvalues must beλ = i, i,−i,−i to produce trace= zero.

15 The complete solution to equation (8) for two oscillating springs (Figure 6.3) is

y(t) = (A1 cost+B1 sint)

[
1
1

]
+ (A2 cos

√
3t+B2 sin

√
3t)

[
1

−1

]
.

Find the numbersA1, A2, B1, B2 if y(0) = (3, 5) andy′(0) = (2, 0).

The numbersA1, A2 come fromy(0) = (3, 5) sincecos 0 = 1 :

A1 =

[
1
1

]
+A2

[
1

−1

]
=

[
3
5

]
gives A1 = 4 and A2 = −1.
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The numbersB1, B2 come fromy ′(0) = (2, 0) since (sin t) ′ = 1 at t = 0 and
(sin

√
3t) ′ =

√
3 at t = 0 :

B1 =

[
1
1

]
+
√
3B2

[
1

−1

]
=

[
2
0

]
gives B1 = B2 =

1√
3
.

16 If the springs in Figure 6.3 have different constantsk1, k2, k3 theny′′ + Sy = 0 is

Upper mass y′′1 + k1y1 − k2(y2 − y1) = 0

Lower mass y′′2 + k2(y2 − y1) + k3y2 = 0
S =

[
k1 + k2 −k2
−k2 k2 + k3

]

For k1 = 1, k2 = 4, k3 = 1 find the eigenvaluesλ = ω2 of S and the complete
sine/cosine solutiony(t) in equation (7).

The matrixS =

[
1 + 4 −4
−4 4 + 1

]
has eigenvaluesλ1 = 1 = ω2

1 andλ2 = 9 = ω2
2 .

The complete solution toy ′′ + Sy = 0 is

y(t) = (A1 cos t+B1 sin t)

[
1
1

]
+ (A2 cos 3t+B2 sin 3t)

[
1

−1

]
.

17 Suppose the third spring is removed (k3 = 0 and nothing is below mass2). With k1 =
3, k2 = 2 in Problem16, find S and its real eigenvalues and orthogonal eigenvectors.
What is the sine/cosine solutiony(t) if y(0) = (1, 2) gives the cosines andy′(0) =
(2,−1) gives the sines ?

When k1 = 3, k2 = 2, k3 = 0, the matrixS becomesS =

[
5 −2

−2 2

]
with

λ2 − 7λ+ 6 = (λ− 1)(λ− 6) = 0.

The eigenvector forλ1 = ω2
1 = 1 is x1 = (1, 2). The orthogonal eigenvector for

λ2 = ω2
2 = 6 is x2 = (2,−1). ThenA1 = 1 andA2 = 0, B1 = 0 andB2 =

1/
√
6 come fromy(0) = x1 andy ′(0) = x2. The solution toy ′′ + Sy = 0 is

y(t) = (cos t)x1 + (sin
√
6t)x2/

√
6.

18 Suppose the top spring is also removed (k1 = 0 and alsok3 = 0). S is singular !
Find its eigenvalues and eigenvectors. Ify(0) = (1,−1) andy′ = (0, 0) find y(t). If
y(0) changes from(1,−1) to (1, 1) what isy(t) ?

S =

[
k2 −k2

−k2 k2

]
hasλ1 = 0 with x1 = (1, 1) andλ2 = 2k2 with x2 = (1,−1).

y(0) = (1,−1) and y ′(0) = (0, 0) give y(t) = (cos
√
2k2 t)x2.

y(0) = (1,−1) and y ′(0) = (0, 0) give y(t) = x1 = (1, 1) : no movement!
There is no force from springs1 and3 and no initial velocityy ′(0).

19 The matrix in this question is skew-symmetric (AT = −A). Energy is conserved.

dy

dt
=

[
0 c −b

−c 0 a
b −a 0

]
y or

y ′

1 = cy2 − by3
y ′

2 = ay3 − cy1
y ′

3 = by1 − ay2.

The derivative of ‖y(t)‖2 = y21 + y22 + y23 is 2y1y
′
1 + 2y2y

′
2 + 2y3y

′
3.

Substitutey′1, y
′
2, y

′
3 to getzero. The energy‖y(t)‖2 stays equal to‖y(0)‖2.
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y1y
′

1 + y2y
′

2 + y3y
′

3 = y1(cy2 − by3) + y2(ay3 − cy1) + y3(by1 − ay2) = 0.

Then‖y(t)‖2 stays constant, equal to‖y(0)‖2.

20 WhenA = −AT is skew-symmetric, eAt is orthogonal. Prove(eAt)T = e−At

from the serieseAt = I +At+ 1
2A

2t2 + · · · .

A =

[
0 1

−9 0

]
hasdet = 9: λ = 3i and−3i with x = (1, 3i) and(1,−3i). Then

y(t) = 3

2
e3it

[
1
3i

]
+ 3

2
e−3it

[
1

−3i

]
=

[
3 cos 3t

−9 sin 3t

]
.

21 The mass matrixM can have massesm1 = 1 andm2 = 2. Show that the eigenvalues
for Kx = λMx areλ = 2±

√
2, starting from det(K − λM) = 0 :

M =

[
1 0
0 2

]
and K =

[
2 −2

−2 4

]
are positive definite.

Find the two eigenvectorsx1 andx2. Show thatxT
1 x2 6= 0 butxT

1 Mx2 = 0.

Kx = λMx is (K − λM)x = 0 and we need the determinant ofK − λM to be0 :

det

[
2− λ −2
−2 4− 2λ

]
= 2(λ2 − 4λ+ 2) = 0 λ =

4±
√
16− 8

2
= 2 ±

√
2.

The eigenvectorsx1 = (
√
2,−1) andx2 = (

√
2, 1) come from

(K−λ1M)x1=

[
−
√
2 −2

−2 −2
√
2

]
x1=0 and(K−λ2M)x2 =

[√
2 −2

−2 2
√
2

]
x2 = 0.

Notice thatx1 is not orthogonal tox2—it is “M -orthogonal” :

xT
1 Mx2 =

[ √
2 −1

] [ 1 0
0 2

] [ √
2
1

]
= 0.

22 What difference equation would you use to solvey ′′ = −Sy ?

y ′′ = −Sy is well approximated byyn+1 − 2yn + yn−1 = −(∆t)2Syn. The initial
conditions come in asy0 = y(0) andy1 = y(0)+∆ty ′(0) (but that is only a first order
accurate approximation to the truey(∆t)).

23 The second order equationy ′′ + Sy = 0 reduces to a first order systemy1
′ = y2 and

y2
′ = −Sy1. If Sx = ω2x show that the companion matrixA = [0 I ; −S 0] has

eigenvaluesiω and−iω with eigenvectors(x, iωx) and(x,−iωx).

The first-order equation withblockcompanion matrix fory ′′ = −Sy is
[

y1
y2

] ′
=

[
y
y ′

] ′
=

[
0 I

−S 0

] [
y
y ′

]
=

[
0 I

−S 0

] [
y1
y2

]

For the eigenvalues : IfSx = ω2x then[
0 I

−S 0

] [
x

± iωx

]
=

[
± iωx
−ω2x

]
= ± iω

[
x

± iωx

]
.

So the block companion matrixA has eigenvaluesiω and−iω. Then we can compute
and use the exponentialeAt (if we want to).
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24 Find the eigenvaluesλ and eigenfunctionsy(x) for the differential equation
y ′′ = λy with y(0) = y(π) = 0. There are infinitely many !

This is an important problem in function space—instead of eigenvectors inRn we look
for functions ofx betweenx = 0 andx = π :

d2y

dt2
= λy(x) with boundary conditionsy(0) = y(π) = 0.

This equation is satisfied byy(x) = a cos
(√

λx
)
+ b sin

(√
λx
)

.

The boundary conditiony(0) = 0 makesa = 0.

The conditiony(π) = sin
(√

λ π
)
= 0 makes

√
λ = 1 or 2 or 3 or . . . Then

λ = 12 or 22 or any n2 y(x) = sin(
√
λ x).
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7

Problem Set 7.1, page 393

1 Suppose your pulse is measured atb1 = 70 beats per minute, thenb2 = 120, then
b3 = 80. The least squares solution to three equationsv = b1, v = b2, v = b3 with
AT = [1 1 1] is v̂ = (ATA)−1ATb = . Use calculus and projections :

(a) MinimizeE = (v − 70)2 + (v − 120)2 + (v − 80)2 by solvingdE/dv = 0.

Solution(a) dE
dv = 2(v − 70) + 2(v − 120) + 2(v − 80) = 0 at the minimizinĝv.

Cancel the2’s : 3v = 70 + 120 + 80 = 270 so v̂ = vaverage = 90

(b) Projectb = (70, 120, 80) ontoa = (1, 1, 1) to find v̂ = aTb/aTa.

Solution(b) The projection ofb onto the line througha is p = av̂ :

b =

[
70
120
80

]
a =

[
1
1
1

]
v̂ =

aTb

aTa
=

270

3
= 90.

2 SupposeAv = b hasm equationsaiv = bi in one unknownv. For the sum of squares
E = (a1v − b1)

2 + · · ·+ (amv − bm)2, find the minimizinĝv by calculus. Then form
ATAv̂ = ATb with one column inA, and reach the samêv.

Solution To minimizeE we solvedE/dv = 0. Form = 3 equationsaiv = bi,

dE

dv
= 2a1(a1v − b1) + 2a2(a2v − b2) + 2a3(a3v − b3) = 0 is zero when

v = v̂ =
a1b1 + a2b2 + a3b3

a21 + a22 + a23
=

aTb

aTa
.

WhenA has one column,ATAv̂ = ATb is the same as(aTa)v̂ = (aTb).

3 With b = (4, 1, 0, 1) at the pointsx = (0, 1, 2, 3) set up and solve the normal equation
for the coefficientŝv = (C,D) in the nearest lineC+Dx. Start with the four equations
Av = b that would be solvable if the points fell on a line.

Solution The unsolvable equation hasm = 4 points on a line : onlyn = 2 unknowns.

Av = b is




1 0
1 1
1 2
1 3



[

C
D

]
=




4
1
0
1


 leading toATAv̂ = ATb :

[
4 6
6 14

] [
Ĉ

D̂

]
=

[
6
4

]
gives

[
Ĉ

D̂

]
=

1

20

[
14 −6
−6 4

] [
6
4

]
=

1

2a

[
60

−20

]
=

[
3

−1

]

The closest line to the four points isb = 3 − x.

4 In Problem 3, find the projectionp = Av. Check that those four values lie on the line
C +Dx. Compute the errore = b− p and verify thatATe = 0.

Solution The projectionp = Av̂ is
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p =




1 0
1 1
1 2
1 3



[

3
−1

]
=




3
2
1
0


 with error e = b− p =




1
−1
−1
1




The best lineC + Dx = 3 − x does producep = (3, 2, 1, 0) at the four points
x = 0, 1, 2, 3.

Multiply this e byAT to getATe =

[
0
0

]
as expected.

5 (Problem 3 by calculus) Write downE = ||b−Av||2 as a sum of four squares : the last
one is(1 − C − 3D)2. Find the derivative equations∂E/∂C = ∂E/∂D = 0. Divide
by 2 to obtainATAv̂ = ATb.

Solution MinimizeE = (4−C)2 +(1−C −D)2 +(−C − 2D)2 +(1−C − 3D)2.

The partial derivatives are∂E/∂C = 0 and∂E/∂D = 0 at the minimum:

−2(4− C)− 2(1− C −D)− 2(−C − 2D)− 2(1− C − 3D) = 0

−2(1− C −D)− 4(−C − 2D)− 6(1− C − 3D) = 0

Factoring out−2 and collecting terms this is the same equationATAv̂ = ATb !

6− 4C − 16D = 0
4− 6C − 14D = 0

or

[
4 6
6 14

] [
Ĉ

D̂

]
=

[
6
4

]
.

6 For the closest parabolaC+Dt+Et2 to the same four points, write down4 unsolvable
equationsAv = b for v = (C,D,E). Set up the normal equations forv̂. If you fit the
best cubicC +Dt+ Et2 + Ft3 to those four points (thought experiment), what is the
error vectore ?

Solution The parabolaC +Dt+ Et2 fits the4 points exactly ifAv = b :

t = 0 C + 0D + 0E = 4
t = 1 C + 1D + 1E = 1
t = 2 C + 2D + 4E = 0
t = 3 C + 3D + 9E = 1

A =




1 0 0
1 1 1
1 2 4
1 3 9


 .

ATA =

[
4 6 14
6 14 36
14 36 98

]
.φATb =

[
4 + 1 + 0 + 1
0 + 1 + 0 + 3
0 + 1 + 0 + 9

]
=

[
6
4
10

]
.

The cubicC +Dt+ Et2 + Ft3 can fit4 points exactly, witherror = zero vector.
7 Write down three equations for the lineb = C + Dt to go throughb = 7 at

t = −1, b = 7 at t = 1, andb = 21 at t = 2. Find the least squares solution
v̂ = (C,D) and draw the closest line.

Solution

[
1 −1
1 1
1 2

][
C
D

]
=

[
7
7

21

]
.The solution̂x =

[
9
4

]
comes from

[
3 2
2 6

][
C
D

]
=

[
35
42

]
.

8 Find the projectionp = Av̂ in Problem7. This gives the three heights of the closest
line. Show that the error vector ise = (2,−6, 4).

Solution p = Ax̂ = (5, 13, 17) gives the heights of the closest line. The error is
b− p = (2,−6, 4). This errore hasPe = Pb− Pp = p− p = 0.
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9 Suppose the measurements att = −1, 1, 2 are the errors2,−6, 4 in Problem8. Com-
pute v̂ and the closest line to these new measurements. Explain the answer : b =
(2,−6, 4) is perpendicular to so the projection isp = 0.

Solution If b = previous errore thenb is perpendicular to the column space ofA.
Projection ofb is p = 0.

10 Suppose the measurements att = −1, 1, 2 areb = (5, 13, 17). Computev̂ and the
closest linee. The error ise = 0 because thisb is .

Solution If b = Ax̂ = (5, 13, 17) thenx̂ = (9, 4) ande = 0 sinceb is in the column
space ofA.

11 Find the best lineC +Dt to fit b = 4, 2,−1, 0, 0 at timest = −2,−1, 0, 1, 2.

Solution The least squares equation is

[
5 0
0 10

] [
C
D

]
=

[
5

−10

]
.

Solution:C = 1, D = −1. Line 1− t. Symmetrict’s ⇒ diagonalATA

12 Find theplane that gives the best fit to the4 valuesb = (0, 1, 3, 4) at the corners
(1, 0) and(0, 1) and(−1, 0) and(0,−1) of a square. At those4 points, the equations
C +Dx+ Ey = b areAv = b with 3 unknownsv = (C,D,E).

Solution



1 1 0
1 0 1
1 −1 0
1 0 −1



[
C
D
E

]
=



0
1
3
4


 hasATA =

[
4 0 0
0 2 0
0 0 2

]
and ATb =

[
8

−2
−3

]
.

The solution(C,D,E) = (2,−1, 32 ) gives the best plane2− x− 3
2y.

13 With b = 0, 8, 8, 20 at t = 0, 1, 3, 4 set up and solve the normal equationsATAv =
ATb. For the best straight lineC+Dt, find its four heightspi and four errorsei. What
is the minimum valueE = e21 + e22 + e23 + e24 ?

Solution A =



1 0
1 1
1 3
1 4


 andb =




0
8
8
20


 giveATA =

[
4 8
8 26

]
andATb =

[
36
112

]
.

ATAx̂ = ATb gives
E = ‖e‖2 = 44

x̂ =

[
1
4

]
andp = Ax̂ =




1
5
13
17


 ande = b− p =



−1
3

−5
3




14 (By calculus) Write downE = ||b − Av||2 as a sum of four squares—the last one is
(C + 4D − 20)2. Find the derivative equations∂E/∂C = 0 and∂E/∂D = 0. Divide
by 2 to obtain the normal equationsATAv̂ = ATb.

Solution E = (C + 0D)2 + (C + 1D − 8)2 + (C + 3D − 8)2 + (C + 4D − 20)2.
Then∂E/∂C = 2C + 2(C + D − 8) + 2(C + 3D − 8) + 2(C + 4D − 20) = 0
and∂E/∂D = 1 · 2(C + D − 8) + 3 · 2(C + 3D − 8) + 4 · 2(C + 4D − 20) = 0.

These normal equations∂E/∂C = 0 and∂E/∂D = 0 are again

[
4 8
8 26

] [
C
D

]
=

[
36
112

]
.

15 Which of the four subspaces contains the error vectore ? Which containsp ? Which
containŝv ?
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Solution The errore is contained in the nullspaceN(AT), sinceATe = 0. The
projectionp is contained in the column spaceC(A). The vector̂v of coefficients can
be any vector inRn.

16 Find the heightC of the besthorizontal line to fit b = (0, 8, 8, 20). An exact fit
would solve the four unsolvable equationsC = 0, C = 8, C = 8, C = 20. Find
the4 by 1 matrixA in these equations and solveATAv̂ = ATb.

Solution E = (C − 0)2 + (C − 8)2 + (C − 8)2 + (C − 20)2 andAT = [ 1 1 1 1 ].

ATA = [ 4 ]. ATb = [ 36 ] and(ATA)−1ATb = 9 = bestC. e = (−9,−1,−1, 11).

17 Write down three equations for the lineb = C + Dt to go throughb = 7 at
t = −1, b = 7 at t = 1, and b = 21 at t = 2. Find the least squares solution
v̂ = (C,D) and draw the closest line.

Solution

[
1 −1
1 1
1 2

][
C
D

]
=

[
7
7

21

]
.The solution̂x =

[
9
4

]
comes from

[
3 2
2 6

][
C
D

]
=

[
35
42

]
.

18 Find the projectionp = Av̂ in Problem17. This gives the three heights of the closest
line. Show that the error vector ise = (2,−6, 4). Why isPe = 0 ?

Solution p = Ax̂ = (5, 13, 17) gives the heights of the closest line. The error is
b− p = (2,−6, 4). This errore hasPe = Pb− Pp = p− p = 0.

19 Suppose the measurements att = −1, 1, 2 are the errors2,−6, 4 in Problem18. Com-
pute v̂ and the closest line to these new measurements. Explain the answer : b =
(2,−6, 4) is perpendicular to so the projection isp = 0.

Solution If b = errore thenb is perpendicular to the column space ofA. Projection
p = 0.

20 Suppose the measurements att = −1, 1, 2 areb = (5, 13, 17). Computev̂ and the
closest line ande. The error ise = 0 because thisb is ?

Solution If b = Ax̂ = (5, 13, 17) thenx̂ = (9, 4) ande = 0 sinceb is in the column
space ofA.

Questions 21–26 ask for projections onto lines. Also errorse = b − p and matricesP .

21 Project the vectorb onto the line througha. Check thate is perpendicular toa :

(a) b =

[
1
2
3

]
and a =

[
1
1
1

]
(b) b =

[
1
3
1

]
and a =

[ −1
−3
−1

]
.

Solution(a) The projectionp is

p = a
aTb

aTa
=

[
1
1
1

]
6

3
=

[
2
2
2

]
e = b−p =

[ −1
0
1

]
perpendicular to

[
1
1
1

]
.

Solution(b) In this case the projection is

p = a
aTb

aTa
=

[ −1
−3
−1

]
−11

−11
=

[
1
3
1

]
and e = b− p =

[
0
0
0

]
.
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22 Draw the projection ofb ontoa and also compute it fromp = v̂a :

(a)b =

[
cosθ
sinθ

]
anda =

[
1
0

]
(b) b =

[
1
1

]
anda =

[
1

−1

]
.

Solution (a) The projection ofb = (cos θ, sin θ) ontoa = (1, 0) is p = (cos θ, 0)

Solution (b) The projection ofb = (1, 1) ontoa = (1,−1) isp = (0, 0) sinceaTb = 0.

23 In Problem22 find the projection matrixP = aaT/aTa onto each vectora. Verify
in both cases thatP 2 = P . Multiply Pb in each case to find the projectionp.

SolutionP1=

[
1 0
0 0

]
andp = P1b =

[
cos θ
0

]
. P2=

1

2

[
1 −1

−1 1

]
andp = P2b =

[
0
0

]
.

24 Construct the projection matricesP1 andP2 onto the lines through thea’s in Problem
22. Is it true that(P1 + P2)

2 = P1 + P2 ? Thiswouldbe true ifP1P2 = 0.

Solution The projection matricesP1 andP2 (note correctionP2 notP − 2) are

P1 =
aaT

aTa
=

[
1 0
0 0

]
P2 =

aaT

aTa
=

1

2

[
1 −1

−1 1

]
.

It is not truethat(P1+P2)
2 = P1+P2. The sum of projection matrices isnot usually

a projection matrix.

25 Compute the projection matricesaaT/aTa onto the lines througha1 = (−1, 2, 2)
anda2 = (2, 2,−1). Multiply those two matricesP1P2 and explain the answer.

Solution P1 =
1

9

[
1 −2 −2

−2 4 4
−2 4 4

]
, P2 =

1

9

[
4 4 −2
4 4 −2

−2 −2 1

]
.

P1P2 = zero matrix becausea1 is perpendicular toa2.

26 Continuing Problem25, find the projection matrixP3 ontoa3 = (2,−1, 2). Verify that
P1 + P2 + P3 = I. The basisa1,a2,a3 is orthogonal !

SolutionP1+P2+P3 =
1

9

[
1 −2 −2

−2 4 4
−2 4 4

]
+
1

9

[
4 4 −2
4 4 −2

−2 −2 1

]
+
1

9

[
4 −2 4

−2 1 −2
4 −2 4

]
= I.

We canadd projections ontoorthogonal vectors. This is important.

27 Project the vectorb = (1, 1) onto the lines througha1 = (1, 0) anda2 = (1, 2). Draw
the projectionsp1 andp2 and addp1 + p2. The projections do not add tob because
thea’s are not orthogonal.

Solution The projections of(1, 1) onto the lines through(1, 0) and(1, 2) arep1 =
(1, 0) andp2 = (3/5, 6/5) = (0.6, 1.2). Thenp1 + p2 6= b.

28 (Quick and recommended) SupposeA is the 4 by 4 identity matrix with its last column
removed.A is 4 by 3. Projectb = (1, 2, 3, 4) onto the column space ofA. What shape
is the projection matrixP and what isP?

Solution A=



1 0 0
0 1 0
0 0 1
0 0 0


, P =square matrix=



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


, p=P



1
2
3
4


 =



1
2
3
0


.
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29 If A is doubled, thenP = 2A(4ATA)−12AT. This is the same asA(ATA)−1AT.
The column space of2A is the same as . Is v̂ the same forA and2A?

Solution2A has the same column space asA. Samep. But x̂ for 2A is half of x̂ for A.

30 What linear combination of(1, 2,−1) and(1, 0, 1) is closest tob = (2, 1, 1)?

Solution 1
2 (1, 2,−1) + 3

2 (1, 0, 1) = (2, 1, 1). So b is in the plane: no errore.
Projection showsPb = b.

31 (Important) If P 2 = P show that(I−P )2 = I−P . WhenP projects onto the column
space ofA, I − P projects onto which fundamental subspace ?

Solution If P 2 = P then(I − P )2 = (I−P )(I−P ) = I−PI−IP+P 2 = I − P .
WhenP projects onto the column space,I − P projects onto theleft nullspace.

32 If P is the 3 by 3 projection matrix onto the line through(1, 1, 1), thenI − P is the
projection matrix onto .

Solution I − P is the projection onto the planex1 + x2 + x3 = 0, perpendicular to
the direction(1, 1, 1) :

I − P =

[
1 0 0
0 1 0
0 0 1

]
− 1

3

[
1 1 1
1 1 1
1 1 1

]
=

1

3

[
2 −1 −1

−1 2 −1
−1 −1 2

]
.

33 Multiply the matrix P = A(ATA)−1AT by itself. Cancel to prove thatP 2 = P .
Explain whyP (Pb) always equalsPb: The vectorPb is in the column space so its
projection is .

Solution
(
A(ATA)−1AT

)2
= A(ATA)−1(ATA)(ATA)−1AT = A(ATA)−1AT.

So P 2 = P . Geometric reason :Pb is in the column space (whereP projects).
Then its projectionP (Pb) is Pb for everyb. SoP 2 = P .

34 If A is square and invertible, the warning against splitting(ATA)−1 does not apply.
ThenAA−1(AT)−1AT = I is true.WhenA is invertible, why isP = I ande = 0 ?

Solution If A is invertible then its column space is all ofRn. SoP = I ande = 0.

35 An important fact aboutATA is this: If ATAx = 0 then Ax = 0. New proof:
The vectorAx is in the nullspace of . Ax is always in the column space of

. To be in both of those perpendicular spaces,Ax must be zero.

Solution If ATAx = 0 thenAx is in thenullspace ofAT. But Ax is always in the
column space ofA. To be in both of those perpendicular spaces,Ax must be zero. So
A andATA have thesame nullspace.

Notes on mean and variance and test grades
If all grades on a test are90, the mean ism = 90 and the variance isσ2 = 0. Suppose

the expected grades areg1, . . . , gN . Thenσ2 comes fromsquaring distances to the mean:

Mean m =
g1 + · · ·+ gN

N
Variance σ2 =

(g1 −m)2 + · · ·+ (gN −m)2

N

After every test my class wants to knowm andσ. My expectations are usually way off.
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36 Show thatσ2 also equals1N (g21 + · · ·+ g2N )−m2.

Solution Each term(gi −m)2 equalsg2i − 2gim+m2, so

σ2 =
(sum ofg2i )− 2m(sum ofgi) +Nm2

N
=

(sum ofg2i )− 2mNm+Nm2

N

=
(sum ofg2i )

N
−m2.

37 If you flip a fair coinN times (1 for heads,0 for tails) what is the expected numberm
of heads ? What is the varianceσ2 ?

Solution For a fair coin you expectN/2 heads inN flips. The varianceσ2 turns out
to beN/4.

Problem Set 7.4, page 422

1 What solution to Laplace’s equation completes “degree3” in the table of pairs of solu-
tions ? We have one solutionu = x3 − 3xy2, and we need another solution.

Solution Start withs = −y3. Thensyy = −6y, and therefore we needsxx = 6y.
Integrating twice with respect tox gives 3y2x. Therefore the second function is
s(x, y) = −y3 + 3x2y.

2 What are the two solutions of degree4, the real and imaginary parts of(x + iy)4 ?
Checkuxx + uyy = 0 for both solutions.

Solution Expanding(x+ iy)4 gives

(x+ iy)4 = x4 − 6x2y2 + y4 + (4x3y − 4xy3)i

Therefore the two solutions would be :

u(x, y) = x4 − 6x2y2 + y4 and s(x, y) = 4x3y − 4xy3

Checking the first solution :

∂2(x4 − 6x2y2 + y4)

∂x2
+
∂2(x4 − 6x2y2 + y4)

∂y2
= (12x2−12y2)+(−12x2+12y2) = 0

Checking the second solution :

∂2(4x3y − 4xy3)

∂x2
+

∂2(4x3y − 4xy3)

∂y2
= (24xy − 0) + (0− 24xy) = 0

3 What is the secondx-derivative of(x+ iy)n ? What is the secondy-derivative? Those
cancel inuxx + uyy becausei2 = −1.

Solution The secondx-derivative of(x+ iy)n is :

∂2(x+ iy)n

∂x2
= n(n− 1)(x+ iy)n−2

The secondy-derivative of(x+ iy)n cancels that because

∂2(x+ iy)n

∂y2
= i · i · n(n− 1)(x+ iy)n−2 = −n(n− 1)(x+ iy)n−2
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4 For the solved2 × 2 example inside a4 × 4 square grid, write the four equations (9)
at the four interior nodes. Move the known boundary values0 and4 to the right hand
sides of the equations. You should seeK2D on the left side multiplying the correct
solutionU = (U11, U12, U21, U22) = (1, 2, 2, 3).

Solution The equations at the interior node would be :

4U1,1 − U2,1 − U0,1 − U1,2 − U1,0 = 0

4U1,2 − U2,2 − U0,2 − U1,3 − U1,1 = 0

4U2,1 − U3,1 − U1,1 − U2,2 − U2,0 = 0

4U2,2 − U3,2 − U1,2 − U2,3 − U2,1 = 0

Substituting the known boundary values leaves :

4U1,1 − U2,1 − U1,2 = 4

4U1,2 − U2,2 − U1,1 = 8

4U2,1 − U1,1 − U2,2 = 0

4U2,2 − U1,2 − U2,1 = 4

Writing this in matrix form gives :



4 −1 0 −1
−1 4 −1 0
0 −1 4 −1

−1 0 −1 4







U1,1

U1,2

U2,1

U2,2


 =




4
8
0
4


 and




U1,1

U1,2

U2,1

U2,2


 =




2
3
1
2




5 Suppose the boundary values on the4 × 4 grid change toU = 0 on three sides and
U = 8 on the fourth side. Find the four inside values so that each one is the average of
its neighbors.

Solution The values at the16 nodes will be

0 0 0 0

0 1
2

1
2 0

0 3
2

3
2 0

0/4 4 4 0/4

Notice that the corner boundary valuesdo not enter the 5-point equations around
interior points. Every interior value must be the average ofits four neighbors. By
symmetry the two middle columns must be the same.

6 (MATLAB) Find the inverse (K2D)−1 of the4 by 4 matrix displayed for the square grid.

Solution The circulant matrixK2D on page 422 has a circulant inverse :

(K2D)−1 =
1

24




7 2 1 2
2 7 2 1
1 2 7 2
2 1 2 7


 .
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7 Solve this Poisson finite difference equation (right side6= 0) for the inside values
U11, U12, U21, U22. All boundary values likeU10 andU13 are zero. The boundary
hasi or j equal to0 or 3, the interior hasi andj equal to1 or 2 :

4Uij − Ui−1,j − Ui+1,j − Ui,j−1 − Ui,j+1 = 1 at four inside points.

Solution The interior solution to the Poisson equation (on this smallgrid) is

0 0 0 0

0 1
2

1
2 0

0 1
2

1
2 0

0 0 0 0

On a larger gridUij will not be constant in the interior.

8 A 5× 5 grid has a3 by 3 interior grid :9 unknown valuesU11 toU33. Create the9× 9
difference matrixK2D.

Solution Order the points by rows to getU11, U12, U13, U21, U22, U23, U31, U32, U33.
ThenK2D is symmetric with3 by 3 blocks :

K2D =

[
A −I 0

−I A −I
0 −I A

]
A =

[
4 −1 0

−1 4 −1
0 −1 4

]

9 Use eig(K2D) to find the nine eigenvalues ofK2D in Problem 8. Those eigenvalues
will be positive ! The matrixK2D is symmetric positive definite.

Solution eig(K2D) in Problem 8 produces 9 eigenvalues between0 and4 :

The eigenvalues come from eig(K2D) and explicitly from equation (11). Notice that
pairs of eigenvalues add to8. The eigenvalue distribution is symmetric aroundλ = 4:

1.1716 2.5828 2.5828 4.0 4.0 4.0 5.4142 5.4142 6.8284

10 If u(x) solvesuxx = 0 andv(y) solvesvyy = 0, verify thatu(x)v(y) solves Laplace’s
equation. Why is this only a4-dimensional space of solutions ? Separation of variables
does not give all solutions—only the solutions with separable boundary conditions.

Solution
If

∂2u

∂x2
= 0 and

∂2v

∂y2
= 0 then

∂2u(x)v(y)

∂x2
+

∂2u(x)v(y)

∂y2
= v(y)

∂2u(x)

∂x2
+ u(x)

∂2v(y)

∂y2

= v · 0 + u · 0 = 0

Thereforeu(x)v(y) solves Laplace’s equation. But the only solutions found this way
areu(x)v(y) = (A+Bx)(C +Dy).
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Problem Set 7.5, page 428

Problems1 − 5 are about complete graphs. Every pair of nodes has an edge.

1 With n = 5 nodes and all edges, find the diagonal entries ofATA (the degrees of
the nodes). All the off-diagonal entries ofATA are−1. Show the reduced matrixR
without row5 and column5. Node5 is “grounded” andv5 = 0.

Solution The complete graph (all edges included) has no zeros inATA :

ATA =




4 −1 −1 −1 −1
−1 4 −1 −1 −1
−1 −1 4 −1 −1
−1 −1 −1 4 −1
−1 −1 −1 −1 4


 Singular!

The grounded matrix would be

(ATA)reduced =




4 −1 −1 −1
−1 4 −1 −1
−1 −1 4 −1
−1 −1 −1 4


 Invetible!

2 Show that thetrace of ATA (sum down the diagonal= sum of eigenvalues)
is n2 − n. What is the trace of the reduced (and invertible) matrixR of sizen− 1 ?

Solution ATA is n by n and each diagonal entry isn − 1. Therefore the trace is
n(n− 1) = n2 − n. The reduced matrixR hasn− 1 diagonal entries, each still equal
to n− 1. Therefore the trace is(n− 1)(n− 1) = n2 − 2n+ 1.

3 For n = 4, write the 3 by 3 matrix R = (Areduced)
T(Areduced). Show that

RR−1 = I whenR−1 has all entries14 off the diagonal and24 on the diagonal.

Solution
Reduced matrixR =

[
3 −1 −1

−1 3 −1
−1 −1 3

]

R by its proposed inverse gives
[

3 −1 −1
−1 3 −1
−1 −1 3

]

4 For everyn, the reduced matrixR of sizen − 1 is invertible. Show thatRR−1 = I
whenR−1 has all entries1/n off the diagonal and2/n on the diagonal.

Solution

1

4

[
2 1 1
1 2 1
1 1 2

]
=

1

4

[
6− 1− 1 3− 2− 1 3− 1− 2

−2 + 3− 1 −1 + 6− 1 −1 + 3− 2
−2− 1 + 3 −1− 2 + 3 −1− 1 + 6

]
= I.

5 Write the6 by 3 matrixM = Areducedwhenn = 4. The equationMv = b is to be
solved by least squares. The vectorb is like scores in6 games between4 teams (team
4 always scores zero; it is grounded). Knowing the inverse ofR = MTM , what is the
least squares rankinĝv1 for team1 from solvingMTM v̂ = MTb?

Solution Remove column4 of A when node4 is grounded (x4 = 0).
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M =




−1 1 0
−1 0 1
0 −1 1

−1 0 0
0 −1 0
0 0 −1




has independent columns

The least squares solution̂v to Mv = b comes fromMTM v̂ = MTb. This v̂ gives
the predicted point spreads when all teams play all other teams. The first component̂v1
would come from the first row of(MTM)−1 multiplying byMTb. Note that

MTM =

[
3 −1 −1

−1 3 −1
−1 −1 3

]
and (MTM)−1 =

1

4

[
2 1 1
1 2 1
1 1 2

]
.

6 For the tree graph with4 nodes,ATA is in equation (1). What is the3 by 3 matrix
R = (ATA)reduced? How do we know it is positive definite?

Solution The reduced form ofATA removes row4 and column4 :

Singular ATA =




1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1


 reduces to invertible

[
1 −1 0

−1 2 −1
0 −1 2

]

The first is positive semidefinite (A has dependent columns). the second is positive
definite (the reducedA has 3 independent columns).

7 (a) If you are given the matrixA, how could you reconstruct the graph?

Solution Each row ofA tells you an edge in the graph.

(b) If you are givenL = ATA, how could you reconstruct the graph (no arrows) ?

Solution Each nonzero off the main diagonal ofATA tells you an edge.

(c) If you are givenK = ATCA, how could you reconstruct the weighted graph?

Solution Each nonzero off the main diagonal tells you the weight of that edge.

8 FindK = ATCA for a line of3 resistors with conductancesc1 = 1, c2 = 4, c3 = 9.
Write Kreducedand show that this matrix is positive definite.

Solution A circle of three resistors has3 edges and3 nodes :

ATCA =

[ −1 1 0
0 −1 1
1 0 −1

][
1

4
9

][ −1 0 1
1 −1 0
0 1 −1

]

=

[
5 −4 −1

−4 13 −9
−1 −9 10

]
is only semidefinite

(ATCA)reduced =

[
−1 1 0
0 −1 1

] [ 1
4

9

][ −1 0
1 −1
0 1

]
=

[
5 −4

−4 13

]

.

The determinant tests5 > 0 and(5)(13) > 42 are passed.



7.5. Networks and the Graph Laplacian 203

9 A 3 by 3 square grid hasn = 9 nodes andm = 12 edges. Number nodes by rows.

(a) How many nonzeros among the81 entries ofL = ATA?

Solution The 9 nodes ordered by rows have2, 3, 2, 3, 4, 3, 2, 3, 2 neighbors around
them. Those add to24 nonzeros off the diagonal. The9 diagonal entries make33
nonzeros out of92 = 81 entries inL = ATA.

(b) Write down the9 diagonal entries in the degree matrixD : they are not all4.

Solution Those9 numbers are the degrees of the9 nodes (= diagonal entries inATA).

(c) Why does the middle row ofL = D −W have four−1’s ? NoticeL = K2D !

Solution The middle node in the grid has4 neighbors.

10 Suppose all conductances in equation (5) are equal toc. Solve equation (6) for the
voltagesv2 andv3 and find the currentI flowing out of node1 (and into the ground at
node4). What is the “system conductance”I/V from node1 to node4 ?

This overall conductanceI/V should be larger than the individual conductancesc.

Solution The reduced equation (6) with conductances= c is
[

3c −c
−c 2c

] [
v2
v3

]
=

[
cV
cV

]
and

[
v2
v3

]
=

[
0.6V
0.8V

]
.

Then the flows on the five edges in Figure 7.6 useA in equation (2). Remember the
minus sign :

−cAv = −c




−1 1 0 0
−1 0 1 0
0 −1 1 0

−1 0 0 1
0 −1 0 1







V
0.6V
0.8V

0


 = cV




0.4
0.2

−0.2
1.0
0.6




The total flow (on edges1+2+4 out of node1, or on edges3+4 into the grounded node
4, is I = 1.6cV . The overall system conductance is1.6c, greater than the individual
conductancec on each edge.

11 The multiplicationATA can be columns ofAT times rows ofA. For the tree with
m = 3 edges andn = 4 nodes, each (column times row) is(4 × 1)(1 × 4) = 4 × 4.
Write down those three column-times-row matrices and add togetL = ATA.

Solution Suppose the 3 tree edges go out of node1 to nodes2, 3, 4. (The problem
allows to choose other trees, including a line of4 nodes.) Then

A =

[ −1 1 0 0
−1 0 1 0
−1 0 0 1

]
ATA =




3 −1 −1 −1
−1 1 0 0
−1 0 1 0
−1 0 0 1


 = sum of (columns ofAT)( rows of A)

=



−1
1
0
0


 [−1 1 0 0 ] +



−1
0
1
0


 [−1 0 1 0 ] +



−1
0
0
1


 [−1 0 0 1 ] .
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12 A graph with two separate3-node trees isnot connected. Write its 6 by 4 incidence
matrixA. Find two solutions toAv = 0, not just one solutionv = (1, 1, 1, 1, 1, 1). To
reduceATA we must groundtwo nodes and remove two rows and columns.

Solution The incidence matrix for two3-node trees is

A =

[
Atree 0
0 Atree

]
with Atree =

[
1 1 0

−1 0 1

]
(for example)

The columns ofAtree add to zero so we have2 independent solutions toAv = 0 :

v =




1
1
1
0
0
0




and




0
0
0
1
1
1




come fromAtree

[
1
1
1

]
=

[
0
0
0

]
.

13 “Element matrices” from column times row appear in thefinite element method.
Include the numbersc1, c2, c3 in the element matricesK1,K1,K3.

Ki = (row i of A)T (ci) (row i of A) K = ATCA = K1 + K2 + K3.

Write the element matrices that add toATA in (1) for the4-node line graph.

ATA =




[
K1

]
[
K2

]

[
K3

]



=

assembly of the nonzero
entries ofK1 +K2 +K3

from edges1, 2, and3

Solution The three “element matrices” for the three edges come from multiplying the
three columns ofAT by the three rows ofA. ThenATA equals

=



−1
1
0
0


 [−1 1 0 0 ] +




0
−1
1
0


 [ 0 −1 1 0 ] +




0
0

−1
1


 [ 0 0 −1 1 ] .

When the diagonal matrixC is included, those are multiplied byc1, c2, andc3. Those
products produce2 by 2 blocks of nonzeros in4× 4 matrices :

K1 = c1




1 −1
−1 1


 K2 = c2


 1 −1

−1 1


 K3 = c3


 1 −1

−1 1




ThenATCA = K1 + K2 + K3. This ‘assembly” of the element stiffness matrices
just requires placing the nonzeros correctly into the final matrixATCA.

14 An n by n grid hasn2 nodes. How many edges in this graph ? How many interior
nodes ? How many nonzeros inA and inL = ATA ? There are no zeros inL−1 !

Solution An n byn grid hasn horizontal rows (n−1 edges on each row) andn vertical
columns (n − 1 edges down each column). Altogether2n(n − 1) edges. There are
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(n − 2)2 interior nodes—a square grid with the boundary nodes removed to reducen
to n− 2.

Every edge produces2 nonzeros (−1 and+1) in A. ThenA has4n(n − 1) nonzeros.
The matrixATA has sizen2 with n2 diagonal nonzeros—and off the diagonal ofATA
there are two−1’s for each edge : altogethern2 + 4n(n− 1) = 5n2 − 4n nonzeros
out ofn4 entries. Forn = 2, this means12 nonzeros in a4 by 4 matrix.

15 When onlye = C−1w is eliminated from the3-step framework, equation (??) shows

Saddle-point matrix
Not positive definite

[
C−1 A
AT 0

] [
w
v

]
=

[
b
f

]
.

Multiply the first block row byATC and subtract from the second block row :

After block elimination
[

C−1 A
0 −ATCA

] [
w
v

]
=

[
b

f −ATCb

]
.

After m positive pivots fromC−1, why does this matrix have negative pivots ?
The two-field problem forw andv is finding a saddle point, not a minimum.

Solution The three equationse = b − Av andw = Ce andATw = f reduce to two
equations whene is replaced byC−1w :

C−1w = b−Av
ATw = f

become

[
C−1 A
AT 0

] [
v
w

]
=

[
b
f

]
.

Multiply the first equation byATC to getATw = ATCb − ATCAv. Subtract from
the second equationATw = f , to eliminatew :

ATCb−ATCAv = f .

This gives the second row of the block matrix after elimination :[
C−1 A
0 −ATCA

] [
v
w

]
=

[
b
f −ATCb

]
.

The pivots of that matrix on the left side start with1/c1, 1/c2, . . . , 1/cm. Then we get
then pivots of−ATCA which arenegative, because this matrix is negative definite.

Altogether we are finding a saddle point(v,w) of the energy (quadratic function).
The derivative of that quadratic gives our linear equations. The block matrix in those
equations hasm positive eigenvalues andn negative eigenvalues.

16 The least squares equationATAv = ATb comes from the projection equation
ATe = 0 for the errore = b − Av. Write those two equations in the symmetric
saddle point form of Problem 7 (withf = 0).

In this casew = e because the weighting matrix isC = I.

Solution Ordinary least squares forAv = b separates the data vectorb in two perpen-
dicular parts :

b = (Av̂) + (b−Av̂) = (projection ofb) + (error inb).

The errore = b−Av satisfiesATe = ATb−ATAv = 0 (which means thatATAv =
ATb, the key equation). That equationdTe = 0 is Kirchhoff’s Current Law for flows in
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a network. It is a candidate for the “most important equationin applied mathematics”—
the conservation equation or continuity equation “flow in= flow out.”

In the form of Problem 15 (withC = I) the equations are[
I A
AT 0

] [
e
v

]
=

[
b
0

]
or

e+Av = b
ATe = 0 .

17 Find the three eigenvalues and three pivots and the determinant of this saddle point
matrix withC = I. One eigenvalue is negative becauseA has one column :

m = 2, n = 1

[
C−1 A
AT 0

]
=

[
1 0 −1
0 1 1

−1 1 0

]
.

Solution The eigenvalues come fromdet(M − λI) = 0 :
[

1− λ 0 −1
0 1− λ 1
−1 1 −λ

]
= −λ(1 − λ)2 − 2(1− λ) = 0 .

Then(1− λ)(λ2 − λ− 2) = 0 and(1− λ)(λ− 2)(λ+1) = 0 and the eigenvalues are
λ = 1,2,−1. Check the sum1 + 2 − 1 = 2 equal to the trace (sum down the main
diagonal1 + 1 + 0 = 2).

The determinant is the productλ1λ2λ3 = (1)(2)(−1) = −2. Noticem = 2 positive
λ’s andn = 1 negative eigenvalue.

Elimination finds the three pivots (which also multiply to givedetM = −2) :



1 0 −1

0 1 1

−1 1 0


→




1 0 −1

0 1 1

0 1 −1


 −→




1 0 −1

0 1 1

0 0 −2©


 .
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Problem Set 8.1, page 443

1 (a) To prove that cosnx is orthogonal to coskx whenk 6= n, use(cosnx) (coskx) =
1
2 cos(n+k)x+ 1

2 cos(n−k)x. Integrate fromx = 0 tox = π. What is
∫

cos2 kx dx?

(b) Correction From 0 to π, cosx is not orthogonal to sin 2x (the book wrongly
proposed

∫ π

0
cosx sinx dx, but this is zero). For orthogonality ofall sines and cosines,

the period has to be2π.

Solution (a)
π∫

0

(cosnx)(cos kx)dx =
1

2

π∫

0

cos(n+ k)x dx+
1

2

π∫

0

cos(n− k)x dx

=

[
sin(n+ k)x

2(n+ k)
+

sin(n− k)x

2(n− k)

]π

0

= 0 + 0

Solution (b)

π∫

0

(cos x)(sin 2x) dx =

π∫

0

(cosx)(2 sinx cosx) dx =

[
−2

3
cos3 x

]π

0

=
4

3
6= 0.

Non-orthogonality comes from

π∫

0

cosmx sinnxdx whenm− n is an odd number.

2 SupposeF (x) = x for 0 ≤ x ≤ π. Draw graphs for−2π ≤ x ≤ 2π to show
three extensions ofF : a2π-periodic even function and a2π-periodic odd function and
aπ-periodic function.

Solution

−2π 0 2π −2π 0 2π −2π 0 2π

3 Find the Fourier series on−π ≤ x ≤ π for

(a)f1(x) = sin3 x, an odd function (sine series, only two terms)

Solution (a) The fast way is to know the identitysin3 x = 3
4 sinx − 1

4 sin 3x. This
must be the Fourier sine series! It has only two terms.

More slowly, use Euler’s great formula to produce complex exponentials :

(sinx)3 =

(
eix − e−ix

2i

)3

=
e3ix − 3eix + 3e−ix − e−3ix

8i3
= −1

4
sin 3x+

3

4
sinx.

Or slowly compute the usual formulas
∫
sin3 x sinx dx and

∫
sin3 x sin 3x dx.
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(b) f2(x) = | sinx|, an even function (cosine series)

Solution (b)

a0 =
1

π

π∫

0

| sinx| dx =
2

π

ak =
1

2π

π∫

0

| sinx| cos kx dx = − 1

4π

[
cos(k − 1)x

k − 1
+

cos(k + 1)x

k + 1

]x=π

x=0

= 0 (oddk) or − 1

4π

[ −2

k − 1
+

−2

k + 1

]
=

k

π(k2 − 1)
(even k)

(c) f3(x) = x for −π ≤ x ≤ π (sine series with jump atx = π)

Solution (c) bk =
1

π

π∫

−π

x sin kx dx =

[
1

π k2
sin kx− x

π k
cos kx

]π

−π

Solution (c) bk = − 1

k
(cos kπ + cos(−kπ)) = − 2

k
(−1)k.

4 Find the complex Fourier seriesex =
∑

cke
ikx on the interval−π ≤ x ≤ π.

The even part of a function is12 (f(x)+ f(−x)), so thatfeven(x) = feven(−x). Find the
cosine series forfevenand the sine series forfodd. Notice the jump atx = π.

Solution
ck =

1

2π

π∫

−π

exe−ikx dx =
1

2π

π∫

−π

ex(1−ik) dx

=

[
1

2π(1− ik)
ex(1−ik)

]π

−π

=
eπ(1−ik) − e−π(1−ik)

2π(1− ik)

The even part of the function is :
1

2
(ex + e−x). The cosine coefficients are

a0 =
1

4π

π∫

−π

(ex + e−x) dx =
1

2π
(eπ − e−π)

ak =
1

2π

π∫

−π

(ex + e−x) cos kx dx =
2k cosh[π] sin[kπ] + 2 cos[kπ] sinh[π]

π + k2π

The odd part of the function is:
1

2
(ex − e−x). The sine series is:

bk =
1

2π

π∫

−π

(ex − e−x) sin kx dx =
2 cosh[π] sin[kπ]− 2k cos[kπ] sinh[π]

π + k2π

5 From the energy formula (21), the square wave sine coefficients satisfy

π(b21 + b22 + · · · ) =
∫ π

−π

|SW (x)|2 dx =

∫ π

−π

1 dx = 2π.
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Substitute the numbersbk from equation (8) to find thatπ2 = 8(1 + 1
9 + 1

25 + · · · ).
Solution The sine coefficients for the odd square wave are

bk =
4

π

(
1− (−1)k

2k

)
=

4

π

(
1

1
, 0,

1

3
, 0,

1

5
, 0, . . .

)

Energy identity givesπ2 = 8

∞∑

k=1

(
1− (−1)k

2k

)2

= 8

(
1 +

1

9
+

1

25
+ · · ·

)

6 If a square pulse is centered atx = 0 to give

f(x) = 1 for |x| < π

2
, f(x) = 0 for

π

2
< |x| < π,

draw its graph and find its Fourier coefficientsak andbk.

Solution

a0 =
1

2π

π/2∫

−π/2

dx =
1

2

ak =
1

π

π/2∫

−π/2

cos kx dx =
2

kπ
sin

kπ

2
= sin c

(
kπ

2

)

bk =
1

π

π/2∫

−π/2

sin kx dx = 0

7 Plot the first three partial sums and the functionx(π − x) :

x(π − x) =
8

π

(
sinx

1
+

sin 3x

27
+

sin 5x

125
+ · · ·

)
, 0 < x < π.

Why is1/k3 the decay rate for this function? What is its second derivative?

Solution The parabolay = x(π − x) = xπ − x2 starts aty(0) = 0 with slope
y ′(0) = π and second derivativey ′′(0) = −2. Its sine series makes it an odd function
xπ + x2 from −π to 0. This odd extension hassecond derivative= ±2. That jump
in y ′′ means that the Fourier coefficientsbk will decay like1/k3. (Remember1/k for
jumps iny(x) and1/k2 for jumps iny ′(x)—no jumps iny, y ′ for this example.)

8 Sketch the2π-periodic half wave withf(x) = sinx for 0 < x < π andf(x) = 0 for
−π < x < 0. Find its Fourier series.

Solution The function is not odd or even, so integrals must go from−π to π. The
function is zero from−π to 0 leaving only these integrals fora0, ak, bk :
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a0 =
1

2π

π∫

0

sinx dx =
1

2π
[− cosx]

π
0 =

1

π

ak =
1

π

π∫

0

sinx cos kx dx = − 1

2π

[
cos(1− k)x

1− k
+

cos(1 + k)x

1 + k

]π

0

=

[k even]
1

π

(
1

1− k
+

1

1 + k

)
=

2

π(1 − k2)
[and 0 for k odd]

bk =
1

π

π∫

0

sinx sin kx dx givesb1 =
1

2
and otherbk = 0.

9 SupposeG(x) has period2L instead of2π. ThenG(x + 2L) = G(x). Integrals
go from−L to L or from0 to 2L. The Fourier formulas change by a factorπ/L :

The coefficients inG(x) =
∞∑
−∞

Cke
ikπx/L are Ck =

1

2L

L∫

−L

G(x)e−ikπx/Ldx.

Derive this formula forCk : Multiply the first equation forG(x) by and
integrate both sides. Why is the integral on the right side equal to2LCk ?

Solution Multiply G(x) =
∞∑
−∞

Cke
ikπx/L by e−ikπx/L. Integrate.

L∫

−L

G(x)e−ikπx/L dx =

L∫

−L

e−ikπx/L
∞∑

−∞
Cke

ikπx/L dx

L∫

−L

G(x)e−ikπx/L dx = Ck

L∫

−L

dx = 2LCk (orthogonality)

Ck =
1

2L

L∫

−L

G(x)e−ikπx/L dx

10 ForGeven, use Problem 9 to find the cosine coefficientAk from (Ck + C−k)/2 :

Geven(x) =
∞∑
0
Ak cos

kπx

L
has Ak =

1

L

L∫

0

Geven(x) cos
kπx

L
dx.

Gevenis 1
2 (G(x) +G(−x)). Exception forA0 = C0 : Divide by2L instead ofL.

Solution The result comes directly from12 (Ck + C−k).

11 Problem 10 tells us thatak =
1

2
(ck + c−k) on the usual interval from0 to π.

Find a similar formula forbk from ck and c−k. In the reverse direction, find the
complex coefficientck in F (x) =

∑
cke

ikx from the real coefficientsak andbk.
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Solution Solution and correction We are comparing two ways to write a Fourier
series : ∞∑

−∞
cke

ikx = a0 +

∞∑

1

ak cos kx+

∞∑

1

bk sin kx

Pick out the terms fork and−k :
cke

ikx + c−ke
−ikx = ak cos kx+ bk sin kx

Use Euler’s formula to reach cosines/sines on both sides :
(ck + c−k) cos kx+ i(ck − c−k) sin kx = ak cos kx+ bk sin kx

This shows thatak = ck + c−k (correction from text ) andbk = i(ck − c−k).

Reverse Euler’s formula to reach complex exponentials on both sides :

cke
ikx + c−ke

−ikx =
1

2
ak(e

ikx + e−ikx) +
1

2i
bk(e

ikx − e−ikx)

This shows thatck =
1

2
ak +

1

2i
bk and c−k =

1

2
ak − 1

2i
bk.

Real functions with reala’s andb’s lead toc−k = ck (complex conjugates)

12 Find the solution to Laplace’s equation withu0 = θ on the boundary. Why is this the
imaginary part of2(z − z2/2 + z3/3 · · · ) = 2 log(1 + z)? Confirm that on the unit
circle z = eiθ, the imaginary part of2 log(1 + z) agrees withθ.

Solution The sine series of the odd functionf(θ) = θ has coefficientsbn =

2

π

π∫

0

θ sin nθ dθ =
2

π

[
1

n2
sin nθ − θ

n
cos nθ

]π

0

= −2 cos nπ

n
= 2

[
1

1
,−1

2
,
1

3
,−1

4
, · · ·

]

The solution to Laplace’s equation inside the circle has factorsrn :

u(r, θ) =
∑

bnr
n sin nθ = 2r sin θ − 2

2
r2 sin 2θ +

2

3
r3 sin 3θ . . .

= Im

[
2z − 2

2
z2 +

2

3
z3 . . .

]
= Im[2 log(1 + z)].

13 If the boundary condition for Laplace’s equation isu0 = 1 for 0 < θ < π andu0 = 0
for −π < θ < 0, find the Fourier series solutionu(r, θ) inside the unit circle. What is
u at the originr = 0 ?

Solution This 0-1 step functionu0(θ) equals12 +
1
2 (square wave). Equation (8) of the

text gives the Fourier sine series for the square wave :

0-1 Step Functionu0(θ) =
1

2
+

2

π

[
sin θ

1
+

sin 3θ

3
+

sin 5θ

5
+ · · ·

]

Then the solution to Laplace’s equation includes factorsrn :

u(r, θ) =
1

2
+

2

π

[
r sin θ

1
+

r3 sin 3θ

3
+

r5 sin 5θ

5
+ · · ·

]
=

1

2
at r = 0.
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14 With boundary valuesu0(θ) = 1 + 1
2e

iθ + 1
4e

2iθ + · · · , what is the Fourier series
solution to Laplace’s equation in the circle? Sum this geometric series.

Solution Inside the circle we see factorsrn (and1 + x+ x2 + · · · = 1/(1− x)) :

u(r, θ) = 1 +
1

2
reiθ +

1

4
r2e2iθ + · · · = 1/

(
1 − 1

2
reiθ

)
.

15 (a) Verify that the fraction in Poisson’s formula (30) satisfies Laplace’s equation.

Solution(a) We could verify Laplace’s equation inr, θ coordinates or recognize that
every term in the sum (29) solves that equation :

∂2 u

∂ r2
+

1

r

∂ u

∂ r
+

1

r2
∂2 u

∂θ2
= 0.

(b) Find the responseu(r, θ) to an impulse atx = 0, y = 1 (whereθ = π
2 ).

Solution(b) When the source is at the pointθ = π, this replacesr cos θ by −r cos θ
in equation (30). Then the response to a point source is infinite atr = 1, θ = π :

u(r, θ) =
1

2π

1 − r2

1 + r2 + 2r cos θ

16 With complex exponentials inF (x) =
∑

cke
ikx, the energy identity (21) changes to

π∫
−π

|F (x)|2 dx = 2π
∑ |ck|2. Derive this by integrating(

∑
cke

ikx)(
∑

cke
−ikx).

Solution All productseikxe−ikx integrate to zero except whenn = k :
π∫

−π

(cke
ikx)(cke

−ikx) dx = 2πckck = 2π|ck|2.

The total energy is the sum over allk.

17 A centered square wave hasF (x) = 1 for |x| ≤ π/2.

(a) Find its energy
∫
|F (x)|2 dx by direct integration

Solution(a)
∫

|F (x)|2 dx =

π/2∫

−π/2

dx = π.

(b) Compute its Fourier coefficientsck as specific numbers

Solution (b) ck =
1

2π

π/2∫

−π/2

e−ikx dx =

[
1

2π

e−ikx

−ik

]π/2

−π/2

=
1

2π ik

(
eikπ/2 − e−ikπ/2

)
=

1

π k
sin

(
kπ

2

)

(c) Find the sum in the energy identity (Problem 8).

Solution(c) sin
k π

2
=1, 0,−1, 0 (repeated) so2π

∑ |ck|2=
2

π

(
1

1
+
1

9
+

1

25
+· · ·

)
=1.
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18 F (x) = 1 + (cosx)/2 + · · ·+ (cosnx)/2n + · · · is analytic : infinitely smooth.

(a) If you take10 derivatives, what is the Fourier series ofd10F/dx10?

(b) Does that series still converge quickly ? Comparen10 with 2n for n = 210.

Solution(a) 10 derivatives ofcos nx gives−n10 cos nx :

d10F

dx10
= −1

2
cosx− 210

22
cos 2x− 310

23
cos 3x · · · − n10

2n
cos nx− · · ·

Solution(b) Yes,2n gets large much faster thann10 so the series easily converges.

At n = 210 = 1024 we have2n = 21024, much larger thann10 = 2100.

19 If f(x) = 1 for |x| ≤ π/2 andf(x) = 0 for π/2 < |x| < π, find its cosine coefficients.
Can you graph and compute the Gibbs overshoot at the jumps ?

Solution a0 = average value=
1

2

ak =
1

π

π/2∫

−π/2

cos kx dx =

[
1

π k
sin kx

]π/2

−π/2

=
2

π k
sin

kπ

2

20 Find all the coefficientsak andbk for F, I, andD on the interval−π ≤ x ≤ π :

F (x) = δ
(
x− π

2

)
I(x) =

∫ x

0

δ
(
x− π

2

)
dx D(x) =

d

dx
δ
(
x− π

2

)
.

Solution(a) Integratecos kx andsin kx againstδ(x− π
2 ) to get

a0 =
1

2π
ak =

1

π
cos

kπ

2
and bk =

1

π
sin

kπ

2

Solution(b) The integralI(x) is the unit step functionH(x− π
2 ) with jump atx = π

2 :

a0 =
1

2π

π∫

π/2

1 dx =
1

4

ak =
1

π

π∫

π/2

cos kx dx =
1

π k

(
sin kπ − sin

kπ

2

)
= − 1

π k
sin

kπ

2

bk =
1

π

π∫

π/2

sin kx dx = − 1

π k

(
cos kπ − cos

kπ

2

)

Solution(c) D(x) is the “doublet”= derivative of the delta functionδ
(
x− π

2

)
. You

must integrate by parts (andD(−π) = D(π) = 0 fortunately).

1

π

π∫

−π

D(x) cos kx dx =
1

π

π∫

−π

δ
(
x− π

2

)
(k sin kx) dx

Soak for D(x) is kbk in part (b) , andbk for D(x) is−kak in part (b) .
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21 For the one-sided tall box function in Example 4, withF = 1/h for 0 ≤ x ≤ h, what
is its odd part12 (F (x) − F (−x))? I am surprised that the Fourier coefficients of this
odd part disappear ash approaches zero andF (x) approachesδ(x).

Solution Every function has an even part and an odd part :

Feven(x) =
1

2
(F (x) + F (−x)) Fodd(x) =

1

2
(F (x)− F (−x)) F = Feven + Fodd

For the one-sided box function, those even and odd parts are

Feven(x) =
1

2h
for |x| ≤ h Fodd(x) = − 1

h
for −h ≤ x ≤ 0,+

1

h
for 0 < x ≤ h.

The Fourier coefficients ofFodd don’t really “disappear” ash → 0, because the energy∫
|Fodd|2 dx is growing. But it is growing in the high frequencies and any particular

coefficientck (at a fixed frequencyk) approaches zero ash → 0.

22 Find the seriesF (x) =
∑

cke
ikx for F (x) = ex on−π ≤ x ≤ π. That functionex

looks smooth, but there must be a hidden jump to get coefficients ck proportional to
1/k. Where is the jump ?

Solution Whenex is made into a periodic function there is a jump (or a drop) atx = π.
The drop fromeπ to e−π starts the next2π-interval. That drop shows up as a factor
multiplying the1/k decay that all jump functions show in their Fourier expansion :

ck =
1

2π

π∫

−π

exe−ikx dx =

[
1

2π

e(1−ik)x

1− ik

]π

x=−π

=
1

2π

eπ − e−π

1− ik
.

23 (a) (Old particular solution) SolveAy′′ +By′ + Cy = eikx.

(b) (New particular solution) SolveAy′′ +By′ + Cy =
∑

cke
ikx.

Solution This problem shows directly the power oflinearity to deal with complicated
forcing functions as combinations of simple forcing functionseikx :

Ay′′ +By′ + Cy = eikx has yp =
1

(ik)2A+ ikB + C
eikx = Yke

ikx

Ay′′ +By′ + Cy =
∑

cke
ikx has yp =

∑
ckYke

ikx.

Problem Set 8.2, page 453

1 Multiply the three matrices in equation (11) and compare with F . In which six entries
do you need to know thati2 = −1? This is(w4)

2 = w2. If M = N/2, why is
(wN )M = −1?

Solution

2 Why is rowi of F the same as rowN − i of F (numbered from0 to N − 1)?

Solution
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3 From Problem 8, find the4 by 4 permutation matrixP so thatF = PF . Check that
P 2 = I so thatP = P−1. Then fromFF = 4I show thatF 2 = 4P .

It is amazing thatF 4 = 16P 2 = 16I. Four transforms of anyc bring back16 c.
For allN , F 2/N is a permutation matrixP andF 4 = N2I.

Solution

4 Invert the three factors in equation (11) to find a fast factorization ofF−1.

5 F is symmetric. Transpose equation (11) to find a new Fast Fourier Transform.

Solution

6 All entries in the factorization ofF6 involve powers ofw = sixth root of 1:

F6 =

[
I D
I −D

] [
F3

F3

] [
P

]
.

Write down these factors with1, w, w2 in D and powers ofw2 in F3. Multiply!

Solution

7 Put the vectorc = (1, 0, 1, 0) through the three steps of the FFT to findy = Fc. Do
the same forc = (0, 1, 0, 1).

Solution

8 Computey = F8c by the three FFT steps forc = (1, 0, 1, 0, 1, 0, 1, 0). Repeat the
computation forc = (0, 1, 0, 1, 0, 1, 0, 1).

Solution

9 If w = e2πi/64 thenw2 and
√
w are among the and roots of 1.

Solution

10 F is a symmetric matrix. Its eigenvalues aren’t real. How is this possible ?

Solution

The three great symmetric tridiagonal matrices of applied mathematics areK, B, C.
The eigenvectors ofK,B, andC are discretesines, cosines, andexponentials. The eigen-
vector matrices give theDST, DCT, andDFT — discrete transforms for signal processing.
Notice that diagonals of the circulant matrixC loop around to the far corners.

K =




2 −1
−1 2 −1

· · ·
−1 2


 B =




1 −1
−1 2 −1

· · ·
−1 1




C =




2 −1 · −1
−1 2 −1

· · ·
−1 · −1 2




K11 = KNN = 2

B11 = BNN = 1

C1N = CN1 = −1
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11 The eigenvectors ofKN andBN are the discrete siness1, . . ., sN and the discrete
cosinesc0, . . ., cN−1. Notice the eigenvectorc0 = (1, 1, . . . , 1). Here aresk and
ck—these vectors are samples ofsin kx andcos kx from 0 to π.

(
sin

πk

N+1
, sin

2πk

N+1
, . . . , sin

Nπk

N+1

)
and

(
cos

πk

2N
, cos

3πk

2N
, . . . , cos

(2N−1)πk

2N

)

For2 by 2 matricesK2 andB2, verify thats1, s2 andc0, c1 are eigenvectors.

Solution

12 Show thatC3 has eigenvaluesλ = 0, 3, 3 with eigenvectorse0 = (1, 1, 1),
e1 = (1, w, w2), e2 = (1, w2, w4). You may prefer the real eigenvectors(1, 1, 1)
and(1, 0,−1) and(1,−2, 1).

Solution

13 Multiply to see the eigenvectorsek and eigenvaluesλk of CN . Simplify to λk =
2− 2 cos(2πk/N). Explain whyCN is only semidefinite. It is not positive definite.

Cek =




2 −1 −1
−1 2 −1

−1 2 −1
−1 −1 2







1
wk

w2k

w(N−1)k


 = (2 − wk − w−k)




1
wk

w2k

w(N−1)k


 .

Solution

14 The eigenvectorsek of C are automatically perpendicular becauseC is a
matrix. (To tell the truth,C has repeated eigenvalues as in Problem 12. There was
a plane of eigenvectors forλ = 3 and we chose orthogonale1 ande2 in that plane.)

Solution

15 Write the2 eigenvalues forK2 and the3 eigenvalues forB3. AlwaysKN andBN+1

have the sameN eigenvalues, with the extra eigenvalue for BN+1. (This is
becauseK = ATA andB = AAT.)

Solution

Problem Set 8.5, page 477

1 When the driving function isf(t) = δ(t), the solution starting from rest is theim-
pulse response. The impulse isδ(t), the response isy(t). Transform this equation
to find thetransfer function Y (s). Invert to find the impulse responsey(t).

y′′ + y = δ(t) with y(0) = 0 andy′(0) = 0

Solution Take the Laplace Transform ofy′′ + y = δ(t) with y(0) = y′(0) = 0 :

s2Y (s)− sy(0)− y ′(0) + Y (s) = 1

Y (s)(s2 + 1) = 1

Y (s) =
1

s2 + 1
is the transform ofy(t) = sin t.



8.5. The Laplace Transform 217

2 (Important) Find the first derivative and second derivativeof f(t) = sint for t ≥ 0.
Watch for a jump att = 0 which produces a spike (delta function) in the derivative.

Solution The first derivative ofsin(t) is cos(t), and the second derivative is− sin(t) + δ(t).
3 Find the Laplace transform of the unit box functionb(t) = {1 for 0 ≤ t < 1} =

H(t)−H(t− 1). The unit step function isH(t) in honor of Oliver Heaviside.

Solution The unit box function isf(t) = H(t)−H(t− 1)

The transform isF (s) =
1

s
− e−s

s
=

1

s
(1 − e−s)

The same result comes fromF (s) =

∞∫

0

f(t) e−st dt =

1∫

0

e−st dt.

4 If the Fourier transform off(t) is defined byf̂(k) =
∫
f(t)e−iktdt andf(t) = 0 for

t < 0, what is the connection between̂f(k) and the Laplace transformF (s)?

Solution The Fourier Transform is the Laplace Transform withs = ik : f̂(k) = F (ik).
5 What is the Laplace transformR(s) of the standardramp function r(t) = t ?

For t < 0 all functions are zero. The derivative ofr(t) is the unit stepH(t).
Then multiplyingR(s) by s gives .

Solution The Laplace TransformR(s) of the Ramp Functionr(t) = t is

R(s) =

∞∫

0

te−st dt = − te−st

s

∣∣∣∣
∞

0

−
∞∫

0

−e−st

s
dt = 0− e−st

s2

∣∣∣∣
∞

0

=
1

s2

Multiplying R(s) by s gives the Laplace transform1/s of the step function.
6 Find the Laplace transformF (s) of eachf(t), and the poles ofF (s):

(a) f = 1 + t (b) f = t cosωt (c) f = cos(ωt− θ)
(d) f = cos2 t (e) f = e−2t cos t (f) f = te−t sinωt

Solution(a) The transform off(t) = 1 + t has adouble poleats = 0 :

F (s) =

∞∫

0

(1 + t)e−st dt =

∞∫

0

e−st dt+

∞∫

0

te−st dt =
1

s
+

1

s2
=

1 + s

s2

Solution(b)

f(t) = t cos(ωt) = t

(
eiωt + e−iωt

2

)
=

teiωt

2
+

te−iωt

2
transforms to

F (s) =

∞∫

0

te(iω−s)t

2
dt+

∞∫

0

te−(iω−s)t

2
dt

=
−e−t(s−iω)(st− itω + 1)

2(s− iω)2

∣∣∣∣
∞

0

+
−e−t(s+iω)(st+ itω + 1)

2(s+ iω)2

∣∣∣∣
∞

0

=
1

2(s− iω)2
+

1

2(s+ iω)2
=

(s− iω)2 + (s+ iω)2

2(s− iω)2(s+ iω)2
=

s2 − ω2

(s2 + ω2)2

Poles occur ats = iω ands = −iω, the two exponents off(t).
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Solution(c) f(t) = cos(ωt− θ) = cosωt cos θ + sinωt sin θ transforms to

F (s) =
s

s2 + ω2
cos θ +

ω

s2 + ω2
sin θ

Poles occur ats = ±iω.

Solution(d)

f(t) = cos2(t) =
1

4
(eit + e−it)2 =

1

4
(e2it + 2 + e−2it)

F (s) =

∞∫

0

1

4
(e2it + e−2it + 2)e−st dt

= − 1

4(s− 2i)
+

1

4(s+ 2i)
+

1

2s
=

2s

4(s2 + 4)
+

1

2s
=

s2 + 2

s(s2 + 4)

Poles occur ats = 0 ands = ±2i. Another way is to writecos2 t =
1 + cos 2t

2

Solution(e)

f(t) = e−2t cos t =
1

2
e(i−2)t +

1

2
e−(i+2)t

F (s) =

∞∫

0

1

2
e(i−2)te−st dt+

∞∫

0

1

2
e−(i+2)te−st dt

=
1

2(−i+ 2 + s)
+

1

2(i+ 2 + s)
=

s+ 2

(s+ 2)2 + 1

Poles occur at the exponentss = −2± i in f(t).

Solution(f)
f(t) = te−t sinωt =

t

2i
e(iω−1)t − t

2i
e−(iω+1)t

F (s) =

∞∫

0

(
t

2i
e(iω−1)t − t

2i
e−(iω+1)t

)
e−st dt

=

∞∫

0

t

2i
e(iω−1−s)t dt−

∞∫

0

t

2i
e−(iω+1+s)t dt

=
ie−t(s−iω+1)(1 + t(s− iω + 1))

2(s− iω + 1)2
− ie−t(s+iω+1)(1 + t(s+ iω + 1))

2(s+ iω + 1)2

∣∣∣∣
∞

0

Poles ofF (s) occur ats = −1 ± iω, the exponents off(t).

7 Find the Laplace transforms of f(t) = next integer abovet andf(t) = t δ(t).

A staircasef(t) = [t] = H(t) +H(t − 1) +H(t − 2) + · · · = next integer abovet
is a sum of step functions. The transform is

1

s
+

e−s

s
+

e−2s

s
+ · · · = 1

s
(1 + e−s + e−2s + · · · ) = 1

s

(
1

1− e−s

)
.

The differentiation ruleL(tf(t)) = −F ′(s) with f(t) = δ(t) andF (s) = 1 gives

L(tδ(t)) = − d

ds
(1) = 0 (this is correct becausetδ(t) is the zero function).
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8 Inverse Laplace Transform: Find the functionf(t) from its transformF (s) :

(a)
1

s− 2πi
(b)

s+ 1

s2 + 1
(c)

1

(s− 1)(s− 2)

(d) 1/(s2 + 2s+ 10) (e) e−s/(s− a) (f) 2s

Solution(a) F (s) =
1

s− 2πi
is the transform off(t) = e2πit.

Solution(b) F (s) =
s

s2 + 1
+

1

s2 + 1
is the transform off(t) = cos t + sin t.

Solution(c) F (s) =
1

(s− 1)(s− 2)
=

1

s− 2
− 1

s− 1
is the transform off(t) =

e2t − et.

Solution(d)

F (s) =
1

s2 + 2s+ 10
=

1

(s+ 1 + 3i)(s+ 1− 3i)

=
i

6(s+ (1 + 3i))
− i

6(s+ (1− 3i))

f(t) =
i

6
e−(1+3i)t − i

6
e−(1−3i)t

= −e−t sin(3t)

3

Solution(e) F (s) =
e−s

s− a

f(t) = ea(t−1)H(t− 1) = shift of eat

Solution(f) F (s) = 2s

f(t) = 2 dδ/dt

9 Solvey′′+y = 0 fromy(0) andy′(0) by expressingY (s) as a combination ofs/(s2+1)
and1/(s2 + 1). Find the inverse transformy(t) from the table.

Solution y ′′ + y = 0

s2Y (s)− sy(0)− y ′(0) + Y (s) = 0

Y (s)(s2 + 1) = sy(0) + y ′(0)

Y (s) = y(0)
s

s2 + 1
+ y ′(0)

1

s2 + 1

The inverse transform isy(t) = y(0) cos(t) + y ′(0) sin(t).

10 Solvey ′′ + 3y ′ +2y = δ starting fromy(0) = 0 andy ′(0) = 1 by Laplace transform.
Find the poles and partial fractions forY (s) and invert to findy(t).

Solution The transform of
d2y

dt2
+ 3

dy

dt
+ 2y = δ(t) with y(0) = 0 andy ′(0) = 1 is
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s2Y (s)− sy(0)− y ′(0) + 3sY (s)− 3y(0) + 2Y (s) = 1

Y (s)(s2 + 3s+ 2)− 1 = 1

Y (s) =
2

(s+ 1)(s+ 2)

Y (s) =
2

s+ 1
− 2

s+ 2

y(t) = 2e−t − 2e−2t

11 Solve these initial-value problems by Laplace transform :

(a) y ′ + y=eiωt, y(0)=8 (b) y ′′ − y=et, y(0)=0, y ′(0)=0

(c) y ′ + y=e−t, y(0)=2 (d) y ′′ + y=6t, y(0)=0, y ′(0)=0

(e) y ′ − iωy=δ(t), y(0)=0 (f) my ′′+ cy ′+ky=0, y(0)=1, y ′(0)=0

Solution(a)

y ′ + y = eiωt with y(0) = 8

sY (s)− 8 + Y (s) =
1

s− iω

Y (s)(s+ 1) =
1

s− iω
+ 8

Y (s) =
1

(s+ 1)(s− iω)
+

8

s+ 1

Y (s) =
1

1 + iω

(
1

s− iω
− 1

s+ 1

)
+

8

s+ 1

Particular + null y(t) =
1

1 + iω

(
eiωt − e−t

)
+ 8e−t

Solution(b) y ′′ − y = et with y(0) = 0 and y ′(0) = 0

s2Y (s)− Y (s) =
1

s− 1

Y (s) =
1

(s− 1)(s+ 1)(s− 1)

=
1

4(s+ 1)
− 1

4(s− 1)
+

1

2(s− 1)2

y(t) =
e−t

4
− et

4
+

tet

2

Solution(c) y ′ + y = e−t with y(0) = 2

sY (s)− 2 + Y (s) =
1

s+ 1

Y (s) =
1

(s+ 1)2
+

2

s+ 1

y(t) = te−t + 2e−t

Solution(d)
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y ′′ + y = 6t with y(0) = y ′(0) = 0

s2Y (s) + Y (s) =
6

s2

Y (s)(s2 + 1) =
6

s2

Y (s) =
6

s2
− 3i

s+ i
+

3i

s− i

y(t) = 6t− 3ie−it + 3ieit = 6t− 6 sin t

Solution(e) y ′ − iωy = δ(t) with y(0) = 0

sY (s)− iωY (s) = 1

Y (s) =
1

s− iω

y(t) = eiωt

Solution(f) my ′′ + cy ′ + ky = 0 with y(0) = 1 andy ′(0) = 0

ms2Y (s)−msy(0) + csY (s)− cy(0) + kY (s) = 0

Y (s)(ms2 + cs+ k) = ms+ c

Y (s) =
ms+ c

ms2 + cs+ k
has the form

a

s− s1
+

b

s− s2

We used thisMathematicacommand to findy(t)

Simplify[InverseLaplaceTransform [(m ∗ s + c)/(m ∗ sˆ2 + c ∗ s + k), s, t]]

y(t) =

e−
(c+

√
c2−4km)t
2m

(
c

(
−1 + e

√
c2−4kmt

m

)
+

(
1 + e

√
c2−4kmt

m

)√
c2 − 4km

)

2
√
c2 − 4km

12 The transform ofeAt is (sI − A)−1. Compute that matrix (the transfer function)
whenA = [1 1; 1 1]. Compare the poles of the transform to the eigenvalues ofA.

Solution WhenA = [1 1; 1 1] we have :

(sI −A)−1 =

[
s− 1 −1
−1 s− 1

]−1

=
1

s2 − 2s

[
s − 1 1
1 s − 1

]
.

The poles of the system ares = 2 ands = 0, the eigenvalues ofA.

13 If dy/dt decays exponentially, show thatsY (s) → y(0) ass → ∞.

Solution
sY (s) =

∞∫

0

se−sty(t) dt (integrate by parts)

=

∞∫

0

e−st dy

dt
dt−

[
e−sty(t)

]∞
0

=

∞∫

0

e−st dy

dt
dt+ y(0) → y(0) as s → ∞

Example :
dy

dt
= e−at has sY (s)− y(0) =

1

s+ a
→ 0 as s → ∞
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14 Transform Bessel’s time-varying equationty ′′+y ′+ty = 0 usingL [ty] = −dY/ds to
find a first-order equation forY . By separating variables or by substituting
Y (s) = C/

√
1 + s2, find the Laplace transform of the Bessel functiony = J0.

Solution The transform ofty ′′ applies theL (t, y) rule toy ′′ instead ofy :
L (t, y ′′) = − d

ds
(transform ofy ′′) = − d

ds
(s2Y (s)− sy(0)− y ′(0)).

Apply this to the transform oft
d2y

dt2
+

dy

dt
+ ty = 0

−2sY (s)− s2
dY

ds
+ y(0) + sY (s)− y(0)− dY

ds
= 0

−sY (s)− s2
dY

ds
− dY

ds
= 0

sY (s) = −(s2 + 1)
dY

ds
dY

Y (s)
= − s ds

s2 + 1

log Y (s) = log

(
1√

s2 + 1

)

The transform of the Bessel solutiony = J0 is Y(s)=
1√

s2 + 1

15 Find the Laplace transform of a single arch off(t) = sinπt.

Solution A single arch ofsinπt extends fromt = 0 to t = 1 :

F (s) =

∞∫

0

f(t)e−stdt =

1∫

0

sin(πt)e−stdt =

1∫

0

eiπt−st

2i
dt−

1∫

0

e−iπt−st

2i
dt

=

[
eiπt−st

2i(iπ − s)
+

e−iπt−st

2i(iπ + s)

]t=1

t=0

=
eiπ−s − 1

2i(iπ − s)
+

e−iπ−s − 1

2i(iπ + s)

=

(−e−s − 1

2i

)(
1

iπ − s
− 1

iπ + s

)
=

(
e−s + 1

i

)(
s

π2 + s2

)

A faster and more direct approach : One arch of the sine curve agrees withsinπt +
unit shift of sinπt, because those cancel after one arch.

sinπt+ sinπ(t− 1) = sinπt+ sinπt cosπ = sinπt− sinπt = 0.

16 Your accelerationv ′ = c(v∗ − v) depends on the velocityv∗ of the car ahead :

(a) Find the ratio of Laplace transformsV ∗(s)/V (s).

(b) If that car hasv∗ = t find your velocityv(t) starting fromv(0) = 0.

Solution(a) Take the Laplace Transform of
dv

dt
= c(v∗ − v) assumingv(0) = 0 ;
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sV (s)− v(0) = cV ∗(s)− cV (s)

V (s)(s+ c) = cV ∗(s)

V ∗(s)

V (s)
=

s + c

c

Solution(b) If v∗(t) = t thenV ∗(s) =
1

s2
. Therefore

V (s)(s+ c) =
c

s2

V (s) =
c

s3 + cs2

=
1

c(s+ c)
− 1

cs
+

1

s2

v(t) =
e−ct

c
− 1

c
+ t

17 A line of cars hasv ′

n = c[vn−1(t− T )− vn(t− T )] with v0(t) = cosωt in front.

(a) Find the growth factorA = 1/(1 + iωeiωT /c) in oscillationvn = Aneiωt.

(b) Show that|A| < 1 and the amplitudes are safely decreasing ifcT < 1
2 .

(c) If cT > 1
2 show that|A| > 1 (dangerous) for smallω. (Usesin θ < θ.)

Human reaction time isT ≥ 1 sec and human aggressiveness isc = 0.4/sec.

Danger is pretty close. Probably drivers adjust to be barelysafe.

Solution(a)
dvn
dt

= c(vn−1(t− T )− vn(t− T )) with vn = Aneiωt

iωAneiωt = cAn−1eiω(t−T ) − cAneiω(t−T )

A
iωeiωT

c
= 1−A

A

(
1 +

iωeiωT

c

)
= 1

Solution(b)
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For |A| < 1 we need

∣∣∣∣1 +
iω

c
eiωT

∣∣∣∣ > 1

∣∣∣1− ω

c
sin(ωT ) +

ω

c
cos(ωT )

∣∣∣ > 1

(
1− ω

c
sin(ωT )

)2
+

ω2

c2
cos2(ωT ) > 1

1− 2ω

c
sin(ωT ) +

ω2

c2
sin2(ωT ) +

ω2

c2
cos2(ωT ) > 1

1− 2ω

c
sin(ωT ) +

ω2

c2
> 1

ω2

c2
>

2ω

c
sin(ωT )

Since sinωT < ωT, we are safe if
ω2

c2
>

2ω

c
ωT which is cT <

1

2
Solution(c) sinωT ≈ ωT when this number is small. Then the same steps show
|A| > 1 whencT > 1

2 .
18 For f(t) = δ(t), the transformF (s) = 1 is the limit of transforms of tall thin box

functionsb(t). The boxes have widthǫ → 0 and height1/ǫ and area1.

Inside integrals,b(t) =

{
1/ǫ for 0 ≤ t < ǫ
0 otherwise

}
approachesδ(t).

Find the transformB(s), depending onǫ. Compute the limit ofB(s) asǫ → 0.

Solution We begin by finding the transform of the box :

B(s) =

ǫ∫

0

1

ǫ
e−st dt =

−1

sǫ
e−st

∣∣∣∣
ǫ

0

=
1− e−sǫ

sǫ

We take the limit asǫ → 0—the box approaches a delta function !

Bǫ(s) = lim
ǫ→0

1− e−sǫ

sǫ

= lim
1− (1 − sǫ+ 1

2s
2ǫ2 − · · · )

sǫ
= 1.

19 The transform1/s of the unit step functionH(t) comes from the limit of the transforms
of short steep ramp functionsrǫ(t). These ramps have slope1/ǫ :

rǫ = t/ǫ
rǫ = 1

0 ǫ
t

ComputeRǫ(s) =

ǫ∫

0

t

ǫ
e−stdt+

∞∫

ǫ

e−stdt. Let ǫ → 0.

Solution Rǫ(s) =

ǫ∫

0

t

ǫ
e−st dt+

∞∫

ǫ

e−st dt =

[
e−st(−st− 1)

ǫs2

]t=ǫ

t=0

+

[
e−st

−s

]t=∞

t=ǫ

=
e−sǫ(−sǫ− 1) + 1

ǫs2
+

e−sǫ

s
=

1 − e−sǫ

ǫs2

limRǫ(s) = lim
1− (1− sǫ+ 1

2s
2ǫ2 − · · · )

ǫs2
=

1

s
.
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20 In Problems 18 and 19, show that the derivative of the ramp function rǫ(t)
is the box functionb(t). The “generalized derivative” of a step is the function.

Solution The generalized derivative of the short ramprǫ(t) is the thin boxb(t)/ǫ. We
say “generalized” because this is not a true derivative att = 0 : the ramp has zero slope
left of t = 0 and nonzero slope right oft = 0. But the transforms ofrǫ andbǫ follow
the rule for derivatives.

The generalized derivative of a step function is adelta function.
21 What is the Laplace transform ofy ′′′(t) when you are givenY (s) and

y(0), y ′(0), y ′′(0)?

Solution The Laplace Transform ofy ′′′(t) is s3Y (s)− s2y(0)− sy ′(0)− y ′′(0)

22 The Pontryagin maximum principlesays that the optimal control is “bang-bang”—
it only takes on the extreme values permitted by the constraints. To go from rest at
x = 0 to rest atx = 1 in minimum time, use maximum accelerationA and
deceleration−B. At what timet do you change from the accelerator to the brake ?
(This is the fastest driving between two red lights.)

Solution The maximum principle requires full accelerationA to an unknown timet0
and then full deceleration−B to reachx = 1 with zero velocity. The velocities are

v = At for t ≤ t0

v = At0 −B(t− t0) for t > t0

Integrating the velocityv = dx/dt gives the distancex(t) :

x = 1
2At

2 for t < t0

x = 1
2At

2
0 at t = t0

x = 1
2At

2
0 +At0(t− t0)− 1

2B(t− t0)
2 for t > t0

At the final timeT we reachx = 1 with velocity v = 0. This gives two equations for
t0 andT :

v = At0 −B(T − t0) = 0

x = At0T − 1
2At

2
0 − 1

2B(T − t0)
2 = 1

SubstituteT = 1
B t0(A + B) from the first equation into the second equation. This

leaves an ordinary quadratic equation to solve fort0.

Problem Set 8.6, page 453

1 Find the convolutionv ∗w and also the cyclic convolutionv ⊛w :

(a)v = (1, 2) andw = (2, 1)

Solution(a)
Convolution :(1, 2) ∗ (2, 1)

[
1 0
2 1
0 2

][
2
1

]
=

[
2
5
2

]

Cyclic Convolution :

[
1 2
2 1

] [
2
1

]
=

[
4
5

]
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(b) v = (1, 2, 3) andw = (4, 5, 6).

Solution(b)

(1, 2, 3) ∗ (4, 5, 6)




1 3 0
2 1 0
3 2 1
0 3 2
0 0 3




[
4
5
6

]
=




4
13
28
27
18




Cyclic Convolution :

[
1 3 2
2 1 3
3 2 1

][
4
5
6

]
=

[
31
31
28

]

2 Compute the convolution(1, 3, 1) ∗ (2, 2, 3) = (a, b, c, d, e). To check your answer,
adda+ b+ c+ d+ e. That total should be35 since1+ 3+1 = 5 and 2+ 2+3 = 7
and 5× 7 = 35.

Solution



1 0 0
3 1 0
1 3 1
0 1 3
0 0 1




[
2
2
3

]
=




2
8
11
11
3




1 + 3 + 1 times2 + 2 + 3 is 2 + 8 + 11 + 11 + 3 : (5)(7) = (35).
3 Multiply 1 + 3x + x2 times2 + 2x + 3x2 to find a + bx + cx2 + dx3 + ex4. Your

multiplication was the same as the convolution(1, 3, 1) ∗ (2, 2, 3) in Problem 8. When
x = 1, your multiplication shows why1+ 3+1 = 5 times2+ 2+3 = 7 agrees with
a+ b+ c+ d+ e = 35.

Solution

(1 + 3x+ x2)× (2 + 2x+ 3x2) = 2 + 2x+ 3x2 + 6x+ 6x2 + 9x3 + 2x2 + 2x3 + 3x4

= 2 + 8x+ 11x2 + 11x3 + 3x4

At x = 1 this is again(5)× (7) = (35).
4 (Deconvolution) Which vectorv would you convolve withw = (1, 2, 3) to get

v ∗w = (0, 1, 2, 3, 0)? Whichv givesv ⊛w = (3, 1, 2)?

Solution



v0 0 0
v1 v0 0
v2 v1 v0
0 v2 v1
0 0 v2




[
1
2
3

]
=




0
1
2
3
0




The first and last equation givev0 = v2 = 0. Substituting into the second, third, fourth
equation givesv1 = 1. Thereforev = (0, 1, 0).

For cyclic convolution

[
1 3 2
2 1 3
3 2 1

][
v0
v1
v2

]
=

[
v0 v2 v1
v1 v0 v2
v2 v1 v0

] [
1
2
3

]
=

[
3
1
2

]

gives

[
v0
v1
v2

]
=

[
0
1
0

]
.
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5 (a) For the periodic functionsf(x) = 4 andg(x) = 2 cosx, show thatf ∗ g is zero (the
zero function) !

Solution(a) From equation (4) we have

(f ∗ g)(x) =
2π∫

0

g(y)f(x− y) dy = 4

2π∫

0

2 cos y dy = 4 · 0 = 0 for all x.

(b) In frequency space (k-space) you are multiplying the Fourier coefficients of
4 and 2 cosx. Those coefficients arec0 = 4 and d1 = d−1 = 1.
Therefore every productckdk is .

Solution(b) In frequency space (k-space) you are multiplying the Fourier coefficients
of 4 and2 cosx. Those coefficients arec0 = 4 andd1 = d−1 = 1. Therefore every
product ckdk is zero. These are the coefficients of the zero function.

6 For periodic functionsf =
∑

cke
ikx andg =

∑
dke

ikx, the Fourier coefficients of
f ∗g are2πckdk. Test this factor2π whenf(x) = 1 andg(x) = 1 by computingf ∗g
from its definition (6.4).

Solution From equation (4) :

(f ∗ g)(x) =
2π∫

0

f(y)g(x− y) dy =

2π∫

0

1 · 1 dy = 2π.

The same convolution ink-space hasc0 = 1 andd0 = 1 (all otherck = dk = 0). Then
2πckdk gives the correct coefficients (2π and0) of the convolutionf ∗ g (which equals
2π).

7 Show by integration that the periodic convolution
2π∫
0

cosx cos(t−x)dx isπ cos t. In k-

space you are squaring Fourier coefficientsc1 = c−1 = 1
2 to get 1

4 and 1
4 ;

these are the coefficients of1
2 cos t. The2π in Problem 8 makesπ cos t correct.

Solution
2π∫

0

cosx cos(t− x) dx =

2π∫

0

cosx(cos t cosx+ sin t sinx) dx = π cos t+ 0.

8 Explain whyf ∗ g is the same asg ∗ f (periodic or infinite convolution).

Solution In Fourier space convolutionf ∗ g or f ⊛ g leads to multiplicationckdk,
which is certainly the same asdkck. Sof ⊛ g = g ⊛ f in x-space.

9 What 3 by 3 circulant matrix C produces cyclic convolution with the vector
c = (1, 2, 3)? ThenCd equalsc ⊛ d for every vectord. Computec ⊛ d for
d = (0, 1, 0).

Solution The circulant matrixC =

[
1 3 2
2 1 3
3 2 1

]
gives cyclic convolution with(1, 2, 3).

Whend = (0, 1, 0) we havec⊛ d = Cd =

[
1 3 2
2 1 3
3 2 1

][
0
1
0

]
=

[
3
1
2

]
.
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10 What 2 by 2 circulant matrixC produces cyclic convolution withc = (1, 1)?
Show in four ways that thisC is not invertible. Deconvolution is impossible.

(1) Find the determinant ofC. (2) Find the eigenvalues ofC.

(3) Findd so thatCd = c⊛ d is zero. (4)Fc has a zero component.

Solution The2 by 2 circulant matrixC =

[
1 1
1 1

]
gives(1, 1)⊛ d = Cd.

(1) The determinant of this matrix is zero.

(2) The eigenvalues ofC come fromdet

[
1− λ 1
1 1− λ

]
= (1 − λ)2 − 1 = 0.

Then(1 − λ)2 = 1 andλ = 0, 2. That zero eigenvalue means that the matrixC is
singular.

(3) Cd =

[
1 1
1 1

] [
−1
1

]
=

[
0
0

]
soC is not invertible :

[
−1
1

]
in nullspace.

(4) The Fourier matrixF givesFc =

[
1 1
1 −1

] [
1
1

]
=

[
2
0

]
. This again shows

λ = 2 and0.

11 (a) Changeb(x) ∗ δ(x− 1) to a multiplication̂b(k) d̂(k) :

The boxb(x) = {1 for 0 ≤ x ≤ 1} transforms tob̂(k) =
1∫
0

e−ikxdx.

The shifted delta transforms tôd(k) =
∫
δ(x − 1)e−ikxdx.

(b) Show that your result̂b d̂ is the transform of a shifted box function. This shows how

convolution withδ(x− 1) shifts the box.

Solution This question shows that continuous convolution withδ(x − 1) produces a
shift in the box functionb(x), just like discrete convolution with the shifted delta vector
(. . ., 0, 0, 1, . . .) produces a one-step shift.

We computeδ(x− 1) ∗ b(x) in x-space to findb(x− 1), or in k-space to see the effect
on the coefficients :

b̂(k) =

1∫

0

e−ikxdx =

[
e−ikx

−ik

]x=1

x=0

=
1− e−ik

ik

Shifted box e−ik

(
1− e−ik

ik

)
agrees with

2∫

1

e−ikxdx =

[
e−ikx

−ik

]x=2

x=1

.

12 Take the Laplace transform of these equations to find the transfer functionG(s) :

(a)Ay ′′ +By ′ + Cy = δ(t) (b) y ′ − 5y = δ(t) (c) 2y(t)− y(t− 1) = δ(t)

Solution(a) As2Y (s)+BsY (s)+CY (s) = 1 gives the transfer function
1

As2 +Bs+ C

Solution(b) sY (s)− 5Y (s) = 1 gives the transfer functionY (s) =
1

s− 5
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Solution(c) 2Y (s)− Y (s)e−s = 1 gives the transfer functionY (s) =
1

2− e−s

13 Take the Laplace transform ofy′′′′ = δ(t) to find Y (s). From the Transform Table
in Section 8.5 findy(t). You will seey′′′ = 1 and y′′′′ = 0. But y(t) = 0 for
negativet, so youry′′′ is actually a unit step function and youry′′′′ is actuallyδ(t).

Solution y ′′′′ = δ transforms tos4Y (s)− s3y(0)− s2y ′(0)− sy ′′(0)− y ′′′(0) = 1

Assume zero initial values to gets4Y (s) = 1 andY (s) =
1

s4
andy3 =

t3

6
.

This is also the solution toy ′′′′ = 0 with initial valuesy, y ′, y ′′, y ′′′ = 0, 0, 0, 1.
14 Solve these equations by Laplace transform to findY (s). Invert that transform

with the Table in Section 8.5 to recognizey(t).

(a)y ′ − 6y = e−t, y(0) = 2 (b) y ′′ + 9y = 1, y(0) = y ′(0) = 0.

Solution(a) The transform ofy ′ − 6y = e−t with y(0) = 2 is

sY (s)− 2− 6Y (s) =
1

s+ 1

Y (s) =
2

s− 6
+

1

(s+ 1)(s− 6)

=
2

s− 6
+

1

7(s− 6)
− 1

7(s+ 1)

=
15

7(s− 6)
− 1

7(s+ 1)

The inverse transform isy(t) =
15

7
e6t − 1

7
e−t

Solution(b) The transform ofy ′′ + 9y = 1 with y(0) = y ′(0) = 0 is

s2Y (s) + 9Y (s) =
1

s

Y (s) =
1

s(s2 + 9)

=
1

9s
− 1

18(−3i+ s)
− 1

18(3i+ s)

The inverse transform isy(t) =
1

9
− 1

18
e3it − 1

18
e−3it = yp + yn.

15 Find the Laplace transform of the shifted stepH(t− 3) that jumps from0 to 1 at t = 3.
Solvey ′ − ay = H(t − 3) with y(0) = 0 by finding the Laplace transformY (s) and
then its inverse transformy(t) : one part fort < 3, second part fort ≥ 3.

Solution The transform ofH(t− 3) multipliese−3s by the transform1
s of H(t).

y ′ − ay = H(t− 3) y(0) = 0

sY (s)− aY (s) =
e−3s

s

Y (s) =
e−3s

s(s− 3)
=

e−3x

3

(
1

s− 3
− 1

s

)
.

The inverse transformy(t) is the shift of13
(
e−3t − 1

)
: zero untilt = 3.
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16 Solvey ′ = 1 with y(0) = 4—a trivial question. Then solve this problem the slow way
by findingY (s) and inverting that transform.

Solution The trivial solution is :y = t+ 4. The transform method gives

sY (s)− 4 =
1

s

Y (s) =
1

s2
+

4

s

y(t) = t+ 4

17 The solutiony(t) is the convolution of the inputf(t) with what functiong(t)?

(a)y ′ − ay = f(t) with y(0) = 3

Solution(a) y ′ − ay = f(t) with y(0) = 3

sY (s)− 3− aY (s) = F (s)

Y (s) =
3 + F (s)

s− a

y(t) = 3e−t + f(t) ∗ e−at

(b) y ′ − (integral ofy) = f(t).

Solution(b) The transform ofy ′− (integral ofy) = f(t) is sY (s) − Y (s)

s
= F (s),

if y(0) = 0.

The inverse transform of
1

s− 1
s

=
s

s2 − 1
is cos(it).

ThenY (s) =
F (s)

s− 1
s

is the transform of the convolutionf(t) ∗ cos(it).

18 Fory ′ − ay = f(t) with y(0) = 3, we could replace that initial value by adding3δ(t)
to the forcing functionf(t). Explain that sentence.

Solution For a first order equation, an initial conditiony(0) is equivalent to adding
y(0)δ(t) to the equation and starting that new equation at zero.

19 What isδ(t) ∗ δ(t) ? What isδ(t− 1) ∗ δ(t− 2)? What isδ(t− 1) timesδ(t− 2)?

Solution δ(t) ∗ δ(t) = δ(t)

δ(t− 1) ∗ δ(t− 2) = δ(t− 3)

δ(t− 1) timesδ(t− 2) equals the zero function.

20 By Laplace transform, solvey ′ = y with y(0) = 1 to find a very familiary(t).

Solution y ′ = y y(0) = 1

sY (s)− 1 = Y (s)

Y (s) =
1

s− 1
gives y(t) = et.
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21 By Fourier transform as in (9), solve−y ′′ + y = box functionb(x) on0 ≤ x ≤ 1.

Solution The Fourier transform of−y ′′ + y = b(x) is

(k2 + 1) ŷ (k) = b̂(k) =

1∫

0

e−ikxdx =
1− e−ik

ik
.

ŷ(k) =
1− e−ik

(k2 + 1)(ik)

This transform must be inverted to find y(x). In reality I would solve separately on
x ≤ 0 and0 ≤ x ≤ 1 andx ≥ 1. Then matching at the breakpointsx = 0 andx = 1
determines the free constants in the separate solutions.

22 There is a big difference in the solutions toy ′′ + By ′ + Cy = f(x), between the
casesB2 < 4C andB2 > 4C. Solvey ′′ + y = δ andy ′′ − y = δ with y(±∞) = 0.

Solution(a) The delta function produces a unit jump iny ′ atx = 0 :

y ′′ + y = 0 hasy = c1 cosx + c2 sinx for x < 0, y = C1 sinx for x > 0.

The jump iny ′ givesC2 − c2 = 1. The condition ony(± ∞) does not apply to this
first equation.

y ′′ − y = 0 hasy = cex for x < 0 andy = Ce−x for x > 0; theny(± ∞) = 0.

Matchingy atx = 0 givesc = C.

Jump iny ′ atx = 0 gives−C − c = 1 soc = C = − 1
2

Solutiony(x) = − 1
2e

x for x ≤ 0 andy(x) = − 1
2e

−x for x ≥ 0

23 (Review) Why do the constantf(t) = 1 and the unit stepH(t) have the same
Laplace transform1/s? Answer : Because the transform does not notice .

Solution The Laplace Transformdoes not notice any values off(t) for t < 0.
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8

Problem Set 8.1, page 443

1 (a) To prove that cosnx is orthogonal to coskx whenk 6= n, use(cosnx) (coskx) =
1
2 cos(n+k)x+ 1

2 cos(n−k)x. Integrate fromx = 0 tox = π. What is
∫

cos2 kx dx?

(b) Correction From 0 to π, cosx is not orthogonal to sin 2x (the book wrongly
proposed

∫ π

0
cosx sinx dx, but this is zero). For orthogonality ofall sines and cosines,

the period has to be2π.

Solution (a)
π∫

0

(cosnx)(cos kx)dx =
1

2

π∫

0

cos(n+ k)x dx+
1

2

π∫

0

cos(n− k)x dx

=

[
sin(n+ k)x

2(n+ k)
+

sin(n− k)x

2(n− k)

]π

0

= 0 + 0

Solution (b)

π∫

0

(cos x)(sin 2x) dx =

π∫

0

(cosx)(2 sinx cosx) dx =

[
−2

3
cos3 x

]π

0

=
4

3
6= 0.

Non-orthogonality comes from

π∫

0

cosmx sinnxdx whenm− n is an odd number.

2 SupposeF (x) = x for 0 ≤ x ≤ π. Draw graphs for−2π ≤ x ≤ 2π to show
three extensions ofF : a2π-periodic even function and a2π-periodic odd function and
aπ-periodic function.

Solution

−2π 0 2π −2π 0 2π −2π 0 2π

3 Find the Fourier series on−π ≤ x ≤ π for

(a)f1(x) = sin3 x, an odd function (sine series, only two terms)

Solution (a) The fast way is to know the identitysin3 x = 3
4 sinx − 1

4 sin 3x. This
must be the Fourier sine series! It has only two terms.

More slowly, use Euler’s great formula to produce complex exponentials :

(sinx)3 =

(
eix − e−ix

2i

)3

=
e3ix − 3eix + 3e−ix − e−3ix

8i3
= −1

4
sin 3x+

3

4
sinx.

Or slowly compute the usual formulas
∫
sin3 x sinx dx and

∫
sin3 x sin 3x dx.
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(b) f2(x) = | sinx|, an even function (cosine series)

Solution (b)

a0 =
1

π

π∫

0

| sinx| dx =
2

π

ak =
1

2π

π∫

0

| sinx| cos kx dx = − 1

4π

[
cos(k − 1)x

k − 1
+

cos(k + 1)x

k + 1

]x=π

x=0

= 0 (oddk) or − 1

4π

[ −2

k − 1
+

−2

k + 1

]
=

k

π(k2 − 1)
(even k)

(c) f3(x) = x for −π ≤ x ≤ π (sine series with jump atx = π)

Solution (c) bk =
1

π

π∫

−π

x sin kx dx =

[
1

π k2
sin kx− x

π k
cos kx

]π

−π

Solution (c) bk = − 1

k
(cos kπ + cos(−kπ)) = − 2

k
(−1)k.

4 Find the complex Fourier seriesex =
∑

cke
ikx on the interval−π ≤ x ≤ π.

The even part of a function is12 (f(x)+ f(−x)), so thatfeven(x) = feven(−x). Find the
cosine series forfevenand the sine series forfodd. Notice the jump atx = π.

Solution
ck =

1

2π

π∫

−π

exe−ikx dx =
1

2π

π∫

−π

ex(1−ik) dx

=

[
1

2π(1− ik)
ex(1−ik)

]π

−π

=
eπ(1−ik) − e−π(1−ik)

2π(1− ik)

The even part of the function is :
1

2
(ex + e−x). The cosine coefficients are

a0 =
1

4π

π∫

−π

(ex + e−x) dx =
1

2π
(eπ − e−π)

ak =
1

2π

π∫

−π

(ex + e−x) cos kx dx =
2k cosh[π] sin[kπ] + 2 cos[kπ] sinh[π]

π + k2π

The odd part of the function is:
1

2
(ex − e−x). The sine series is:

bk =
1

2π

π∫

−π

(ex − e−x) sin kx dx =
2 cosh[π] sin[kπ]− 2k cos[kπ] sinh[π]

π + k2π

5 From the energy formula (21), the square wave sine coefficients satisfy

π(b21 + b22 + · · · ) =
∫ π

−π

|SW (x)|2 dx =

∫ π

−π

1 dx = 2π.
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Substitute the numbersbk from equation (8) to find thatπ2 = 8(1 + 1
9 + 1

25 + · · · ).
Solution The sine coefficients for the odd square wave are

bk =
4

π

(
1− (−1)k

2k

)
=

4

π

(
1

1
, 0,

1

3
, 0,

1

5
, 0, . . .

)

Energy identity givesπ2 = 8

∞∑

k=1

(
1− (−1)k

2k

)2

= 8

(
1 +

1

9
+

1

25
+ · · ·

)

6 If a square pulse is centered atx = 0 to give

f(x) = 1 for |x| < π

2
, f(x) = 0 for

π

2
< |x| < π,

draw its graph and find its Fourier coefficientsak andbk.

Solution

a0 =
1

2π

π/2∫

−π/2

dx =
1

2

ak =
1

π

π/2∫

−π/2

cos kx dx =
2

kπ
sin

kπ

2
= sin c

(
kπ

2

)

bk =
1

π

π/2∫

−π/2

sin kx dx = 0

7 Plot the first three partial sums and the functionx(π − x) :

x(π − x) =
8

π

(
sinx

1
+

sin 3x

27
+

sin 5x

125
+ · · ·

)
, 0 < x < π.

Why is1/k3 the decay rate for this function? What is its second derivative?

Solution The parabolay = x(π − x) = xπ − x2 starts aty(0) = 0 with slope
y ′(0) = π and second derivativey ′′(0) = −2. Its sine series makes it an odd function
xπ + x2 from −π to 0. This odd extension hassecond derivative= ±2. That jump
in y ′′ means that the Fourier coefficientsbk will decay like1/k3. (Remember1/k for
jumps iny(x) and1/k2 for jumps iny ′(x)—no jumps iny, y ′ for this example.)

8 Sketch the2π-periodic half wave withf(x) = sinx for 0 < x < π andf(x) = 0 for
−π < x < 0. Find its Fourier series.

Solution The function is not odd or even, so integrals must go from−π to π. The
function is zero from−π to 0 leaving only these integrals fora0, ak, bk :
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a0 =
1

2π

π∫

0

sinx dx =
1

2π
[− cosx]

π
0 =

1

π

ak =
1

π

π∫

0

sinx cos kx dx = − 1

2π

[
cos(1− k)x

1− k
+

cos(1 + k)x

1 + k

]π

0

=

[k even]
1

π

(
1

1− k
+

1

1 + k

)
=

2

π(1 − k2)
[and 0 for k odd]

bk =
1

π

π∫

0

sinx sin kx dx givesb1 =
1

2
and otherbk = 0.

9 SupposeG(x) has period2L instead of2π. ThenG(x + 2L) = G(x). Integrals
go from−L to L or from0 to 2L. The Fourier formulas change by a factorπ/L :

The coefficients inG(x) =
∞∑
−∞

Cke
ikπx/L are Ck =

1

2L

L∫

−L

G(x)e−ikπx/Ldx.

Derive this formula forCk : Multiply the first equation forG(x) by and
integrate both sides. Why is the integral on the right side equal to2LCk ?

Solution Multiply G(x) =
∞∑
−∞

Cke
ikπx/L by e−ikπx/L. Integrate.

L∫

−L

G(x)e−ikπx/L dx =

L∫

−L

e−ikπx/L
∞∑

−∞
Cke

ikπx/L dx

L∫

−L

G(x)e−ikπx/L dx = Ck

L∫

−L

dx = 2LCk (orthogonality)

Ck =
1

2L

L∫

−L

G(x)e−ikπx/L dx

10 ForGeven, use Problem 9 to find the cosine coefficientAk from (Ck + C−k)/2 :

Geven(x) =
∞∑
0
Ak cos

kπx

L
has Ak =

1

L

L∫

0

Geven(x) cos
kπx

L
dx.

Gevenis 1
2 (G(x) +G(−x)). Exception forA0 = C0 : Divide by2L instead ofL.

Solution The result comes directly from12 (Ck + C−k).

11 Problem 10 tells us thatak =
1

2
(ck + c−k) on the usual interval from0 to π.

Find a similar formula forbk from ck and c−k. In the reverse direction, find the
complex coefficientck in F (x) =

∑
cke

ikx from the real coefficientsak andbk.
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Solution Solution and correction We are comparing two ways to write a Fourier
series : ∞∑

−∞
cke

ikx = a0 +

∞∑

1

ak cos kx+

∞∑

1

bk sin kx

Pick out the terms fork and−k :
cke

ikx + c−ke
−ikx = ak cos kx+ bk sin kx

Use Euler’s formula to reach cosines/sines on both sides :
(ck + c−k) cos kx+ i(ck − c−k) sin kx = ak cos kx+ bk sin kx

This shows thatak = ck + c−k (correction from text ) andbk = i(ck − c−k).

Reverse Euler’s formula to reach complex exponentials on both sides :

cke
ikx + c−ke

−ikx =
1

2
ak(e

ikx + e−ikx) +
1

2i
bk(e

ikx − e−ikx)

This shows thatck =
1

2
ak +

1

2i
bk and c−k =

1

2
ak − 1

2i
bk.

Real functions with reala’s andb’s lead toc−k = ck (complex conjugates)

12 Find the solution to Laplace’s equation withu0 = θ on the boundary. Why is this the
imaginary part of2(z − z2/2 + z3/3 · · · ) = 2 log(1 + z)? Confirm that on the unit
circle z = eiθ, the imaginary part of2 log(1 + z) agrees withθ.

Solution The sine series of the odd functionf(θ) = θ has coefficientsbn =

2

π

π∫

0

θ sin nθ dθ =
2

π

[
1

n2
sin nθ − θ

n
cos nθ

]π

0

= −2 cos nπ

n
= 2

[
1

1
,−1

2
,
1

3
,−1

4
, · · ·

]

The solution to Laplace’s equation inside the circle has factorsrn :

u(r, θ) =
∑

bnr
n sin nθ = 2r sin θ − 2

2
r2 sin 2θ +

2

3
r3 sin 3θ . . .

= Im

[
2z − 2

2
z2 +

2

3
z3 . . .

]
= Im[2 log(1 + z)].

13 If the boundary condition for Laplace’s equation isu0 = 1 for 0 < θ < π andu0 = 0
for −π < θ < 0, find the Fourier series solutionu(r, θ) inside the unit circle. What is
u at the originr = 0 ?

Solution This 0-1 step functionu0(θ) equals12 +
1
2 (square wave). Equation (8) of the

text gives the Fourier sine series for the square wave :

0-1 Step Functionu0(θ) =
1

2
+

2

π

[
sin θ

1
+

sin 3θ

3
+

sin 5θ

5
+ · · ·

]

Then the solution to Laplace’s equation includes factorsrn :

u(r, θ) =
1

2
+

2

π

[
r sin θ

1
+

r3 sin 3θ

3
+

r5 sin 5θ

5
+ · · ·

]
=

1

2
at r = 0.
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14 With boundary valuesu0(θ) = 1 + 1
2e

iθ + 1
4e

2iθ + · · · , what is the Fourier series
solution to Laplace’s equation in the circle? Sum this geometric series.

Solution Inside the circle we see factorsrn (and1 + x+ x2 + · · · = 1/(1− x)) :

u(r, θ) = 1 +
1

2
reiθ +

1

4
r2e2iθ + · · · = 1/

(
1 − 1

2
reiθ

)
.

15 (a) Verify that the fraction in Poisson’s formula (30) satisfies Laplace’s equation.

Solution(a) We could verify Laplace’s equation inr, θ coordinates or recognize that
every term in the sum (29) solves that equation :

∂2 u

∂ r2
+

1

r

∂ u

∂ r
+

1

r2
∂2 u

∂θ2
= 0.

(b) Find the responseu(r, θ) to an impulse atx = 0, y = 1 (whereθ = π
2 ).

Solution(b) When the source is at the pointθ = π, this replacesr cos θ by −r cos θ
in equation (30). Then the response to a point source is infinite atr = 1, θ = π :

u(r, θ) =
1

2π

1 − r2

1 + r2 + 2r cos θ

16 With complex exponentials inF (x) =
∑

cke
ikx, the energy identity (21) changes to

π∫
−π

|F (x)|2 dx = 2π
∑ |ck|2. Derive this by integrating(

∑
cke

ikx)(
∑

cke
−ikx).

Solution All productseikxe−ikx integrate to zero except whenn = k :
π∫

−π

(cke
ikx)(cke

−ikx) dx = 2πckck = 2π|ck|2.

The total energy is the sum over allk.

17 A centered square wave hasF (x) = 1 for |x| ≤ π/2.

(a) Find its energy
∫
|F (x)|2 dx by direct integration

Solution(a)
∫

|F (x)|2 dx =

π/2∫

−π/2

dx = π.

(b) Compute its Fourier coefficientsck as specific numbers

Solution (b) ck =
1

2π

π/2∫

−π/2

e−ikx dx =

[
1

2π

e−ikx

−ik

]π/2

−π/2

=
1

2π ik

(
eikπ/2 − e−ikπ/2

)
=

1

π k
sin

(
kπ

2

)

(c) Find the sum in the energy identity (Problem 8).

Solution(c) sin
k π

2
=1, 0,−1, 0 (repeated) so2π

∑ |ck|2=
2

π

(
1

1
+
1

9
+

1

25
+· · ·

)
=1.
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18 F (x) = 1 + (cosx)/2 + · · ·+ (cosnx)/2n + · · · is analytic : infinitely smooth.

(a) If you take10 derivatives, what is the Fourier series ofd10F/dx10?

(b) Does that series still converge quickly ? Comparen10 with 2n for n = 210.

Solution(a) 10 derivatives ofcos nx gives−n10 cos nx :

d10F

dx10
= −1

2
cosx− 210

22
cos 2x− 310

23
cos 3x · · · − n10

2n
cos nx− · · ·

Solution(b) Yes,2n gets large much faster thann10 so the series easily converges.

At n = 210 = 1024 we have2n = 21024, much larger thann10 = 2100.

19 If f(x) = 1 for |x| ≤ π/2 andf(x) = 0 for π/2 < |x| < π, find its cosine coefficients.
Can you graph and compute the Gibbs overshoot at the jumps ?

Solution a0 = average value=
1

2

ak =
1

π

π/2∫

−π/2

cos kx dx =

[
1

π k
sin kx

]π/2

−π/2

=
2

π k
sin

kπ

2

20 Find all the coefficientsak andbk for F, I, andD on the interval−π ≤ x ≤ π :

F (x) = δ
(
x− π

2

)
I(x) =

∫ x

0

δ
(
x− π

2

)
dx D(x) =

d

dx
δ
(
x− π

2

)
.

Solution(a) Integratecos kx andsin kx againstδ(x− π
2 ) to get

a0 =
1

2π
ak =

1

π
cos

kπ

2
and bk =

1

π
sin

kπ

2

Solution(b) The integralI(x) is the unit step functionH(x− π
2 ) with jump atx = π

2 :

a0 =
1

2π

π∫

π/2

1 dx =
1

4

ak =
1

π

π∫

π/2

cos kx dx =
1

π k

(
sin kπ − sin

kπ

2

)
= − 1

π k
sin

kπ

2

bk =
1

π

π∫

π/2

sin kx dx = − 1

π k

(
cos kπ − cos

kπ

2

)

Solution(c) D(x) is the “doublet”= derivative of the delta functionδ
(
x− π

2

)
. You

must integrate by parts (andD(−π) = D(π) = 0 fortunately).

1

π

π∫

−π

D(x) cos kx dx =
1

π

π∫

−π

δ
(
x− π

2

)
(k sin kx) dx

Soak for D(x) is kbk in part (b) , andbk for D(x) is−kak in part (b) .
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21 For the one-sided tall box function in Example 4, withF = 1/h for 0 ≤ x ≤ h, what
is its odd part12 (F (x) − F (−x))? I am surprised that the Fourier coefficients of this
odd part disappear ash approaches zero andF (x) approachesδ(x).

Solution Every function has an even part and an odd part :

Feven(x) =
1

2
(F (x) + F (−x)) Fodd(x) =

1

2
(F (x)− F (−x)) F = Feven + Fodd

For the one-sided box function, those even and odd parts are

Feven(x) =
1

2h
for |x| ≤ h Fodd(x) = − 1

h
for −h ≤ x ≤ 0,+

1

h
for 0 < x ≤ h.

The Fourier coefficients ofFodd don’t really “disappear” ash → 0, because the energy∫
|Fodd|2 dx is growing. But it is growing in the high frequencies and any particular

coefficientck (at a fixed frequencyk) approaches zero ash → 0.

22 Find the seriesF (x) =
∑

cke
ikx for F (x) = ex on−π ≤ x ≤ π. That functionex

looks smooth, but there must be a hidden jump to get coefficients ck proportional to
1/k. Where is the jump ?

Solution Whenex is made into a periodic function there is a jump (or a drop) atx = π.
The drop fromeπ to e−π starts the next2π-interval. That drop shows up as a factor
multiplying the1/k decay that all jump functions show in their Fourier expansion :

ck =
1

2π

π∫

−π

exe−ikx dx =

[
1

2π

e(1−ik)x

1− ik

]π

x=−π

=
1

2π

eπ − e−π

1− ik
.

23 (a) (Old particular solution) SolveAy′′ +By′ + Cy = eikx.

(b) (New particular solution) SolveAy′′ +By′ + Cy =
∑

cke
ikx.

Solution This problem shows directly the power oflinearity to deal with complicated
forcing functions as combinations of simple forcing functionseikx :

Ay′′ +By′ + Cy = eikx has yp =
1

(ik)2A+ ikB + C
eikx = Yke

ikx

Ay′′ +By′ + Cy =
∑

cke
ikx has yp =

∑
ckYke

ikx.

Problem Set 8.2, page 453

1 Multiply the three matrices in equation (11) and compare with F . In which six entries
do you need to know thati2 = −1? This is(w4)

2 = w2. If M = N/2, why is
(wN )M = −1?

Solution

2 Why is rowi of F the same as rowN − i of F (numbered from0 to N − 1)?

Solution
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3 From Problem 8, find the4 by 4 permutation matrixP so thatF = PF . Check that
P 2 = I so thatP = P−1. Then fromFF = 4I show thatF 2 = 4P .

It is amazing thatF 4 = 16P 2 = 16I. Four transforms of anyc bring back16 c.
For allN , F 2/N is a permutation matrixP andF 4 = N2I.

Solution

4 Invert the three factors in equation (11) to find a fast factorization ofF−1.

5 F is symmetric. Transpose equation (11) to find a new Fast Fourier Transform.

Solution

6 All entries in the factorization ofF6 involve powers ofw = sixth root of 1:

F6 =

[
I D
I −D

] [
F3

F3

] [
P

]
.

Write down these factors with1, w, w2 in D and powers ofw2 in F3. Multiply!

Solution

7 Put the vectorc = (1, 0, 1, 0) through the three steps of the FFT to findy = Fc. Do
the same forc = (0, 1, 0, 1).

Solution

8 Computey = F8c by the three FFT steps forc = (1, 0, 1, 0, 1, 0, 1, 0). Repeat the
computation forc = (0, 1, 0, 1, 0, 1, 0, 1).

Solution

9 If w = e2πi/64 thenw2 and
√
w are among the and roots of 1.

Solution

10 F is a symmetric matrix. Its eigenvalues aren’t real. How is this possible ?

Solution

The three great symmetric tridiagonal matrices of applied mathematics areK, B, C.
The eigenvectors ofK,B, andC are discretesines, cosines, andexponentials. The eigen-
vector matrices give theDST, DCT, andDFT — discrete transforms for signal processing.
Notice that diagonals of the circulant matrixC loop around to the far corners.

K =




2 −1
−1 2 −1

· · ·
−1 2


 B =




1 −1
−1 2 −1

· · ·
−1 1




C =




2 −1 · −1
−1 2 −1

· · ·
−1 · −1 2




K11 = KNN = 2

B11 = BNN = 1

C1N = CN1 = −1
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11 The eigenvectors ofKN andBN are the discrete siness1, . . ., sN and the discrete
cosinesc0, . . ., cN−1. Notice the eigenvectorc0 = (1, 1, . . . , 1). Here aresk and
ck—these vectors are samples ofsin kx andcos kx from 0 to π.

(
sin

πk

N+1
, sin

2πk

N+1
, . . . , sin

Nπk

N+1

)
and

(
cos

πk

2N
, cos

3πk

2N
, . . . , cos

(2N−1)πk

2N

)

For2 by 2 matricesK2 andB2, verify thats1, s2 andc0, c1 are eigenvectors.

Solution

12 Show thatC3 has eigenvaluesλ = 0, 3, 3 with eigenvectorse0 = (1, 1, 1),
e1 = (1, w, w2), e2 = (1, w2, w4). You may prefer the real eigenvectors(1, 1, 1)
and(1, 0,−1) and(1,−2, 1).

Solution

13 Multiply to see the eigenvectorsek and eigenvaluesλk of CN . Simplify to λk =
2− 2 cos(2πk/N). Explain whyCN is only semidefinite. It is not positive definite.

Cek =




2 −1 −1
−1 2 −1

−1 2 −1
−1 −1 2







1
wk

w2k

w(N−1)k


 = (2 − wk − w−k)




1
wk

w2k

w(N−1)k


 .

Solution

14 The eigenvectorsek of C are automatically perpendicular becauseC is a
matrix. (To tell the truth,C has repeated eigenvalues as in Problem 12. There was
a plane of eigenvectors forλ = 3 and we chose orthogonale1 ande2 in that plane.)

Solution

15 Write the2 eigenvalues forK2 and the3 eigenvalues forB3. AlwaysKN andBN+1

have the sameN eigenvalues, with the extra eigenvalue for BN+1. (This is
becauseK = ATA andB = AAT.)

Solution

Problem Set 8.5, page 477

1 When the driving function isf(t) = δ(t), the solution starting from rest is theim-
pulse response. The impulse isδ(t), the response isy(t). Transform this equation
to find thetransfer function Y (s). Invert to find the impulse responsey(t).

y′′ + y = δ(t) with y(0) = 0 andy′(0) = 0

Solution Take the Laplace Transform ofy′′ + y = δ(t) with y(0) = y′(0) = 0 :

s2Y (s)− sy(0)− y ′(0) + Y (s) = 1

Y (s)(s2 + 1) = 1

Y (s) =
1

s2 + 1
is the transform ofy(t) = sin t.
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2 (Important) Find the first derivative and second derivativeof f(t) = sint for t ≥ 0.
Watch for a jump att = 0 which produces a spike (delta function) in the derivative.

Solution The first derivative ofsin(t) is cos(t), and the second derivative is− sin(t) + δ(t).
3 Find the Laplace transform of the unit box functionb(t) = {1 for 0 ≤ t < 1} =

H(t)−H(t− 1). The unit step function isH(t) in honor of Oliver Heaviside.

Solution The unit box function isf(t) = H(t)−H(t− 1)

The transform isF (s) =
1

s
− e−s

s
=

1

s
(1 − e−s)

The same result comes fromF (s) =

∞∫

0

f(t) e−st dt =

1∫

0

e−st dt.

4 If the Fourier transform off(t) is defined byf̂(k) =
∫
f(t)e−iktdt andf(t) = 0 for

t < 0, what is the connection between̂f(k) and the Laplace transformF (s)?

Solution The Fourier Transform is the Laplace Transform withs = ik : f̂(k) = F (ik).
5 What is the Laplace transformR(s) of the standardramp function r(t) = t ?

For t < 0 all functions are zero. The derivative ofr(t) is the unit stepH(t).
Then multiplyingR(s) by s gives .

Solution The Laplace TransformR(s) of the Ramp Functionr(t) = t is

R(s) =

∞∫

0

te−st dt = − te−st

s

∣∣∣∣
∞

0

−
∞∫

0

−e−st

s
dt = 0− e−st

s2

∣∣∣∣
∞

0

=
1

s2

Multiplying R(s) by s gives the Laplace transform1/s of the step function.
6 Find the Laplace transformF (s) of eachf(t), and the poles ofF (s):

(a) f = 1 + t (b) f = t cosωt (c) f = cos(ωt− θ)
(d) f = cos2 t (e) f = e−2t cos t (f) f = te−t sinωt

Solution(a) The transform off(t) = 1 + t has adouble poleats = 0 :

F (s) =

∞∫

0

(1 + t)e−st dt =

∞∫

0

e−st dt+

∞∫

0

te−st dt =
1

s
+

1

s2
=

1 + s

s2

Solution(b)

f(t) = t cos(ωt) = t

(
eiωt + e−iωt

2

)
=

teiωt

2
+

te−iωt

2
transforms to

F (s) =

∞∫

0

te(iω−s)t

2
dt+

∞∫

0

te−(iω−s)t

2
dt

=
−e−t(s−iω)(st− itω + 1)

2(s− iω)2

∣∣∣∣
∞

0

+
−e−t(s+iω)(st+ itω + 1)

2(s+ iω)2

∣∣∣∣
∞

0

=
1

2(s− iω)2
+

1

2(s+ iω)2
=

(s− iω)2 + (s+ iω)2

2(s− iω)2(s+ iω)2
=

s2 − ω2

(s2 + ω2)2

Poles occur ats = iω ands = −iω, the two exponents off(t).
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Solution(c) f(t) = cos(ωt− θ) = cosωt cos θ + sinωt sin θ transforms to

F (s) =
s

s2 + ω2
cos θ +

ω

s2 + ω2
sin θ

Poles occur ats = ±iω.

Solution(d)

f(t) = cos2(t) =
1

4
(eit + e−it)2 =

1

4
(e2it + 2 + e−2it)

F (s) =

∞∫

0

1

4
(e2it + e−2it + 2)e−st dt

= − 1

4(s− 2i)
+

1

4(s+ 2i)
+

1

2s
=

2s

4(s2 + 4)
+

1

2s
=

s2 + 2

s(s2 + 4)

Poles occur ats = 0 ands = ±2i. Another way is to writecos2 t =
1 + cos 2t

2

Solution(e)

f(t) = e−2t cos t =
1

2
e(i−2)t +

1

2
e−(i+2)t

F (s) =

∞∫

0

1

2
e(i−2)te−st dt+

∞∫

0

1

2
e−(i+2)te−st dt

=
1

2(−i+ 2 + s)
+

1

2(i+ 2 + s)
=

s+ 2

(s+ 2)2 + 1

Poles occur at the exponentss = −2± i in f(t).

Solution(f)
f(t) = te−t sinωt =

t

2i
e(iω−1)t − t

2i
e−(iω+1)t

F (s) =

∞∫

0

(
t

2i
e(iω−1)t − t

2i
e−(iω+1)t

)
e−st dt

=

∞∫

0

t

2i
e(iω−1−s)t dt−

∞∫

0

t

2i
e−(iω+1+s)t dt

=
ie−t(s−iω+1)(1 + t(s− iω + 1))

2(s− iω + 1)2
− ie−t(s+iω+1)(1 + t(s+ iω + 1))

2(s+ iω + 1)2

∣∣∣∣
∞

0

Poles ofF (s) occur ats = −1 ± iω, the exponents off(t).

7 Find the Laplace transforms of f(t) = next integer abovet andf(t) = t δ(t).

A staircasef(t) = [t] = H(t) +H(t − 1) +H(t − 2) + · · · = next integer abovet
is a sum of step functions. The transform is

1

s
+

e−s

s
+

e−2s

s
+ · · · = 1

s
(1 + e−s + e−2s + · · · ) = 1

s

(
1

1− e−s

)
.

The differentiation ruleL(tf(t)) = −F ′(s) with f(t) = δ(t) andF (s) = 1 gives

L(tδ(t)) = − d

ds
(1) = 0 (this is correct becausetδ(t) is the zero function).
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8 Inverse Laplace Transform: Find the functionf(t) from its transformF (s) :

(a)
1

s− 2πi
(b)

s+ 1

s2 + 1
(c)

1

(s− 1)(s− 2)

(d) 1/(s2 + 2s+ 10) (e) e−s/(s− a) (f) 2s

Solution(a) F (s) =
1

s− 2πi
is the transform off(t) = e2πit.

Solution(b) F (s) =
s

s2 + 1
+

1

s2 + 1
is the transform off(t) = cos t + sin t.

Solution(c) F (s) =
1

(s− 1)(s− 2)
=

1

s− 2
− 1

s− 1
is the transform off(t) =

e2t − et.

Solution(d)

F (s) =
1

s2 + 2s+ 10
=

1

(s+ 1 + 3i)(s+ 1− 3i)

=
i

6(s+ (1 + 3i))
− i

6(s+ (1− 3i))

f(t) =
i

6
e−(1+3i)t − i

6
e−(1−3i)t

= −e−t sin(3t)

3

Solution(e) F (s) =
e−s

s− a

f(t) = ea(t−1)H(t− 1) = shift of eat

Solution(f) F (s) = 2s

f(t) = 2 dδ/dt

9 Solvey′′+y = 0 fromy(0) andy′(0) by expressingY (s) as a combination ofs/(s2+1)
and1/(s2 + 1). Find the inverse transformy(t) from the table.

Solution y ′′ + y = 0

s2Y (s)− sy(0)− y ′(0) + Y (s) = 0

Y (s)(s2 + 1) = sy(0) + y ′(0)

Y (s) = y(0)
s

s2 + 1
+ y ′(0)

1

s2 + 1

The inverse transform isy(t) = y(0) cos(t) + y ′(0) sin(t).

10 Solvey ′′ + 3y ′ +2y = δ starting fromy(0) = 0 andy ′(0) = 1 by Laplace transform.
Find the poles and partial fractions forY (s) and invert to findy(t).

Solution The transform of
d2y

dt2
+ 3

dy

dt
+ 2y = δ(t) with y(0) = 0 andy ′(0) = 1 is
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s2Y (s)− sy(0)− y ′(0) + 3sY (s)− 3y(0) + 2Y (s) = 1

Y (s)(s2 + 3s+ 2)− 1 = 1

Y (s) =
2

(s+ 1)(s+ 2)

Y (s) =
2

s+ 1
− 2

s+ 2

y(t) = 2e−t − 2e−2t

11 Solve these initial-value problems by Laplace transform :

(a) y ′ + y=eiωt, y(0)=8 (b) y ′′ − y=et, y(0)=0, y ′(0)=0

(c) y ′ + y=e−t, y(0)=2 (d) y ′′ + y=6t, y(0)=0, y ′(0)=0

(e) y ′ − iωy=δ(t), y(0)=0 (f) my ′′+ cy ′+ky=0, y(0)=1, y ′(0)=0

Solution(a)

y ′ + y = eiωt with y(0) = 8

sY (s)− 8 + Y (s) =
1

s− iω

Y (s)(s+ 1) =
1

s− iω
+ 8

Y (s) =
1

(s+ 1)(s− iω)
+

8

s+ 1

Y (s) =
1

1 + iω

(
1

s− iω
− 1

s+ 1

)
+

8

s+ 1

Particular + null y(t) =
1

1 + iω

(
eiωt − e−t

)
+ 8e−t

Solution(b) y ′′ − y = et with y(0) = 0 and y ′(0) = 0

s2Y (s)− Y (s) =
1

s− 1

Y (s) =
1

(s− 1)(s+ 1)(s− 1)

=
1

4(s+ 1)
− 1

4(s− 1)
+

1

2(s− 1)2

y(t) =
e−t

4
− et

4
+

tet

2

Solution(c) y ′ + y = e−t with y(0) = 2

sY (s)− 2 + Y (s) =
1

s+ 1

Y (s) =
1

(s+ 1)2
+

2

s+ 1

y(t) = te−t + 2e−t

Solution(d)
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y ′′ + y = 6t with y(0) = y ′(0) = 0

s2Y (s) + Y (s) =
6

s2

Y (s)(s2 + 1) =
6

s2

Y (s) =
6

s2
− 3i

s+ i
+

3i

s− i

y(t) = 6t− 3ie−it + 3ieit = 6t− 6 sin t

Solution(e) y ′ − iωy = δ(t) with y(0) = 0

sY (s)− iωY (s) = 1

Y (s) =
1

s− iω

y(t) = eiωt

Solution(f) my ′′ + cy ′ + ky = 0 with y(0) = 1 andy ′(0) = 0

ms2Y (s)−msy(0) + csY (s)− cy(0) + kY (s) = 0

Y (s)(ms2 + cs+ k) = ms+ c

Y (s) =
ms+ c

ms2 + cs+ k
has the form

a

s− s1
+

b

s− s2

We used thisMathematicacommand to findy(t)

Simplify[InverseLaplaceTransform [(m ∗ s + c)/(m ∗ sˆ2 + c ∗ s + k), s, t]]

y(t) =

e−
(c+

√
c2−4km)t
2m

(
c

(
−1 + e

√
c2−4kmt

m

)
+

(
1 + e

√
c2−4kmt

m

)√
c2 − 4km

)

2
√
c2 − 4km

12 The transform ofeAt is (sI − A)−1. Compute that matrix (the transfer function)
whenA = [1 1; 1 1]. Compare the poles of the transform to the eigenvalues ofA.

Solution WhenA = [1 1; 1 1] we have :

(sI −A)−1 =

[
s− 1 −1
−1 s− 1

]−1

=
1

s2 − 2s

[
s − 1 1
1 s − 1

]
.

The poles of the system ares = 2 ands = 0, the eigenvalues ofA.

13 If dy/dt decays exponentially, show thatsY (s) → y(0) ass → ∞.

Solution
sY (s) =

∞∫

0

se−sty(t) dt (integrate by parts)

=

∞∫

0

e−st dy

dt
dt−

[
e−sty(t)

]∞
0

=

∞∫

0

e−st dy

dt
dt+ y(0) → y(0) as s → ∞

Example :
dy

dt
= e−at has sY (s)− y(0) =

1

s+ a
→ 0 as s → ∞
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14 Transform Bessel’s time-varying equationty ′′+y ′+ty = 0 usingL [ty] = −dY/ds to
find a first-order equation forY . By separating variables or by substituting
Y (s) = C/

√
1 + s2, find the Laplace transform of the Bessel functiony = J0.

Solution The transform ofty ′′ applies theL (t, y) rule toy ′′ instead ofy :
L (t, y ′′) = − d

ds
(transform ofy ′′) = − d

ds
(s2Y (s)− sy(0)− y ′(0)).

Apply this to the transform oft
d2y

dt2
+

dy

dt
+ ty = 0

−2sY (s)− s2
dY

ds
+ y(0) + sY (s)− y(0)− dY

ds
= 0

−sY (s)− s2
dY

ds
− dY

ds
= 0

sY (s) = −(s2 + 1)
dY

ds
dY

Y (s)
= − s ds

s2 + 1

log Y (s) = log

(
1√

s2 + 1

)

The transform of the Bessel solutiony = J0 is Y(s)=
1√

s2 + 1

15 Find the Laplace transform of a single arch off(t) = sinπt.

Solution A single arch ofsinπt extends fromt = 0 to t = 1 :

F (s) =

∞∫

0

f(t)e−stdt =

1∫

0

sin(πt)e−stdt =

1∫

0

eiπt−st

2i
dt−

1∫

0

e−iπt−st

2i
dt

=

[
eiπt−st

2i(iπ − s)
+

e−iπt−st

2i(iπ + s)

]t=1

t=0

=
eiπ−s − 1

2i(iπ − s)
+

e−iπ−s − 1

2i(iπ + s)

=

(−e−s − 1

2i

)(
1

iπ − s
− 1

iπ + s

)
=

(
e−s + 1

i

)(
s

π2 + s2

)

A faster and more direct approach : One arch of the sine curve agrees withsinπt +
unit shift of sinπt, because those cancel after one arch.

sinπt+ sinπ(t− 1) = sinπt+ sinπt cosπ = sinπt− sinπt = 0.

16 Your accelerationv ′ = c(v∗ − v) depends on the velocityv∗ of the car ahead :

(a) Find the ratio of Laplace transformsV ∗(s)/V (s).

(b) If that car hasv∗ = t find your velocityv(t) starting fromv(0) = 0.

Solution(a) Take the Laplace Transform of
dv

dt
= c(v∗ − v) assumingv(0) = 0 ;
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sV (s)− v(0) = cV ∗(s)− cV (s)

V (s)(s+ c) = cV ∗(s)

V ∗(s)

V (s)
=

s + c

c

Solution(b) If v∗(t) = t thenV ∗(s) =
1

s2
. Therefore

V (s)(s+ c) =
c

s2

V (s) =
c

s3 + cs2

=
1

c(s+ c)
− 1

cs
+

1

s2

v(t) =
e−ct

c
− 1

c
+ t

17 A line of cars hasv ′

n = c[vn−1(t− T )− vn(t− T )] with v0(t) = cosωt in front.

(a) Find the growth factorA = 1/(1 + iωeiωT /c) in oscillationvn = Aneiωt.

(b) Show that|A| < 1 and the amplitudes are safely decreasing ifcT < 1
2 .

(c) If cT > 1
2 show that|A| > 1 (dangerous) for smallω. (Usesin θ < θ.)

Human reaction time isT ≥ 1 sec and human aggressiveness isc = 0.4/sec.

Danger is pretty close. Probably drivers adjust to be barelysafe.

Solution(a)
dvn
dt

= c(vn−1(t− T )− vn(t− T )) with vn = Aneiωt

iωAneiωt = cAn−1eiω(t−T ) − cAneiω(t−T )

A
iωeiωT

c
= 1−A

A

(
1 +

iωeiωT

c

)
= 1

Solution(b)
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For |A| < 1 we need

∣∣∣∣1 +
iω

c
eiωT

∣∣∣∣ > 1

∣∣∣1− ω

c
sin(ωT ) +

ω

c
cos(ωT )

∣∣∣ > 1

(
1− ω

c
sin(ωT )

)2
+

ω2

c2
cos2(ωT ) > 1

1− 2ω

c
sin(ωT ) +

ω2

c2
sin2(ωT ) +

ω2

c2
cos2(ωT ) > 1

1− 2ω

c
sin(ωT ) +

ω2

c2
> 1

ω2

c2
>

2ω

c
sin(ωT )

Since sinωT < ωT, we are safe if
ω2

c2
>

2ω

c
ωT which is cT <

1

2
Solution(c) sinωT ≈ ωT when this number is small. Then the same steps show
|A| > 1 whencT > 1

2 .
18 For f(t) = δ(t), the transformF (s) = 1 is the limit of transforms of tall thin box

functionsb(t). The boxes have widthǫ → 0 and height1/ǫ and area1.

Inside integrals,b(t) =

{
1/ǫ for 0 ≤ t < ǫ
0 otherwise

}
approachesδ(t).

Find the transformB(s), depending onǫ. Compute the limit ofB(s) asǫ → 0.

Solution We begin by finding the transform of the box :

B(s) =

ǫ∫

0

1

ǫ
e−st dt =

−1

sǫ
e−st

∣∣∣∣
ǫ

0

=
1− e−sǫ

sǫ

We take the limit asǫ → 0—the box approaches a delta function !

Bǫ(s) = lim
ǫ→0

1− e−sǫ

sǫ

= lim
1− (1 − sǫ+ 1

2s
2ǫ2 − · · · )

sǫ
= 1.

19 The transform1/s of the unit step functionH(t) comes from the limit of the transforms
of short steep ramp functionsrǫ(t). These ramps have slope1/ǫ :

rǫ = t/ǫ
rǫ = 1

0 ǫ
t

ComputeRǫ(s) =

ǫ∫

0

t

ǫ
e−stdt+

∞∫

ǫ

e−stdt. Let ǫ → 0.

Solution Rǫ(s) =

ǫ∫

0

t

ǫ
e−st dt+

∞∫

ǫ

e−st dt =

[
e−st(−st− 1)

ǫs2

]t=ǫ

t=0

+

[
e−st

−s

]t=∞

t=ǫ

=
e−sǫ(−sǫ− 1) + 1

ǫs2
+

e−sǫ

s
=

1 − e−sǫ

ǫs2

limRǫ(s) = lim
1− (1− sǫ+ 1

2s
2ǫ2 − · · · )

ǫs2
=

1

s
.
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20 In Problems 18 and 19, show that the derivative of the ramp function rǫ(t)
is the box functionb(t). The “generalized derivative” of a step is the function.

Solution The generalized derivative of the short ramprǫ(t) is the thin boxb(t)/ǫ. We
say “generalized” because this is not a true derivative att = 0 : the ramp has zero slope
left of t = 0 and nonzero slope right oft = 0. But the transforms ofrǫ andbǫ follow
the rule for derivatives.

The generalized derivative of a step function is adelta function.
21 What is the Laplace transform ofy ′′′(t) when you are givenY (s) and

y(0), y ′(0), y ′′(0)?

Solution The Laplace Transform ofy ′′′(t) is s3Y (s)− s2y(0)− sy ′(0)− y ′′(0)

22 The Pontryagin maximum principlesays that the optimal control is “bang-bang”—
it only takes on the extreme values permitted by the constraints. To go from rest at
x = 0 to rest atx = 1 in minimum time, use maximum accelerationA and
deceleration−B. At what timet do you change from the accelerator to the brake ?
(This is the fastest driving between two red lights.)

Solution The maximum principle requires full accelerationA to an unknown timet0
and then full deceleration−B to reachx = 1 with zero velocity. The velocities are

v = At for t ≤ t0

v = At0 −B(t− t0) for t > t0

Integrating the velocityv = dx/dt gives the distancex(t) :

x = 1
2At

2 for t < t0

x = 1
2At

2
0 at t = t0

x = 1
2At

2
0 +At0(t− t0)− 1

2B(t− t0)
2 for t > t0

At the final timeT we reachx = 1 with velocity v = 0. This gives two equations for
t0 andT :

v = At0 −B(T − t0) = 0

x = At0T − 1
2At

2
0 − 1

2B(T − t0)
2 = 1

SubstituteT = 1
B t0(A + B) from the first equation into the second equation. This

leaves an ordinary quadratic equation to solve fort0.

Problem Set 8.6, page 453

1 Find the convolutionv ∗w and also the cyclic convolutionv ⊛w :

(a)v = (1, 2) andw = (2, 1)

Solution(a)
Convolution :(1, 2) ∗ (2, 1)

[
1 0
2 1
0 2

][
2
1

]
=

[
2
5
2

]

Cyclic Convolution :

[
1 2
2 1

] [
2
1

]
=

[
4
5

]
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(b) v = (1, 2, 3) andw = (4, 5, 6).

Solution(b)

(1, 2, 3) ∗ (4, 5, 6)




1 3 0
2 1 0
3 2 1
0 3 2
0 0 3




[
4
5
6

]
=




4
13
28
27
18




Cyclic Convolution :

[
1 3 2
2 1 3
3 2 1

][
4
5
6

]
=

[
31
31
28

]

2 Compute the convolution(1, 3, 1) ∗ (2, 2, 3) = (a, b, c, d, e). To check your answer,
adda+ b+ c+ d+ e. That total should be35 since1+ 3+1 = 5 and 2+ 2+3 = 7
and 5× 7 = 35.

Solution



1 0 0
3 1 0
1 3 1
0 1 3
0 0 1




[
2
2
3

]
=




2
8
11
11
3




1 + 3 + 1 times2 + 2 + 3 is 2 + 8 + 11 + 11 + 3 : (5)(7) = (35).
3 Multiply 1 + 3x + x2 times2 + 2x + 3x2 to find a + bx + cx2 + dx3 + ex4. Your

multiplication was the same as the convolution(1, 3, 1) ∗ (2, 2, 3) in Problem 8. When
x = 1, your multiplication shows why1+ 3+1 = 5 times2+ 2+3 = 7 agrees with
a+ b+ c+ d+ e = 35.

Solution

(1 + 3x+ x2)× (2 + 2x+ 3x2) = 2 + 2x+ 3x2 + 6x+ 6x2 + 9x3 + 2x2 + 2x3 + 3x4

= 2 + 8x+ 11x2 + 11x3 + 3x4

At x = 1 this is again(5)× (7) = (35).
4 (Deconvolution) Which vectorv would you convolve withw = (1, 2, 3) to get

v ∗w = (0, 1, 2, 3, 0)? Whichv givesv ⊛w = (3, 1, 2)?

Solution



v0 0 0
v1 v0 0
v2 v1 v0
0 v2 v1
0 0 v2




[
1
2
3

]
=




0
1
2
3
0




The first and last equation givev0 = v2 = 0. Substituting into the second, third, fourth
equation givesv1 = 1. Thereforev = (0, 1, 0).

For cyclic convolution

[
1 3 2
2 1 3
3 2 1

][
v0
v1
v2

]
=

[
v0 v2 v1
v1 v0 v2
v2 v1 v0

] [
1
2
3

]
=

[
3
1
2

]

gives

[
v0
v1
v2

]
=

[
0
1
0

]
.
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5 (a) For the periodic functionsf(x) = 4 andg(x) = 2 cosx, show thatf ∗ g is zero (the
zero function) !

Solution(a) From equation (4) we have

(f ∗ g)(x) =
2π∫

0

g(y)f(x− y) dy = 4

2π∫

0

2 cos y dy = 4 · 0 = 0 for all x.

(b) In frequency space (k-space) you are multiplying the Fourier coefficients of
4 and 2 cosx. Those coefficients arec0 = 4 and d1 = d−1 = 1.
Therefore every productckdk is .

Solution(b) In frequency space (k-space) you are multiplying the Fourier coefficients
of 4 and2 cosx. Those coefficients arec0 = 4 andd1 = d−1 = 1. Therefore every
product ckdk is zero. These are the coefficients of the zero function.

6 For periodic functionsf =
∑

cke
ikx andg =

∑
dke

ikx, the Fourier coefficients of
f ∗g are2πckdk. Test this factor2π whenf(x) = 1 andg(x) = 1 by computingf ∗g
from its definition (6.4).

Solution From equation (4) :

(f ∗ g)(x) =
2π∫

0

f(y)g(x− y) dy =

2π∫

0

1 · 1 dy = 2π.

The same convolution ink-space hasc0 = 1 andd0 = 1 (all otherck = dk = 0). Then
2πckdk gives the correct coefficients (2π and0) of the convolutionf ∗ g (which equals
2π).

7 Show by integration that the periodic convolution
2π∫
0

cosx cos(t−x)dx isπ cos t. In k-

space you are squaring Fourier coefficientsc1 = c−1 = 1
2 to get 1

4 and 1
4 ;

these are the coefficients of1
2 cos t. The2π in Problem 8 makesπ cos t correct.

Solution
2π∫

0

cosx cos(t− x) dx =

2π∫

0

cosx(cos t cosx+ sin t sinx) dx = π cos t+ 0.

8 Explain whyf ∗ g is the same asg ∗ f (periodic or infinite convolution).

Solution In Fourier space convolutionf ∗ g or f ⊛ g leads to multiplicationckdk,
which is certainly the same asdkck. Sof ⊛ g = g ⊛ f in x-space.

9 What 3 by 3 circulant matrix C produces cyclic convolution with the vector
c = (1, 2, 3)? ThenCd equalsc ⊛ d for every vectord. Computec ⊛ d for
d = (0, 1, 0).

Solution The circulant matrixC =

[
1 3 2
2 1 3
3 2 1

]
gives cyclic convolution with(1, 2, 3).

Whend = (0, 1, 0) we havec⊛ d = Cd =

[
1 3 2
2 1 3
3 2 1

][
0
1
0

]
=

[
3
1
2

]
.
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10 What 2 by 2 circulant matrixC produces cyclic convolution withc = (1, 1)?
Show in four ways that thisC is not invertible. Deconvolution is impossible.

(1) Find the determinant ofC. (2) Find the eigenvalues ofC.

(3) Findd so thatCd = c⊛ d is zero. (4)Fc has a zero component.

Solution The2 by 2 circulant matrixC =

[
1 1
1 1

]
gives(1, 1)⊛ d = Cd.

(1) The determinant of this matrix is zero.

(2) The eigenvalues ofC come fromdet

[
1− λ 1
1 1− λ

]
= (1 − λ)2 − 1 = 0.

Then(1 − λ)2 = 1 andλ = 0, 2. That zero eigenvalue means that the matrixC is
singular.

(3) Cd =

[
1 1
1 1

] [
−1
1

]
=

[
0
0

]
soC is not invertible :

[
−1
1

]
in nullspace.

(4) The Fourier matrixF givesFc =

[
1 1
1 −1

] [
1
1

]
=

[
2
0

]
. This again shows

λ = 2 and0.

11 (a) Changeb(x) ∗ δ(x− 1) to a multiplication̂b(k) d̂(k) :

The boxb(x) = {1 for 0 ≤ x ≤ 1} transforms tob̂(k) =
1∫
0

e−ikxdx.

The shifted delta transforms tôd(k) =
∫
δ(x − 1)e−ikxdx.

(b) Show that your result̂b d̂ is the transform of a shifted box function. This shows how

convolution withδ(x− 1) shifts the box.

Solution This question shows that continuous convolution withδ(x − 1) produces a
shift in the box functionb(x), just like discrete convolution with the shifted delta vector
(. . ., 0, 0, 1, . . .) produces a one-step shift.

We computeδ(x− 1) ∗ b(x) in x-space to findb(x− 1), or in k-space to see the effect
on the coefficients :

b̂(k) =

1∫

0

e−ikxdx =

[
e−ikx

−ik

]x=1

x=0

=
1− e−ik

ik

Shifted box e−ik

(
1− e−ik

ik

)
agrees with

2∫

1

e−ikxdx =

[
e−ikx

−ik

]x=2

x=1

.

12 Take the Laplace transform of these equations to find the transfer functionG(s) :

(a)Ay ′′ +By ′ + Cy = δ(t) (b) y ′ − 5y = δ(t) (c) 2y(t)− y(t− 1) = δ(t)

Solution(a) As2Y (s)+BsY (s)+CY (s) = 1 gives the transfer function
1

As2 +Bs+ C

Solution(b) sY (s)− 5Y (s) = 1 gives the transfer functionY (s) =
1

s− 5
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Solution(c) 2Y (s)− Y (s)e−s = 1 gives the transfer functionY (s) =
1

2− e−s

13 Take the Laplace transform ofy′′′′ = δ(t) to find Y (s). From the Transform Table
in Section 8.5 findy(t). You will seey′′′ = 1 and y′′′′ = 0. But y(t) = 0 for
negativet, so youry′′′ is actually a unit step function and youry′′′′ is actuallyδ(t).

Solution y ′′′′ = δ transforms tos4Y (s)− s3y(0)− s2y ′(0)− sy ′′(0)− y ′′′(0) = 1

Assume zero initial values to gets4Y (s) = 1 andY (s) =
1

s4
andy3 =

t3

6
.

This is also the solution toy ′′′′ = 0 with initial valuesy, y ′, y ′′, y ′′′ = 0, 0, 0, 1.
14 Solve these equations by Laplace transform to findY (s). Invert that transform

with the Table in Section 8.5 to recognizey(t).

(a)y ′ − 6y = e−t, y(0) = 2 (b) y ′′ + 9y = 1, y(0) = y ′(0) = 0.

Solution(a) The transform ofy ′ − 6y = e−t with y(0) = 2 is

sY (s)− 2− 6Y (s) =
1

s+ 1

Y (s) =
2

s− 6
+

1

(s+ 1)(s− 6)

=
2

s− 6
+

1

7(s− 6)
− 1

7(s+ 1)

=
15

7(s− 6)
− 1

7(s+ 1)

The inverse transform isy(t) =
15

7
e6t − 1

7
e−t

Solution(b) The transform ofy ′′ + 9y = 1 with y(0) = y ′(0) = 0 is

s2Y (s) + 9Y (s) =
1

s

Y (s) =
1

s(s2 + 9)

=
1

9s
− 1

18(−3i+ s)
− 1

18(3i+ s)

The inverse transform isy(t) =
1

9
− 1

18
e3it − 1

18
e−3it = yp + yn.

15 Find the Laplace transform of the shifted stepH(t− 3) that jumps from0 to 1 at t = 3.
Solvey ′ − ay = H(t − 3) with y(0) = 0 by finding the Laplace transformY (s) and
then its inverse transformy(t) : one part fort < 3, second part fort ≥ 3.

Solution The transform ofH(t− 3) multipliese−3s by the transform1
s of H(t).

y ′ − ay = H(t− 3) y(0) = 0

sY (s)− aY (s) =
e−3s

s

Y (s) =
e−3s

s(s− 3)
=

e−3x

3

(
1

s− 3
− 1

s

)
.

The inverse transformy(t) is the shift of13
(
e−3t − 1

)
: zero untilt = 3.
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16 Solvey ′ = 1 with y(0) = 4—a trivial question. Then solve this problem the slow way
by findingY (s) and inverting that transform.

Solution The trivial solution is :y = t+ 4. The transform method gives

sY (s)− 4 =
1

s

Y (s) =
1

s2
+

4

s

y(t) = t+ 4

17 The solutiony(t) is the convolution of the inputf(t) with what functiong(t)?

(a)y ′ − ay = f(t) with y(0) = 3

Solution(a) y ′ − ay = f(t) with y(0) = 3

sY (s)− 3− aY (s) = F (s)

Y (s) =
3 + F (s)

s− a

y(t) = 3e−t + f(t) ∗ e−at

(b) y ′ − (integral ofy) = f(t).

Solution(b) The transform ofy ′− (integral ofy) = f(t) is sY (s) − Y (s)

s
= F (s),

if y(0) = 0.

The inverse transform of
1

s− 1
s

=
s

s2 − 1
is cos(it).

ThenY (s) =
F (s)

s− 1
s

is the transform of the convolutionf(t) ∗ cos(it).

18 Fory ′ − ay = f(t) with y(0) = 3, we could replace that initial value by adding3δ(t)
to the forcing functionf(t). Explain that sentence.

Solution For a first order equation, an initial conditiony(0) is equivalent to adding
y(0)δ(t) to the equation and starting that new equation at zero.

19 What isδ(t) ∗ δ(t) ? What isδ(t− 1) ∗ δ(t− 2)? What isδ(t− 1) timesδ(t− 2)?

Solution δ(t) ∗ δ(t) = δ(t)

δ(t− 1) ∗ δ(t− 2) = δ(t− 3)

δ(t− 1) timesδ(t− 2) equals the zero function.

20 By Laplace transform, solvey ′ = y with y(0) = 1 to find a very familiary(t).

Solution y ′ = y y(0) = 1

sY (s)− 1 = Y (s)

Y (s) =
1

s− 1
gives y(t) = et.
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21 By Fourier transform as in (9), solve−y ′′ + y = box functionb(x) on0 ≤ x ≤ 1.

Solution The Fourier transform of−y ′′ + y = b(x) is

(k2 + 1) ŷ (k) = b̂(k) =

1∫

0

e−ikxdx =
1− e−ik

ik
.

ŷ(k) =
1− e−ik

(k2 + 1)(ik)

This transform must be inverted to find y(x). In reality I would solve separately on
x ≤ 0 and0 ≤ x ≤ 1 andx ≥ 1. Then matching at the breakpointsx = 0 andx = 1
determines the free constants in the separate solutions.

22 There is a big difference in the solutions toy ′′ + By ′ + Cy = f(x), between the
casesB2 < 4C andB2 > 4C. Solvey ′′ + y = δ andy ′′ − y = δ with y(±∞) = 0.

Solution(a) The delta function produces a unit jump iny ′ atx = 0 :

y ′′ + y = 0 hasy = c1 cosx + c2 sinx for x < 0, y = C1 sinx for x > 0.

The jump iny ′ givesC2 − c2 = 1. The condition ony(± ∞) does not apply to this
first equation.

y ′′ − y = 0 hasy = cex for x < 0 andy = Ce−x for x > 0; theny(± ∞) = 0.

Matchingy atx = 0 givesc = C.

Jump iny ′ atx = 0 gives−C − c = 1 soc = C = − 1
2

Solutiony(x) = − 1
2e

x for x ≤ 0 andy(x) = − 1
2e

−x for x ≥ 0

23 (Review) Why do the constantf(t) = 1 and the unit stepH(t) have the same
Laplace transform1/s? Answer : Because the transform does not notice .

Solution The Laplace Transformdoes not notice any values off(t) for t < 0.
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