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Chapter 1. First Order Equations

Problem Set 1.1, page 3

1

Draw the graph ofy = ¢’ by hand, for—1 < ¢ < 1. What is its slopely/dt at
t = 0? Add the straight line graph gf= et. Where do those two graphs cross ?

Solution The derivative ok’ has slopel att = 0. The graphs meet at= 1 where
their value ise. They don’t actually “cross” because the line is tangenh®durve :
both have slopg’ = c att = 1.

Draw the graph of;; = 2! on top ofy, = 2e’. Which function is larger at = 0?
Which functionis largerat = 17?

Solution From the graphs we see thattat 0, the function2e? is larger whereas at
t = 1,e% is larger. ¢ timese is larger thar2 timese).

What is the slope of = e~ at ¢t = 0? Find the slopdy/dt att = 1.
Solution The slope o=t is —e~t. Att = 0 thisis—1. The slope at = 1 is —e 1.
What “logarithm” do we use for the numbe(the exponent) wheed = 4 ?

Solution We use the natural logarithm to firdrom the equatior! = 4. We get that
t=1In4 ~ 1.386.

State the chain rule for the derivatide/dt if y(¢t) = f(u(t)) (chain of f andw).
Solution The chain rule gives:

dy _ df(u(t)) du(?)
dt ~ du(t) dt

The secondderivative ofe’ is againe’!. Soy = e solvesd?y/dt?> = y. A sec-
ond order differential equation should have another smiytilifferent fromy = Cet.
What is that second solution ?

Solution The second solution ig= ¢~*. The second derivative is(—e~t) = e *.

Show that the nonlinear examplg)/dt = y? is solved byy = C/(1 — Ct)
for every constant’. The choice” = 1 gavey = 1/(1 — t), starting fromy(0) = 1.

Solution Given thaty = C/(1 — Ct), we have:
y? =C?/(1-Ct)?
v — . (=1)- (=0)1/(1 = Ct)2 = C?/(1 — Ct)?

dt
Why will the solution tody/dt = 3> grow faster than the solution tdy/dt
(if we start them both fromy = 1 att = 0)? The first solution blows up dt
The second solutioef grows exponentially fast but it never blows up.

Solution The solution of the equatiafy /dt = y? for y(0) = lisy = 1/(1—t), while
the solution tady /dt = y for y(0) = 1isy = ¢'. Notice that the first solution blows
up att = 1 while the second solutio#f grows exponentially fast but never blows up.

Y
1.



1.3. The Exponentials’ ande®t 3

9 Find a solution tady/dt = —y? starting fromy(0) = 1. Integratedy/y* and —dt.
(Or work with z = 1/y. Thendz/dt = (dz/dy) (dy/dt) = (—1/y*)(—y?) = 1.
Fromdz/dt = 1 you will know z(t) andy = 1/z.)

Solution The first metcrlmd has
Y

Yy t
du . . .
— =— [ dv (u,v areintegration variablgs
u
y(0) 0
L S
y  y(0)
-1
— =—t-1
Y
1
A —

The approach using = 1/y leads tadz/dt = 1 andz(0) = 1/1.
Thenz(t) =1+tandy =1/z = 13-
10 Which of these differential equations are linear)r?

@y'+ sing=t )y =*@y—1t) (©y' +e'y=1t"
Solution (a) Since this equation solvesia y term, it is not linear iny.

(b) and (c) Since these equations have no nonlinear termdhiey are linear.

11 The product rule gives what derivative fete=* ? This function is constant. At= 0
this constant id. Thenete™t = 1 for all ¢.

Solution (efe )’ =efe ™t —ele™t =0 so ee™* isaconstant(1).

12 dy/dt = y + 1 is not solved byy = e! + t. Substitute thay to show it fails. We can't
just add the solutions tg9’ = y andy’ = 1. What number. makesy = e’ + cinto a
correct solution ?

Solution
t
%:y-l-l W:et—kc—kl

Wrong @ £el+t+1 Correctc= —1
Problem Set 1.3, page 15

1 Sett = 2 in the infinite series for?. The sum must be timese, close t07.39.
How many terms in the series to reach a surii @ How many terms to pags3 ?

22 23 2t
Solution The series for? hast =2:e2 =1+2+ o7 + 37 + 0 + -
. . 8 16
If we include five terms we get? ~ 1+ 2 +2 + 5 + 1= 7.0

of 22 93 9¢ 95 26
If we include seven terms we T~ 14+2+—+—+—+—+— = 7.35556.
9 + +2!+3!+4!+120+720
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2 Starting fromy(0) = 1, find the solution taly/dt = y at time¢ = 1. Starting from
that y(1), solvedy/dt = —y to time¢ = 2. Draw a rough graph of(¢t) from
t = 0tot = 2. What does this say aboert! timese ?

Solution y = e* up tot = 1, so thaty(l) = e. Then fort > 1 the equation
dy/dt = —yhasy = Ce~'. Att = 1, this becomegs = Ce~! so thatC = e2.
The solution ofdy/dt = —y up tot = 2isy = e2~t. Att = 2 we have returned to
y(2) = y(0) = 1. Then(e~1)(e) = 1.

Start withy(0) = $5000. If this grows bydy /dt = .02y until ¢ = 5 and then jumps to
a = .04 per year untit = 10, what is the account balancetat 10 ?

Solutio

d .
t§5:d—i=.02y 5§t§10:d—§:.04y gives y = Ce 0%
y = 5000e:02 y(5) = Ce=2 = 5000e! gives C = 5000e~-!
y(5) = 5000e* y(t) = 5000 (e 04t=0-1)

y(10) = 5000e3
Change Problem 3 to start wif5000 growing atdy/dt = .04y for the first five years.
Then drop tax = .02 per year until yeat = 10. What is the account balancetat 10?

Solution

d d
d—'z = .04y d—‘g = .02y for 5<t<10
Yy — 016.0426 y — 026.0215

y(0) = C1 = 5000 y(5) = Che! = 5000e2
y(t) = 5000e4 fort <5 Cy = 5000et

y(5) = 5000e2 y(t) = 5000(e2t+0-1)

y(10) = 5000e-®> = same as in 1.3.3

Problems 5-8 are abouty = et and its infinite series.

Replace by at in the exponential feries to find?® :
eat:1+at—|——(at)2+-~-+—'(at)"+-~-

Take the derivative of every term (keep five 7t1e'rms). Factar @uo show that

the derivative o£% equalsae®. At what timeT doese® reach2 ?

Solution The derivative of this series is obtained by differentigtihe terms individ-
ually:

~ —qg+4at+---+ amthl 4L

dt (n—1)!
1 2
=a 1—|—at+§(at) +-~-—|—( S
T In2 " '
If et =2 then aT =In2andT = —.
a

anfltnfl + .. ) — aeat

Start fromy’ = ay. Take the derivative of that equation. Take th& derivative.
Construct the Taylor series that matches all these deragattt = 0, starting from
1+ at + $(at)?. Confirm that this series fay(t) is exactly the exponential series for

e,

Solution The derivative ofy’ = ayis y” = ay’ = a%y. The next derivative is
y""" = ay” which isa3y. Wheny(0) = 1, the derivatives at = 0 area, a?,a?, ... so

L 1
the Taylor series ig(t) = 1 + at + §a2t2 +.o=e
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7 At what timest do these events happen ?
(a) et — o (b) et — 2 (C) ea(t+2) — cato2a
Solution
@e*=e att=1/a.
(b)e* =€ att =2/a.
() ex(t+2) = gate2a gt all ¢,
8 If you multiply the series foe®® in Problem5 by itself you should get the series for
e2et, Multiply the first 3 terms by the sam& terms to see the first terms ine2*t.

. 1 1 11
Solution (1 + at + §a2t2)(1 +at + 5a%?) =1+ 2at+ (1 +to 5) a’t> + .-

This agrees witk?** = 1 4 2at + %(Qat)Q 4o
9 (recommended) Fing(t) if dy/dt = ay andy(T) = 1 (instead ofy(0) = 1).

Solution % = ay gives y(t) = Ce®. When Ce®™ = 1 att = T, this gives
C =ec T and y(t) = e*t=T),

10 (a) If dy/dt = (In2)y, explain whyy(1) = 2y(0).
(b) If dy/dt = —(In2)y, how isy(1) related toy(0) ?

Solution

@) % = (In2)y — y(t) = y(0)e'™2) — y(1) = y(0)e™? = 2y(0).

®) Y = —(n2)y - y(t) = y(0)e™ D 5 y(1) = y(0)e ™2 = Ly/(0).

11 In a one-year investment af(0) = $100, suppose the interest rate jumps from
6% to 10% after six months. Does the equivalent rate for a whole yeankg{%,
or more thar8%, or less thar% ?

Solution We solve the equation in two steps, first fram= 0 to t = 6 months, and
then fromt = 6 months tot = 12 months.

y(t) =y(0)e y(t) = y(0.5)e
y(0.5) = $100e0-06%0:5 — 10003 y(1) = $103.05¢0-1%0-5 = §103.05¢:05
— $103.05 — $108.33

If the money was invested for one year at 8% the amountai would be:
y(1) = $100e-98*1 = $108.33.
The equivalent rate for the whole year is indeed exactly 8%.

12 If you invest y(0) = $100 at 4% interest compounded continuously, then
dy/dt = .04y. Why do you have more th&i 04 at the end of the year ?

Solution The quantitative reason for why this is happening is obthinem solving

the equation: i
d_:g = 0.04y — y(t) = y(0)e%
y(1) = 100e%%* ~ $104.08.

The intuitive reason is thahe interest accumulates interest
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Chapter 1. First Order Equations

What linear differential equatiodty /dt = a(t)y is satisfied byy(t) = ¢St 2
Solution The chain rule forf (u(t)) hasy(t) = f(u) = e* andu(t) = sint:
dy df(u(t)) df du
dat—dt  dtdt

If the interest rate i = 0.1 per year iny’ = ay, how many years does it take for
your investment to be multiplied hy? How many years to be multiplied lay ?

Solution Ifthe interestrateia = 0.1, theny(t) = y(0)e® 1. Fort = 10, the value is
y(t) = y(0) e. Fort = 20, the value igy(t) = y(0) €.

Write the first four terms in the series fgr= et”. Check thatly /dt = 2ty.

Solution

=e"cost =ycost. Thena(t) = cos(t).

1 1
y:et2:1—|—t2—|—§t4—|—6t6+-~-

d 5 1
d—i =2+ 288 417+ =2t (1+t2+§t4+---> = 2te’”.
Find the derivative ot (¢) = (1 + £)". If n is large, thisdY/dt is close toy’!

Solution The derivative of"(t) = (1 + £)" with respect ta isn(1) (1 4+ £)" ' =
(1+ %)"71. For largen the extra factoll + L is nearlyl, anddY’/dt is nearY .

(Key to future sections). Suppose the exponent ia e¢*(*) is u(t) = integral ofa(t).
What equationdy /dt = y does this solve ? If,(0) = 0 what is the starting
valuey(0) ?

Solution Differentiatingy = e/ “(*) % with respect ta by the chain rule yieldg' =
a(t)e «®dt_ Thereforedy /dt = a(t)y. If u(0) = 0 we havey(0) = ¢*(0) =1,

The Taylor series comes froaf/* f(x), when you write oue® % = 1 + d/dx +
$(d/dz)? + --- as a sum of higher and higher derivatives. Applying the sedg¢ ()

atz = 0 would give the valugf + /' + 3 f” +--- atz = 0.
The Taylor series says: This is equalftar) atz =

i 1 .
Solution F@) =f0)+17'(0)+ 512]“’(0) +--- Thisis exactly
d 1/d\°
f(l) = (1-‘1-%4-5 (£> +"'>f($€)at$€—0.
(Computer or calculator, 2.xx is close enough) Find the timehen ¢! = 10.
The initial y(0) has increased by an order of magnitude—a factori@f The
exact statement of the answer is- . At what timet doese! reach100 ?

Solution The exact time when’ = 10ist = In 10. Thisist ~ 2.30 or 2.3026.
Then the time wheaT = 100is T = In 100 = In 102 = 21n 10 ~ 4.605.

Note that the time whee! = L is ¢ = —In10 and nott = L.

The most important curve in probability is the bell-shapedphy of e=t/2,
With a calculator or computer find this function at= —2,—1,0,1,2. Sketch

the graph ob~t"/2 fromt = —co to t = co. It never goes below zero
Solution Att=1andt = —1, we havee /2 = ¢~1/2 = 1/,/e ~ .606

Att =2andt = —2, we havee*"/2 = =2 ~ .13.
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Explain why y; = e(@tt+9)t js the same ag, = e*e’ect. They both start at
y(0) = 1. They both solve what differential equation ?

Solution The exponentrule is used twice to fial@+t+e)t = gattbitet — gatt+btoct —

eat ebifecif .

This function must solvéfﬁ = (a 4+ b + ¢)y. The product rule confirms this.
Fory’ = y with a = 1, Euler’s first step chooseg, = (1 + At)Yy. Backward

Euler choosed; = Yy/(1 — At). Explain why1 4 At is smaller than the exaet*
and1/(1 — At) is larger thare®*. (Compare the series fay/ (1 — x) with e*.)

Solution 1+ At is certainly smaller thap®t = 1 + At + 2 (At)? + L (At)? + - -

—o = 1+ At+(At)*+ (At)® +- - - is larger thare®!, because the coefficients drop

below1 in et.

Problem Set 1.4, page 27

1

All solutions tody/dt = —y + 2 approach the steady state whéig/ dt is zero and
Y =Yoo = ___. Thatconstany = y., is a particular solutiory,,.

Which y,, = Ce™* combines with this steady statg to start fromy(0) = 4?
This question chosg, + y,, to bey..+ transient(decaying to zero).
Solution y., = 2 = y, at the steady state Whe% = 0. Theny, = 2¢~¢ gives
Y=UYn+yp=2+2et=4att=0.
For the same equatialy/dt = —y + 2, choose the null solutiop,, that starts from
y(0) = 4. Find the particular solutiog, that starts fromy(0) = 0.
This splitting chooseg,, andy,, ase®y(0) + integral ofe**~")q in equation (4).
Solution For the same equation as 11.4y1,= 4e¢~! has the correcg(0) = 4. Now
yp Must be2 — 2e~* to start aty, (0) = 0. Of coursey,, + y,, is still 2 4+ 2e~*.
The equationly /dt = —2y+ 8 also has two natural splittinass + yr = yn + yp:
1. Steady §/s = yoo) + Transientyr — 0). What are those partsgf0) = 6 ?
2. (yn = —2yn fromyn(0) = 6) + (y;, = —2yp + 8 starting fromyp(0) = 0).
Solution 1. ys = 4 (when% = 0: steady state) anglr = 2%,

2. yny = 6e 2" andyp = 4 — 4e~?! starts ayyp(0) = 0.
Againys + yT = yn + yp: two splittings ofy.

All null solutions tou — 2v = 0 have the form(u, v) = (e, ).

One particular solution te — 2v = 3 has the form(u, v) = (7, ).
Every solution tax — 2v = 3 hastheform(7, __ ) +¢(1, ).

But also every solution hasthefor®, )+ C(1,  )forC =c+4.

Solution All null solutions tou — 2v = 0 have the form(u, v) = (¢, %c).
One particular solution te — 2v = 3 has the form(u,v) = (7, 2).

Every solution tax — 2v = 3 has the form(7, 2) 4+ ¢(1, % .

But also every solution has the for(8,0) + C (1, %). HereC = c + 4.
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5 The equationdy/dt = 5 with y(0) = 2 is solved byy = . A natural split-
ting y,,(t) = __ andy,(t) = __ comes fromy,, = ¢*'y(0) andy, = [ e**=T)54T.

This small example has = 0 (soay is absent) and = 0 (the source ig = 5¢°).
Whena = ¢ we have “resonance.” A factomwill appear in the solution.

Solution dy/dt = 5 with y(0) = 2is solved byy = 2+ 5¢. A natural splittingy,, (t) =
2 andy,(t) = 5t comes fromy,,(0) = y(0) andy, = [ e*!=*)5ds = 5t (sincea = 0).
Starting with Problem 6, choose the very particulary,, that starts from y,(0) = 0.
6 For these equations starting0) = 1, find y,,(¢t) andy,(t) andy(t) = yn + yp.
@y -9 =90 (b) v+ 9y =290
Solution (a) Since the forcing function is we use equation 6:
yn(t) — egt
yp(t) = L (e —1) = 10(e” — 1)
y(t) = yn(t) +yp(t) = ¥ +10(e” — 1) = 11 — 10.
(b) We again use equg\ttion 6, noting that —9. The steady state will bg,, = 10.
yn(t) =€~
yp(t) = Zg(e™ = 1)
y(t) = yn(t) +yp(t) = e % = 10(e™% — 1) = 10 — 9.

7 Find a linear differential equation that produggst) = e* andy, (t) = 5(% — 1).
Solution y, = €% needsa = 2. Theny, = 5(e¥ — 1) starts fromy,(0) = 0,
telling us thaty(0) = y,,(0) = 1. Thisy, is a response to the forcing terfe’’ + 1).
So the equation foy = e + 5¢5 — 5 must be% = 2y + (% + 1). Substitutey :

2e% + 40e¥ = 22" +10e3 — 10 + (¥ +1).
Comparing the two sideg; = 30 andD = 10. Harder than expected.

8 Find a resonant equatign = c) that produceg,, (t) = e* andy,(t) = 3te?".
Solution Clearlya = ¢ = 2. The equation must béy/dt = 2y + Be?t. Substituting
y = et + 3te? gives2e?! + 3e?t + 6te?t = 2(e?! + 3te?!) + Be? and thenB = 3.

9 y' = 3y + 3! hasy,, = €3'y(0). Find the resonany, with y,,(0) = 0.

Solution The resonany, has the fornCte®® starting fromy, (0) = 0. Substitute in
the equation:
dy

i 3y + €3t is Cedt + 3Cte3 = 3Cte3 + €3t andthenC = 1.

Problems 10-13 are abouyy’ — ay = constant sourceg.

10 Solve these linear equations in the foyr= v, + v, with y,, = y(0)e®".

@y —4y=-8 (b)y +4y=28 Which one has a steady state ?

Solution (a) y' —4y = —8 hasa = 4 and y, = 2. But2 is not a steady state at
t = oo because the solutiap, = y(0)e*! is exploding.

(b) vy’ +4y = 8 hasa = —4 and againy, = 2. This2 is a steady state because
a < 0andy,, — 0.
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Find a formula fory(t) with y(0) = 1 and draw its graph. What ig., ?

@y +2y=6 (b)) y +2y=-6

Solution (a) ¢’ +2y =6 hasa = -2 and y,, =3 and y = y(0)e~2 + 3.

(b) ¥ +2y=—6 hasa = -2 and yo, = —3 and y = y(0)e~2* — 3.

Write the equations in Problem 118 = —2Y with Y = y — yo. What isY'(0) ?
Solution With Y = y — y» andY (0) = y(0) — y-, the equations in 1.4.11 are
Y’ = —2Y. (The solutions ar&’(t) = Y (0)e~2" which isy(t) — yo = (y(0) —
Yoo)e 2 or y(t) = y(0)e ™ + yoo(1 — e~ ).

If a drip feedsg = 0.3 grams per minute into your arm, and your body eliminates the

drug at the ratéy grams per minute, what is the steady state concentrgtioh Then
in = outandy., is constant. Write a differential equation for=y — y...

Solution The steady state hag, = yout Or 0.3 = 6y OF Yo = 0.05. The equa-
tionforY = y —ys is Y/ = aY = —6Y. The solution isY (t) = Y (0)e~° or
Y(t) = Yoo + (¥(0) — yoo)e ™.

Problems 14-18 are abouy’ — ay = step function H(t — T') :

Why isy.., the same foy’ + y = H(t —2)andy’ + y = H(t — 10)?

Solution Noticea = —1. The steady states are the same because the step functions
H(t — 2)andH (t — 10) are the same after time= 10.

Draw the ramp function that solvgg = H (t — T') with y(0) = 2.

Solution The solution is a ramp withy(t) = y(0) = 2 up to timeT and then
y(t) =2+t — T beyond timeT".

Find y,,(t) andy,(t) as in equation (10), with step function inputs startin@'at 4.
@y —by=3H(t—-4) M)y +y=7H({t—-4) (Whatisys?)

Solution (a) y,(t) = 2(e5¢—% — 1) for ¢ > 4 with no steady state.
p 5

(b) yp(t) = S (e~ —1) for t >4 witha=—1 and y, = 7.

Suppose the step function turns onZat= 4 and off atT = 6. Theng(t) =

H(t —4) — H(t — 6). Starting fromy(0) = 0, solvey’ + 2y = ¢(t). What is

Yoo ?

Solution The solution has 3 parts. Firgtt) = y(0) = 0 uptot = 4. ThenH (t — 4)

turns on andy(t) = -5 (e"2*=% — 1). This reacheg(6) = —3(e~* — 1) at time

t = 6. Aftert = 6, the source is turned off and the solution decays to zgft: =

y(6)€72(t76)_

Method 2: We use the same steps as in equations (8) - (10pgtbiaty (0) = 0.
(e?'y) = e H(t —4) — e H(t — 6)

t t

e?y(t) — e*y(0) = /ezmd:v - /e%dac

'S
—
9]
[\
~
|
('bwa
&
S~—

l (t —4) + 15~ VH(t - 6)
y(t) = —3(e¥ 2 = 1)H(t — 4) + (72 = 1)H(t — 6)
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Fort — oo, we have:
1

Yoo = (570~ DH(E— 4) 4 S( 7~ DH( ~6) =0,

Suppose/ = H(t — 1)+ H(t — 2) + H(t — 3), starting aty(0) = 0. Findy(¢).

Solution We integrate both sides of the equation.
t t

/y’(t)dt = /(H(t — 1)+ H(t—2)+ H(t —3))dt
0 0
y(t) —y(0) =R(t—1)+ R(t—2)+ R(t - 3)
y(t) =Rt —1)+ R(t—2)+ R(t —3)
R(t) is the unit ramp functior= max (0, t).

Problems 19-25 are about delta functions and solutions t¢’ — ay = qd(t — T).

For all¢ > 0 find these integrals(t), b(t), c(t) of point sources and graptit) :
t t t
(a)/&(T—2)dT (b)/(&(T—Q) —46(T —3))dT (c)/&(T—2)§(T—3)dT
0 0 0
Solution Fort < 2, the spike inj(¢ — 2) does not appear in the integral franto ¢ :
t
0 ift<2
(@) /6(T—2)dT:{ L 'S
0

The integral (b) equals for 2 < ¢t < 3. This s the differencéf (t — 2) — H(t — 3).
The integral (c) izerobecausé (T — 2)6(T — 3) is everywhere zero.

Why are these answers reasonable ? (They are all correct.)
(a) / e's(t)dt =1 (b) / (6(t))%dt = oo (c)/ el'o(t — T)dT = €

Solution (a) The difference’s(t)—4(¢) is everywhere zero (notice it is zerotat 0).
Soeld(t) andd(t) have the same integral (fromoo to oo that integral isl). This
reasoning can be made more precise.

(b) This is the difference between the step functidh@ — 2) and H(t — 3). So it
equalsl for 2 < ¢ < 3 and otherwise zero.

(c) As in part (a), the difference betweefé(t — T') ande!s(t — T') is zero att = T
(and also zero at every othgr So

/ el's(t —T)dT = ¢ /Oo §(t —T)dT = €.

The solution tay’ - 2y + 6(t — 3) jumps_up byl at¢ = 3. Before and aftet = 3,
the delta function is zero ang grows like ¢?. Draw the graph ofy(t) when
(@) y(0) =0and (b) y(0) = 1. Write formulas fory(t) before and aftet = 3.
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Solution (a) y(0) = 0 givesy(t) = 0 until ¢ = 3. Theny(3) = 1 from the jump.

After the jump we are solving’ = 2y andy grows exponentially frony(3) = 1. So

y(t) = 29,

(b) y(0) = 1 givesy(t) = €2 until t = 3. The jump produceg(3) = ¢® + 1. Then

exponential growth giveg(t) = e2(:=3)(ef 4 1) = 2! 4 e2(*=3), One part grows
fromt = 0, one part grows fromh = 3 as before.

Solve these differential equations starting/ét) = 2:
@y —y=0(t—-2) (b)y' +y=0(—-2). (Whatisy?)
Solution (a) ¥y’ —y = §(t — 2) starts withy(t) = y(0)e* = 2¢* up to the jump at
t = 2. The jump brings another term ingdt) = 2et + e*~2 fort > 2. Note the jump
ofel=2 =1latt =2.
(b) ¥y’ +y = 6(t — 2) starts withy(t) = y(0)e™* = 2e~* up tot = 2. The jump
of 1 att = 2 starts another exponentiat (‘~2) (decaying because = —1). Then
y(t) =2t + e~ (=2,
Solvedy/dt = H(t — 1) 4+ 6(¢t — 1) starting fromy(0) = 0: jump and ramp.
Solution Nothing happens angl(t) = 0 until ¢t = 1. ThenH (¢t — 1) starts a ramp
in y(¢t) and there is a jump frond(t — 1). Soy(t) = ramp + constant =
max(0,t —1) + 1.
(My small favorite) What is the steady statg, fory’ = —y +d6(t — 1) + H(t — 3) ?
Solution dy/dt = 0 at the steady statg,;. Then—y + §(t — 1) + H(t — 3) is
~Yoo + 0+ 1 andye, = 1.
Which ¢ andy(0) in ¥’ — 3y = ¢(¢) produce the step solutiaf{t) = H(t — 1) ?
Solution We simply substitute the particular solutig(t) = H (¢t — 1) into the original
differential equation withy(0) = 0):
§(t—1)—3H(t—1) =q(t)

Notice hows (¢t — 1) in ¢(t) produces the jum@l (¢t — 1) iny, and then-3H (¢t — 1) in
q(t) cancels the-3y and keepsly/dt = 0 aftert = 1.
Problems 2631 are about exponential sourcegt) = Qe and resonance.
Solve these equations — ay = Qe as in (19), starting from y(0) = 2:
@ y —y=8e3 () v +y =83 (What isy. ?)
Solution

(@ a=1,c=3 and y(0) =2 (b) a=—1,c=—-3 and y(0) =2

ct at —3t t

y(t) = y(0)e +8—— y(t) = y(0)e +8———
o3t _ ot o3t _ ot
t) =2 8 t el +8—-—+—
() = 26! + 85— i) =248 E
y(t) = 2t + 4(e3t — et) y(t) = —4(e3t — et
y(t) = 4e3 — 2¢t y(t) = 46’3t +2e7t

y goes too ast — oo y goes td) ast — oo
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27 Whenc = 2.01 is very close tar = 2, solvey’ — 2y = et starting fromy(0) = 1. By
hand or by computer, draw the graphydt) : near resonance.

Solution We substitute the values= 2,¢c = 2%01 a|;1d y(0) = 1 into equation (18):
e — e
y(t) = y(0)e +

y(t)
y(t) =
y(t) = 1012 — 100201t

The graph of this function shows the “near resonance” when.

28 Whenc = 2 is exactly equal ta = 2, solvey’ — 2y = ¢?! starting fromy(0) = 1.
This is resonance as in equation (20). By hand or compuiay tire graph of(¢).
Solution We substituter = 2, ¢ = 2 (resonance) angl(0) = 1 into equation (19):

y(t) = y(0)e™ + te® = e 4 te?.

29 Solvey’ + 4y = 8e~4* + 20 starting fromy(0) = 0. What isy ?

Solution We havea = —4,¢ = —4 and y(0) = 0. Equation (19) with resonance

leads to8te—4!. The constant source0 leads to20(e~* — 1). By linearity
y(t) = 8te=* +20(e~* — 1). The steady state i, = —20.

30 The solution toy’ — ay = et didn’t come from the main formula (4), but it could.
Integratee~%%e“¢ in (4) to reach the very particular solutiger! — ¢%)/(c — a).

—a
6215 _ 62.0115
2.01-2
t + 100(8225 _ 62.0115)

2eat +
82
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31

32

33

34

35

Solution

— eaty(o) + eat efaTechT

O — O~

_ eaty(o) + eot €(C7G)TdT

(c—a)t _ 0
= ey (0) + e (*e ¢ )

e — €
= eaty(o) + Te—a = Yn + Yup
The easiest possible equatigh= 1 has resonanck The solutiony = ¢ shows the
factort. What number is the growth rateand also the exponenin the source ?

Solution The growth rate iy’ = 1 or dy/dt = ¢ is a = 0. The source ig**
with ¢ = 0. Resonancer = c. The resonant solution(t) = te®* isy = t, certainly
correct for the equatiody /dt = 1.

Suppose you know two solutiogs andys, to the equationy’ — a(t)y = q(t).

(@) Find a null solutiontg’ — a(t)y = 0.
(b) Find all null solutionsy,,. Find all particular solutiong,,.

Solution (a) y = y1 — y2 will be a null solution by linearity.

(b) y = C(y1 —y=) will give all null solutions. Thery = C'(y1 — y2) + y1 will give all
particular solutions. (Alsg = c¢(y1 — y2) + y2 will also give all particular solutions.)

Turn back to the first page of this Section 1.4. Without logkican you write down a
solution toy’ — ay = q(t) for all four source functiong, H (t),d(t), et ?

Solution Equations (5), (7), (14), (19).

Three of those sources in Probléd® are actually the same, if you choose the right
values forg andc andy(0). What are those values ?

Solution The sourceg = 1 andg = H(t) andgq = € are all the same far> 0.

What differential equationg’ = ay+q(t) would be solved by (t) andyz(¢) ? Jumps,
ramps, corners—maybe harder than expected{.mit.edu/dela/Pset1.4).

y1(t)
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Solution (a) % =1-6(t—1)—6(t—2)witha = 0.
(b) % =ys+ luptot = 1. Add in —2e (¢t — 1) to drop the slope from to —e at
t = 1. Aftert = 1 we needdy,/dt = —y2 — 1 to keepys = 2t — 1.

Problem Set 1.5, page 37

Problems 1-6 are about the sinusoidal identity (9). It is steed again in Problem 1

1 These steps lead again to the sinusoidal identity. Thisogmbr doesn’t start with
the usual formula cagut — ¢) = cos wt cos ¢ + sin wt sin ¢ from trigonometry.
The identity says:

If A+ iB = Re' then A coswt + B sinwt = Rcojwt — ¢).
Here are the four steps to find that real parRef(“*—%). Explain Ste whereR e~ ¢
equalsA — iB:

R cos (wt — ¢) = Re[Re'@=9)] = Re[e™!(Re )] = (whatisRe " ?)
= Re[(cos wt + i sin wt) (A —iB)] = A coswt + B sinwt.

Solution The key pointis that ifd + iB = Re' thenA — iB = Re~*¢ (the complex
conjugate).
2 To expressin 5t + cos 5t asR cos (wt — ¢), what areR and¢ ?

Solution The sinusoidal identity had = 1, B =1, and w = 5. Therefore:
R?=A2+B?>=2— R=+/2 and tan¢ = % —¢= % Answer v/2 cos (515— g) .
3 To expres$ cos 2t + 8 sin 2t asR cos (2t — ¢), what areR and tanp and¢ ?
Solution Use the Sinusoidal Identity with = 6, B =8 and w = 2.
R*=A?+B?>=62+82=100 and R =10

tang = £ =8 =2 and ¢ isin the positive quadrand to Z ( not m to 3&)
4
6 cos(2t) + 8sin(2t) = 10 cos (Qt — arctan (§ )

4 Integratecos wt to find (sin wt)/w in this complex way.
() dyreay/dt = coswt is the real part oflycomplex/dt = et

(i) Take the real part of the complex solution.

wt

Solution (i) The complex equatiop’ = e** leads toy = °c_
w
(i) Take the real part of that solution (since the real péthe right side isos wt).
et [coswt sinwt]
- +

sin wt
Re— == Re .
w

1w w w
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5 The sinusoidal identity fod = 0 and B = —1 says that- sinwt = Rcos(wt — ¢).
Find R and¢.

Solution p2 — A2 4 B2=02412=1—R=1
tang =+ =00 — ¢ =73 or 2L : Hereitis 3T,
Therefore we have
SOLUTION: — sinwt = cos(wt — )
CHECK: t =0 gives 0 = 0,wt = 7 gives —1 = —1.

since A +iB = —i

6 Why is the sinusoidal identity useless for the sour@@ = cos ¢ + sin 2¢?

Solution The sinusoidal identity needs the samn all terms. But the first term has

w = 1 while the second term has= 2.
7 Write 2+ 3i asre’?, so thatz; = Le~'?. Then writey = /' /(2+3i) in polar form.

Then find the real and imaginary partsofAnd also find those real and imaginary parts
directly from(2 — 3i)e™* /(2 — 3i)(2 + 3i).
Solution r =+/22 4+ 32 = /13 and ¢ = arctan(3/2)
24 3i = \/ﬁei arctan(3/2)
y = eiwt/(2 + 32) _ \/ﬁei arctan(3/2)+iwt
Writing this in cartesian (rectangular) form gives
real part= /13 cos(arctan(3/2) 4 wt) = 2 cos(wt) — 3 sin(wt)
imag part= /13 sin(arctan(3/2) + wt) = 3 cos(wt) + 2 sin(wt)
We can also find the real and imaginary parts from:
(2—3i)e™  2-3i ;, 2—3i

w

2-3)(2+3i) 13 * 13

(cos(wt) + i sin(wt)).

8 Write these functionsl coswt + B sinwt in the form R cos(wt — ¢) : Right triangle
with sidesA, B, R and angles.

(1) cos3t —sin 3t (2) V/3cosmt — sint (3)3cos(t — @) + 4sin(t — ¢)

Solution (1) cos3t — sin3t = V2 cos(3t — ) = V2 cos(3t + I).

Checkt = 0: 1= v2cos(—ZF) = v2cos(%).

(2) V3coswt —sinmt = 2cos(mt + ).

Check:(v/3)2 4+ (-1)2=22 At t=0:+/3=2cos30°.

(3) 3cos(t — ¢) +4sin(t — ¢) = 5cos(t — ¢ — tan~' 3).
Problems 9-15 solve real equations using the real formula §3or M and N.

9 Solvedy/dt = 2y + 3 cost + 4 sint after recognizing: andw. Null solutionsCe?t.
Solution % =2y + 3cost + 4sint = 2y + 5cos(t — ¢) with tan¢ = 3.
Method 1: Look fory = M cost + N sint.

Method 2: SolvelX = 2Y + 5¢i(*=%) and thery = real part ofY.

Y = FSoetlt=9) = 2(—i —2)et=%) and y = —2cos(t — ¢) + sin(t — ¢).



16 Chapter 1. First Order Equations

10 Find a particular solution tdy/dt = —y — cos 2t.
Solution Substitutey = M cost + N sint into the equation to find/ and N

—Msint + N cost = —M cost — N sint — cos 2t

Match coefficients ofost andsin ¢t separately to find/ andN.

. 1
N=-M-1and —M=-N glveM:N:—5

Note: This is called the “method of undetermined coeffig&ir Section 2.6.
11 What equationy’ — ay = A coswt + Bsinwt is solved byy = 3 cos 2t + 4 sin 2t ?
Solution Clearlyw = 2. Substitutey into the equation:
—6sin 2t + 8 cos 2t — 3a cos 2t — 4a sin 2t = A cos 2t + B sin 2t.
Match separately the coefficientsafs 2¢ andsin 2¢:
A=8-3a and B=—6 —4a
12 The particular solution tg’ = y + cost in Section 4 iy, = e’ [ e™* cos sds. Look
this up or integrate by parts, frogn= 0 to t. Compare thig, to formula (3).

Solution That integral goes frorfi to ¢, and it leads tgy, = %(sint — cost +et)

If we use formula (3) withu = 1,w =1,A =1, B = 0 we get
_aA—i—wB_—_l N_wA—aB_l

w24+a2 2 T ow24a2 2

. . - t int . . . .
This solutiony = M cost + N sint = %ﬁLsm is a different particular solution

(not starting fromy(0) = 0). The difference is a null solutiofe’.
13 Find a solutiony = M cos wt + N sin wttoy’ — 4y = cos 3t + sin 3t.

Solution Formula (3) witha = 4,w = 3, A = B = 1 gives
4437 o 3—-4 1
9+16 25 9416 25
14 Find the solution ta)’ — ay = A cos wt + B sin wt starting from y(0) = 0.
Solution One particular solutiod/ coswt + N sinwt comes from formula (3). But
this starts fromy,,(0) = M. So subtract off the null solutiog, = Me®* to get the very
particular solutiory,, = y, — y» that starts fromy,, (0) = 0.
15 If a = 0 show thatM andN in equation (3) still solvey’ = A cos wt + B sin wt.
Solution Formula (3) still applies witlw = 0 and it gives
wB wA B A .
M=—-——— = — Yy = —— coswt + — sinwt.
w? w? w w
This is the correct integral o coswt + Bsinwt in the differential equation.
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Problems 16-20 solve the complex equatiop’ — ay = Re*«t—%),
16 Write down complex solutiong, = Ye'* to these three equations:
@y’ —3y=5¢*" (b)) y' =R () y' =2y~

Solution (a) y’ — 3y = 5e%* hasiw Ye™? — 3Ye™*t = 5e2%,

_ _ _5
Sow =2andY = 5.

(b) y' = Re't=9) hasiwYe™! = Re!“t=9) SoY = Le~i¢ and the solution is
y = Yeiwt — R ei(wtfqb)_

iw
(€) y' =2y —e hasw =1and iYe® = 2Yei — e,

ThenY = =% = ;L = ZH andy = Ye''.

17 Find complex solutions, = Ze™* to these complex equations:
(@)z' 4+ 4z = &3 (b) 2’ + 4iz = &3 (©) 2" 4+ 4iz = eB
Solution (a)z’ 4 4z = €®* has z = Ze%* with 8iZ +4Z =1 and Z = L =

118i
4-8i _ 11 _ o
16164 50 (1 — 2i).

(b) 2’ + 4iz = €' is like part (a) butt changes tdi. ThenZ = = = ; = —

(€) 2’ +4iz = €® has z = Ze8'. Then 8Ze% + 4iZe® gives Z = oz = S5

=

18 Start with the real equatioyf —ay = R cos (wt — ¢). Change to the complex equation
2! —az = Re'™@t=%). Solve forz(t). Then take its real past, = Rez.

Solution Putz = Ze'“!=%) in the complex equation to find:
iwZ —aZ = R givesZ = R — = R(-a—iw)
—a +iw a? + w?

The real part ot = Z(cos(wt — ¢) + isin(wt — ¢)) is
s (—a cos(wt — ¢) + wsin(wt — ¢)).

19 What is the initial valuey,(0) of the particular solutiony, from Problem 187
If the desired initial value isy(0), how much of the null solutiony,, = Ce*
would you add tay, ?

Solution That solution to 18 starts from),(0) = szz(—a cos(—¢) +wsin(—¢)) at

t = 0. So subtract that number time¥' to get the very particular solution that starts
from y,,(0) = 0.

20 Find the real solution tg’ — 2y = cos wt starting fromy(0) = 0, in three steps: Solve
the complex equatior’ — 22 = ¢! takey, = Rez, and add the null

solutiony,, = Ce?* with the rightC.

Solution Step 1.z’ — 27 = e™! is solved byz = Ze™* with iwZ — 27 = 1 and
1 —2—iw

7= =35 = drer

Step 2. The real part ofe“! is y,, = 2 (—2 coswt + wsinwt).

Step 3. y,(0) = 1722 SOy, = Yp + ze>" includes the righty,, = Ce* for
Yup(0) = 0.
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Problems 21-27 solve real equations by making them complekirst a note on .

Example 4 wag;’ — y = cost — sint, with growth ratea = 1 and frequency = 1.
The magnitude ofw — a is v/2 and the polar angle hasna = —w/a = —1. Notice:
Botha = 37/4 anda = —7/4 have that tangeritHow to choose the correct anghe?

The complex numbetv — a = i — 1 is in thesecond quadrantts angle isx = 37 /4.
We had to look at the actual number and not just the tangent ofts angle

21 Findr anda to write eachiw — a asre’. Then writel /re'™ asGe ™.
@v3i+1 (B)V3i—-1 (©)i—+3
Solution (a) v/3i + 1 is in the first quadrant (positive quarter< ¢ < r/2) of the
complex plane. The angle with tangeri$ /1 is 60 © = /3. The magnitude of/3i + 1
isT = 2. Theny/3i + 1 = 2ei™/3.
(b) V/3i — 1is in the second quadrany2 < § < =. The tangent is-/3, the angle is
6 = 27/3, the number iRe?™*/3,
(c) i — /3 is also in the second quadrant (left from zero and up). Nowtdhgent
is —1/+/3, the angle i¥) = 150° = 57/6. The magnitude is stil2, the number is
9257/6

22 UseG anda from Problem 21 to solve (a)-(b)-(c). Then take the real pamach
equation and the real part of each solution.
@y +y=eV" () y' —y=eV (0)y —VBy ="
Solution (a) ' 4+ y = €'V3! is solved byy = Ye'V3 wheni/3Y +Y = 1. Then

= \/51“ = Le~™/3 from Problem 21(a). The real pat.., = & cos(v/3t — 7/3)

of YeiV3t solves the real equatiay.,, + yreal = cos(v/3t).
(b) y'—y = "3 is solved by = Ye!V3 wheniv/3Y —Y = 1. ThenY = Le=2m/3
from Problem 21(b). the real payte.; = %cos(\/gt — 27 /3) solves the real equation
yr/eal — Yreal = COS(\/gt)‘
(c) y' — V3y = €' is solved byy = Ye'* wheniY —/3Y = 1. ThenY =
1e=571/6 from Problem 21(c). The real paytc. = 3 cos(t — 57/6) of Ye' solves
Yreal — \/gyrcal = cost.

23 Solvey’ — y = cos wt + sin wt in three steps: real to complex, solve complex, take
real part. This is an important example.
Solution Note: | intended to choosew = 1. Theny’ — y = cost + sint has the
simple solutiony = —sint. | will apply the 3 steps to this case and then to the harder
problem for anyw.

(1) Find R and¢ in the sinusoidal identity to write cag + sin wt as the real part of
Re'«@t=%) This is easy for any.

1
tanqS:I o) ¢:% cos wt + sin wt = v/2 cos (UJt_Z)

(2) Solvey’ —y = €™ by y = Ge ™', Multiply by Re~** to solve

2! — 2z = Reiwt=9)
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24

25

26

27

w=1 y'—y=e"hasy=Ye" withi¥ —Y =1. ThenY = -5 = %637”'/4 =
Ge™ i,

z = (V2eilt=m/4) (%63”/4) = eite™/2 = je', The real part ok isy = — sin t.
An ! w! |leads toiwY — Y = 1 andY 1 ! —ia
w —y=ce wY —Y = = = e

yw y' -y PO B ey

with tana = w. Thenz(t) = (1+w2 e_w‘) (V2eiwt=m/9)),

(3) Take the real panf(t) = Rez(t). Check thaty’ — y = cos wt + sin wt.

y(t) = Rez(t) = —2; cos(wt — o — 7). Now we needana = w,cosa = \/117,

14+w?
sino = —=—. Finallyy = 1r;2 [cos(wt — T) cos a + sin(wt — F ) sin a.

Solvey’ — /3y = cos t + sin ¢ by the same three steps wiih= /3 andw = 1.
Solution (1) cost +sint = v/2cos(t — Z).

(2) y=Ye withiY —/3Y =1 andY = Flﬁ = ¢757/6 from 1.5.21(c).
Thenz(t) = (v2e't=™/9)(Le=5m/6),

(3) Thereal partof(t) isy(t) = % cos(t — ).

(Challenge) Solve y’ — ay = A cos wt + B sin wt in two ways. First, find
R and ¢ on the right side andr and« on the left. Show that the final real solution
RG cos (wt — ¢ — «) agrees withM cos wt + N sin wt in equation (3).

Solution The first way hask = v/ A2 + B? andtan¢ = B/A from the sinusoidal
identity. On the left sidé /(iw—a) = Ge~'* from equation (8) withtG' = 1/v/w? + a2
andtan a = —w/a. Combining, the real solution is= RG cos(wt — ¢ — «).

This agrees withy = M coswt + N sinwt (equation (3) gived/ andN).

We don't have resonance fgr — ay = Re™? whena andw # 0 are real.Why not?
(Resonance appears whgn= Ce*" andy, = Ye share the exponent= c.)

Solution Resonance requires the exponentdiw to be equal. For real this only
happens it = w = 0.

If you took the imaginary parf = Im z of the complex solutionte’ —az = Re*“t=9),
what equation woulg(¢) solve ? Answer first witlp = 0.

Solution Assuminga is real, the imaginary part af —az = Re'(“*=9) is the equation
y' —ay = Rsin(wt — ¢). With ¢ = 0 thisisy’ — ay = Rsinwt.

Problems 28-31 solve first order circuit equations: not RLC lut RL and RC.

V coswt L R V coswt
‘_@AVW_' 7

current/ (t) q(t) = integral of I(¢)
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28 SolveL dI/dt + RI(t) =V cos wt forthe current/ (¢) = I,, + I, in the RL loop.

Solution Divide the equation by, to producell /dt—al = X coswt witha = —R/L
andX = V/L. In this standard form, equation (3) gives the real solution

. X X
I = Mcoswt+ Nsinwt With M = ——2 _ and N = —=
w2+a2 w2+a2

29 With L = 0 andw = 0, that equation is Ohm’s Law” = IR for direct current.
Thecomplex impedanceZ = R + iwL replacesk whenL # 0 and(t) = Ie™*.

LdI/dt+ RI(t) = (iwL + R)Ie®t = Vet gives ZI=1V.

What is the magnitudeZ| = |R + iwL|? What is the phase angle i = |Z|e?® ?
Is the current!| larger or smaller because bf?

Solution |Z]| = VR* +w?L? and tanf = <.

Since|Z| increases witt., the current!| must decrease.

d 1
30 SoIveRd—Z + EQ(t) =V cos wt for the charge(t) = ¢, + ¢, in the RC loop.

Solution Dividing by R producesil —ag = X coswt with a = —7~ and X = ¥.

As in Problem 28, equation (3) givédg andN fromw and this a.

31 Why is the complex impedance no®% = R + ﬁ? Find its magnitudeZ|.
Note that mathematics prefersi = +/—1, we are not conceding yettg = /—1!
Solution The physicalRC equation for the curreni = % is RI + % [Idt =
V coswt = Re(Velt).

The solution! has the same frequency factéie™*, and the integral has the factor
e™* /iw. Substitute into the equation and match coefficientsof:

RX + 1. X =Vis ZX = V with impedanceZ = R + L.

Problem Set 1.6, page 50

1 Solve the equatiody/dt = y + 1 up to timet, starting fromy(0) = 4.

Solution We use the formulg(t) = y(0)e* + 2(e* — 1) witha = 1 ands = 1 and
y(0) =4:
y(t) =4e' +e' —1=>5e" — 1

2 You have$1000 to invest at rater = 1 = 100 %. Compare after one year the result of
depositingy(0) = 1000 immediately with no sources(= 0), or choosing,(0) = 0 and
s = 1000/year to deposit continually during the year. In both caighlt = y + q.

Solution We substitute the values for the different scenarios intssthlution formula:
y(t) = 1000e = 1000e at one year
y(t) = 1000’ — 1000 = 1000(e — 1) at one year

You get more for depositing immediately rather than durhmgyear.
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3 If dy/dt = y — 1, when does your original deposit0) = % drop to zero?

Solution Againwe use the equatigyit) = y(0)e® +2(e**—1) with a =1 and s =
—1. We sety(t) = 0 and find the time :

y(t) =y(0)e' —e' +1=¢'(y(0)—1)+1=0

1
el=—"—=2andt=1In2.
1—y(0)
Notice! If y(0) > 1, the balance never drops to zero. Interest exceeds spending

d . .
4 Solved—:g =y +t2 fromy(0) = 1 with increasing source teri.

Solution Solution formula (12) withe = 1 andy(0) = 1 gives
t

y(f)Zet—i—/et_sszds:et—t(t+2)+26t—2:36t_t(t+2)_2
0

d
Check:d—z =3¢’ +2t — 2 equalsy + t°.

d . .
5 Solved—gtl =y + ¢! (resonance = ¢!) from y(0) =1 with exponential source’.

Solution The solution formula witl, = 1 and source! (resonance!) gives:
t t

y(t) = e + /etfsesds =e'+ /etds =e'(1+1)
0 0

d
Check by the product rulec:l—?; =e'(1+t)+e' =y+e.

6 Solve% = y — t% from an initial deposity(0) = 1. The spending(t) = —t? is

growing. When (if ever) doeg(t) drop to zero ?

Solution
t

y(t) = et — /etfsszds =e' 4 t(t+2) — 2e" +2 = —e' +t(t + 2). This definitely
0
drops to zero (I regret there is no nice formula for that tine

d
Check:d—i = el 42t 42=9y—t%.

d _— . . .
7 Solved—‘z =y — ¢! from an initial deposity(0) = 1. This spending term-et grows at

the same:! rate as the initial deposit (resonance). When (if ever) dadr®p to zero ?
t t
Solution y(t) = et — /et_sesds =e' - /etds =e'(1 —t) (this is zero att = 1)
0 0

Check by the product rule® = ef(1 —t) — ¢! = y — €'
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8 Solve% =y —e? fromy(0) = 1. Atwhat timeT is y(T) = 0 ?
t t
Solution y(t) = et — /et_sezsds =e' - /et+sds =elfef(1—el) =2e" — e
0 0
This solution is zero whee! = ¢?* and2 = e andt = In 2.
Check thaty = 2¢! — e?* solves the equation .j%’ =2t — 2e% =y — %,
9 Which solution § orY) is eventually larger ify(0) = 0 andY (0) =0 ?

dy ay
— = 2t or — =2Y +¢t.
at YT dt +
Solution p iy
y = _— =
Y + 2t o 2Y 4+t
t t
y(t) = /et_s - 2sds Y(t) = /th_zs - sds
0 0
e2t — 1
y(t) =2(=t+et —1) Y(t) =

In the long runY () is larger thany(t), since the exponent is larger thart.

10 Compare the linear equatigri = y to the separable equatigrf = y? starting from
y(0) = 1. Which solutiony(t) must grow faster ? It grows so fast that it blows up to
y(T) = oo at what timeT" ?

Solution
dy _ dy _
Ccllt Ccllt
Y Y at
Yy Yy
y(t)d t y(t)d t
U U
y(0) 0 y(0) 0
In(y(t)) —In(y(0)) =t ——t— =1
(v(2)) — In( <(t>)> oA

Y t

= =e y(t) = =

y(0) ﬁ -t 1—t

y(t) =y(0)e* = e’
The second solution grows much faster, and reaches a Versigaptote ai” = 1.

11 Y’ = 2Y has a larger growth factor (because= 2) thany’ = y + q(t).
What sourcey(t) would be needed to keegt) = Y (¢) for all time ?

Solution %’ =2Y + 1 with forexampleY (0) = y(0) =0

t
2
-1
Y(t) = /th*QSdS =
0

2
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12

Put this solution intd} =y + q(t) :

2t
-1
e = = +q(t)
6275 + 1
=q(t
5 q(t)
Starting fromy(0) = Y (0) = 1, doesy(¢) or Y (t) eventually become larger ?
dy . dy o
dt—?y—i—e t—Y—i—e .
- d
Solution ay _ 2 + et

dt

t
y(t) = e2t 4 /€2t—2363d5 — 2 4 o2t ot — 92t _ ot
0
Solving the second equation:
dy
- Y 2t
dt e
t
Y(t) = et + /et*SeQSds =ef +e* — ¢! = ¢e* is always smaller thany(t).

0

Questions 13-18 are about the growth factoG (s, t) from time s to time ¢.

13

14

15

What is the factof= (s, s) in zero time ? Find7(s,00) if a = —1 and ifa = 1.

Solution The solution doesn’t change in zero time G¢s,s) = 1. (Note that the
integral ofa(t) fromt = stot = s is zero. TherG(s,s) = ¢° = 1. We are talking
about change in the null solution, with = a(t)y. A source term with a delta function
does produce instant change.)

If « = —1, the solution drops to zero at= co. S0G(s, o) = 0.
If a = 1, the solution grows infinitely large ds— co. S0G(s, 00) = oo.

Explain the important statement after equation (1Bhpe growth factoiGG(s, t) is the
solution toy’ = a(t)y + §(t — s). The sourcé(t — s) depositsh1 at times.

Solution When the source terd(t — s) deposits $1 at time, that deposit will grow
or decay toy(t) = G(s,t) at timet > s. This is consistent with the main solution
formula (13).

Now explain this meaning of(s, t) whent is less thars. We go backwards in time.
Fort < s, G(s,t) is the value at time that will grow to equall at times.

Whent = 0, G(s, 0) is the “present value” of a promise to p&yat times. If the inter-
est rate isa = 0.1 = 10% per year, what is the present vald&s,0) of
a million dollar inheritance promised in= 10 years ?

Solution In fact G(t,s) = 1/G(s,t). In the simplest case’ = y of exponential
growth,G (s, t) is the growth factoe!~* from s tot. ThenG(t, s) ise*~t =1/e'~*.

That numbeiG(t, s) would be the “present value” at the earlier timef a promise to
pay $1 at the later time. You wouldn’t need to deposit the full $1 because your deposi
will grow by the factorG(s,t). All you need to have at the earlier timeligG(s, t),
which then grows td.
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16 (a) What is the growth facta® (s, ) for the equationy’ = (sin t)y + Q sin ¢ ?
(b) What is the null solution,, = G(0,t) toy’ = (sin ¢)y wheny(0) = 1 ?

t
(c) What is the particular solutiog), = [ G(s,t) Q sin sds ?
0

t
Solution (a) Growth factorG(s,t) = exp (/ sin TdT) = exp(cos s — cost).
(b) Null solution:y,, = G(0,t) y(0) = et=cost,
t
(c) Particular solutiony, = / eCos 58t O sin s ds
0
= Qe et [—e35]0 = @ (e!7°** — 1). Check y,(0) = Q(e® — 1) = 0.
17 (a) What is the growth facta® (s, t) for the equationy’ = y/(t + 1) + 10 ?
(b) What is the null solution,, = G(0,t)toy’ =y/(t + 1) with y(0) =1 ?

t
(c) What is the particular solutiog), = 10 [ G(s,t)ds ?
0

Solution (a) G(s,t) = exp [/ Td—fl] =exp[ln(t+1)—In(s+1)] = t+1 .

s+1

S

Null solutiony,, = G(0,t) y(0) = exp [In(t + 1)] = ¢t + 1 sinceln(0+ 1) = 0.

ds
s+1

t t
Particular solutiory,, = IO/exp [In(t +1) —In(s + 1)]ds = 10(t + 1)/
0

10(¢ + 1) In(t + 1).
18 Why isG(t, s) = 1/G(s,t) ? Why isG(s,t) = G(s, S)G(S, ) ?

Solution Multiplying G(s,t) G(t, s) gives the growth facto€(s, s) from going up
to time ¢ and back to times. This factor isG(s,s) = 1. SoG(t,s) = 1/G(s,t).
Multiplying G(s, S) G(S,t) gives the growth factofz (s, t) from going up froms to S
and continuing fron® tot. Inthe exampleg’ = y, thisise® et~ = et~ = G(s,1).

Problems 19-22 are about the “units” or “dimensions” in differential equations.

19 (recommended) Ifly/dt = ay + ge™?, with ¢ in seconds ang in meters, what are
the units fora andg andw ?
Solution a is in “inverse seconds”—for exampde= .01 per second.

¢ is in meters.
w is in “inverse seconds” or 1/seconds—for example: 27 radians per second.
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20 The logistic equationly/dt = ay — by? often measures the timein years (andy
counts people). What are the unitsacodndb ?

Solution a is in “inverse years"—for example = 1 percent per year.
bisin “inverse people-years” as in= 1 percent per person per year.

21 Newton’s Law ism d?y/dt?> + ky = F. If the massm is in grams,y is in meters,
andt is in seconds, what are the units of the stiffnessd the force ?

Solution ky has the same units asd?y/dt? sok is in grams per (secontl)
F is in gram-meters per (secord}-the units of force.

22 Why is our favorite examplg’ = y + 1 very unsatisfactory dimensionally ? Solve it
anyway starting frony(0) = —1 and fromy(0) = 0.

The three terms ig’ = y + 1 seem to have different units. The rate= 1 is hidden
(with its units of 1/time). Also hidden are the units of theisme termi.

Solution y(t) = y(0)e! +1(e* —1). Thisis e’ —1 if y(0) = 0. The solution stays at
steady state ify(0) = —1.

23 The difference equatiol,, 1 = cY,, + Q,, producesy; = cYy + Qo. Show that the
next step produces, = c?Yy + cQo + Q1. After N steps, the solution formula fafy
is like the solution formula foy’ = ay + q(t). Exponentials of: change to powers of
¢, the null solutiore®'y(0) becomes™ Y. The particular solution

t

Yn=c""1Qo+ - +Qn_1 islike y(t) = /ea(t_s)q(s)ds.
0
Solution Yz = ¢Y; + Q1 = ¢(cYy + Qo) + Q1 = ®Yo + cQo + Q1.

The particular solutior)y + @1 agrees with the general formula whéh= 2. The
null solutionc?Yj is Step 2 inYy, cYp, cYp, Yy, . . . like e@ty(0).

24 Suppose a fungus doubles in size every day, and it weighs adpafter10 days. If
another fungus was twice as large at the start, would it waigbund in5 days ?

Solution This is an ancient puzzle and the answe9 idays. Starting twice as large
cuts off1 day.

Problem Set 1.7, page 61

1 If y(0) = a/2b, the halfway point on th&-curve is att = 0. Show thatd = b and

()= o =
YW = de=at 55 beat +1

fromy_oo =010 Yoo = %. Mark the inflection point.

. Sketch the classi§-curve — graph ofl (e~ ¢ + 1)

Solution a

a a
d= band y(0) = — leadtod=— —-b=2b—-b=10
50) 0= z 1
a a a
Thereforey(t) — _ _a
ereforey(t) = o i T peet 15 b i1
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2 If the carrying capacity of the Earth I§ = a/b = 14 billion people, what will be the
population at the inflection point? Whatdg/dt at that point? The actual population
was?7.14 billion on Januaryt, 2014.

Solution The inflection point comes whege= a/2b = 7 million. The slopely/dt is

dy 2 @ a27a2 _ a\?

3 Equation (18) must give the same formula for the solutidt) as equation (16).
If the right side of (18) is called®, we can solve that equation fgr.

b b R
=R(1-- — 1+R-)y=R — = .
4 < ay> < a) Y Y (1 + R%)
Simplify that answer by algebra to recover equation (16)/{o}.

Solution This problem asks us to complete the partial fractions ntethbich inte-
grateddy/(y — ng) = adt. The result in equation (18) can be solved §dt). The
right side of (18) is calledr:

R = eat y(O) — eata y(O) — eatg.
1—2y(0) a —by(0) d
Then the algebra in the problem statement gives
R et . de~ a
= = = multiply b = .
YZTTRY T 14 entd PYDY Ge=at = Ge=ar b

4 Change the logistic equation t¢ = y + y>. Now the nonlinear term is positive,
andcooperation ofy with y promotes growth. Use = 1/y to find and solve a linear
equation forz, starting fromz(0) = 4(0) = 1. Show that(T) = co whene=7 = 1/2.
Cooperation looks bad, the population will explode at 7.

Solution Puty = 1/z and the chain rulé% = ;—Q% into the cooperation equation
y' =y+y
1 dz 1 n 1 ves dz 1
———— ==+ — — =—z—1.
22dt 2z 22 g dt
The solution starting from(0) = 1is z(t) = 2¢~* — 1. This is zero where T = 1
ore’ =20rT =1n2.

At that timez(T) = 0 meansy(7T") = 1/z(T) is infinite: blow-up at timel" = In 2.

5 The US population grew fromil 3, 873, 685in 2012 t0 316, 128,839 in 2014. If it were
following a logisticS-curve, what equations would give yaub, d in the formula (4) ?
Is the logistic equation reasonable and how to account forigration ?

Solution We need a third data point to find all three numberg, d. See Problem
(23). There seems to be no simple formula for those numbers. iGlgrtae logistic
equation is too simple for serious science. Immigrationdgive a negative value for
h in the harvesting equatiay = ay — by? — h.
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6 The Bernoulli equation 3’ = ay — by™ has competition termby™. Introduce
z = y'~™ which matches the logistic case when= 2. Follow equation (4) to
show that:’ = (n — 1)(—az + b). Write z(¢) as in(5)-(6). Then you have(t).
Solution We make the suggested transformation:

1-n

=Y
2= (1-n)y "y
92 — (1 - n)y~"(ay — by") = (1 —n)(ay' " —b)

4z — (1 —n)(az —b)

/

b d (1—n)at b
Z(t) _ e(lfn)atz(o) _ _(e(lfn)at _ 1) _ € +
aa a
d=az(0)—b=—= -0
AT

y(t) = de(1—n)at +b

Problems 7-13 develop better pictures of the logistic and haesting equations.

7 y' =y —y?is solved byy(t) = 1/(de~t + 1). This is anS-curve wherny(0) = 1/2
andd = 1. But show thay(t) is very different ify(0) > 1 or if y(0) < 0.

If y(0) = 2thend = 1 — 1 = —1. Show thaty(t) — 1 from above.
If y(0) = —1 thend = % — 1 = —2. AtwhattimeT is y(T) = —c0 ?

Solution First, y(0) = 2 is abovethe steady-state valug, = a/b = 1/1. Then
d=—%andy(t) = 1/(1 — 1e~") is larger thanl and approachegco) = 1/1 from
above ag ! goes to zero.

Secondy(0) = —1 is below theS—curve growing fromy(—oc) = 0 to y(co) = 1.
The valued = —2 givesy(t) = 1/(—2e~* +1). Whene~* equals; thisisy(t) = 1/0
and the solution blows up. That blowup timetis= In 2.

8 (recommended) Show tho8esolutions toy’ = y — y? in one graph! They start from
y(0) = 1/2 and 2 and —1. The S-curve climbs fromi to 1. Above that,
y(t) descends frora to 1. Below theS-curve,y(¢) drops from—1 to —co.

Can you see regions in the picture Dropin curves abovey = 1 and S-curves
sandwiched betweer® and 1 and dropoff curves belowy = 0.

Solution The three curves are drawn in Figure 3.3 on page 157. The gppers and
middle curves approacf,, = a/b. The lowest curves reagh= —oo in finite time:
blow-up.

9 Graphf(y) = y — y? to see the unstable steady state= 0 and the stabl@” = 1.
Then graphf(y) = y — y? — 2/9 with harvestingh = 2/9. What are the steady
statesY; andY;? The3 regions in Problem 8 now havg-curves abovey = 2/3,
S-curves sandwiched betwe&fi3 and2/3, dropoff curves belowy = 1/3.

Solution The steady states are the points whgre Y2 = 0 (logistic) andY” — Y2 —
2 = 0 (harvesting). That second equation factors ifito— £)(Y — 2) to show the

steady stateg andZ.
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10 What equation produces ahcurve climbing toy,, = K fromy_., = L?

Solution We can choosg’ = ay — by? — h with steady stated( and L. Then
aK —bK? —h = 0andaL — bL? — h = 0. If we divide by h, these two linear
equations give

G*K+L*1+1andb*1
h KL K L h KL
b K K b L L
Check: K——K2—1_———f0and L——L2—1_———:O
h L L h K K
11y =y -y — % =—(y— —) showscritical harvestingwith a double steady state
aty =Y = % The layer ofS-curves shrinks to that single line. Sketch a dropin

curve that starts aboyg0) = 1 and a dropoff curve that starts belgo) = 1

Solution The solutiontay’ = —(y — 3)? comes from integrating dy /(y — £ ) = dt
togetl/(y — 3) =t +C. Theny(t) =3+ 75 Ify(0) > § thenC > 0and
this curve approachegoco) = 5 itis a hyperbola coming down toward that horizontal
line. If y(0) < 1 thenC'is negatlve and the above solutlgn: + HC blows up
(or blows downI since is negative) at the positive time= —C This is a dropoff
curve below the horizontal ling = 3. (If y(0) = 3 the equation isly/d¢ = 0 and the
solution stays at that steady state.)

12 Solve the equatiop’ = —(y — 3)? by substitutingy = y — 3 and solvingy” = —v?.

Solution This approach uses the solutions we knovrizt¢dt —v2. Those solutions

arev(t) = H% Thenv =y — 5 g|ves the samg = 1 5+ t+c as in Problem 11.

13 With overharvesting, every curvg(t) drops to—oco. There are no steady states.
SolveY — Y2 —-h=0 (quadratic formula) to find only complex rootsdif, > 1.

The solutions fol: = 2 arey(t) = 1 — tan(t + C). Sketch that dropoff i = 0.
Animal populations don’t normally coilapse like this fromesharvesting.
Solution Overharvestingig’ = y — y? — h with h larger than}I (Problems 11and 12
hadh = i and critical harvesting) The fixed points come frdm- Y2 — h = 0. The
guadratic formula give¥ = (1 + /1 —4h). These roots are complex fbr>
No fixed points
Forh = £ the equationiy)’ =y —y?> -2 = —(y— 4)> — 1. Thenv =y —
hasv’ = —v? — 1. Integratingdv/(1 + v?) = —dt givestan 'v = —t — C or
v=—tan(t+C). y=v+ 3 = 1 — tan(t + C). The graph of- tant starts at zero
and drops to-oco att = /2.

. . . . . 1
14 With two partial fractions, this is my preferred way to find = , B =
T—S S—7T

1 B 1 N 1
(y—r)y—s) (y—r)(r—s) (y—s)(s—r)

Check that equation: The common denominatoron the ridlatis »)(y — s)(r — s).
The numerator should cancel the- s when you combine the two fractions.

PF2
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15

16

1 1 . . B
Separate—; and — into two fractions + .
y=—1 Y —y y—r y—s
Note When y approaches, the left side ofPF2 has a blowup factod /(y — r).
The other factorl /(y — s) correctly approached = 1/(r — s). So the right side
of PF2 needs the same blowupg@t= r. The first termA/(y — r) fits the bill.

Solution

I 1 A N B 1/2 1/2
-1 (y-y+1) y-1 y+1 y—1 y+1
1 1
The constants ared = = =——=-B
r—s 1—(-1) 2
1 1 A B 1 1 1 1
B = = —:———’ A: :—:—B
v -y (w-ly y—-1 'y y—-1 y r—s 1-0

Thethreshold equationis the logistic equation backward in time :

dy . dy
——Z = qy —by? isthe sameas —= = — be2.
T o= Wby

Now Y = 0 is the stable steady statel’ = a/b is the unstable state (why?).
If y(0) is below the threshold:/b then y(t) — 0 and the species will die out.
Graphy(t) with y(0) < a/b (reverseS-curve). Then graph(t) with y(0) > a/b.

Solution The steady states afy/dt = —ay + by* come from—aY + bY? = 0 so
againY = 0orY = a/b. The stability is controlled by thsign ofdf /dy aty = Y :

d
f = —ay+ by? tellshow y grows a = —a + 2by tells howAy grows

dy
y—0has¥ - 4 (sTABLE) v =2 has L — _aton (9) = a (UNSTABLE)
dy b dy b
TheS-curves go downward froi = a/b toward the lineY” = 0 (never touch).

(Cubic nonlinearity) The equation’ = y(1 — y)(2 — y) hasthree steady states
Y = 0,1,2. By computing the derivativelf /dy aty = 0,1,2, decide whether
each of these states is stable or unstable.

Draw thestability linefor this equation, to show(¢) leaving the unstabl&’s.
Sketch a graph that showst) starting fromy(0) = 4 and2 and3.

Solution y' = f(y) = y(1—y)(2—y) = 2y — 3y*> + 7> has slope% =2—6y+3y°.
Y =0 has &£ =2 (unstable)

S—curvesgoup fromY =0 toward Y =1
Y =1 has Z—J; = —1 (stable)

S—curvesfromY = 2 go down towardY =1
Y =2 has £ =2 (unstable)

<

0 1 2
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17 (a) Find the steady states of tG@mpertz equationdy/dt = y(1 — Iny).
Solution (a) Y(1 —InY) = 0 at steady stateE = 0 andY = e.
(b) Show that = Iny satisfies the linear equatiahy /dt = 1 — z.

Solution (b) z =Iny has% = %% =y(l—Iny)/y=1—lny=1-z.

(c) The solutiorz(t) =1 + e~ *(2(0) — 1) gives what formula fog(t) fromy(0) ?
Solution (c) 2’ = 1/z gives that:(¢). Then sety(t) = 1/z(t):
_ 1 -t
H)=[1+e (20 —-1)] ' = [1+e‘t (——1)] .
18 Decide stability or instability for the steady states of

(@) dy/dt =2(1—y)(1—e¥)  (b) dy/dt=(1—y*)(4—y?)
Solution (@) f(y) =2(1—y)(1—¢e¥)=0atY =1landY =0

&= —2ev(1—y) —2(1—¢")
AtY =1 & =—2(1-¢) > 0(UNSTABLE)  AtY =0 £ = —2(STABLE)
() fly) =1 —yH(A—y?) =0aty =1,-1,2,-2 L = —10y+ 4y

dy —
Y = 1gives{L = —6 (STABLE) Y = —1gives = 6 (UNSTABLE)
Y =2givesfL = 12 (UNSTABLE) Y = —2gives — —12 (STABLE)

19 Stefan’s Law of Radiation igy/dt = K (M* —y*). Itis unusual to see fourth powers.
Find all real steady states and their stability. Startiog i (0) = M/2, sketch a graph
of y(t).
Solution f(Y) = K(M* —Y*)equals) aty = M andY = —M (alsoY = +iM).

& = —AKY® = ~AKM3(Y = M is STABLE) £ — 4AKM?3(Y = —M is UNSTABLE)

The graph starting at(0) = M/2 must go upwards to approagltoo) = M.

20 dy/dt = ay — y® has how many steady stat&sfor a < 0 and thena > 0?
Graph those value¥ (a) to see gpitchfork bifurcatior—new steady states suddenly
appear ag passes zero. The graph¥fa) looks like a pitchfork.

Solution f(Y) =aY — Y3 =Y (a — Y?) has 3 steady stat&s = 0, /a, —+/a.

I =a-3y’equalsnaty =0, £ = -20aty = /aandy = —ya.
ThenY = 0is UNSTABLE andY = +./a are STABLE.

21 (Recommended) The equatialy/dt = sin y hasinfinitely many steady states
What are they and which ones are stable? Draw the stabitigyth show whether
y(t) increases or decreases whgf) is between two of the steady states.

Solution f(Y) =sinY is zero at every steady state= nr (0, 7, —m, 27, —27,...)
j—{j’ = cosY =1 (UNSTABLE forY = 0,2m, —27,4x,...)
=cosY = —1(STABLE forY =7, —m, 3w, —3m7,...)
Stability line e B I I B TS
-2 -7 0 T 27
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22

23

24

25

26

Change Problem 21 tdy/dt = (sin y)2. The steady states are the same, but now the
derivative of f(y) = (sin y)? is zero at all those states (becausey is zero). What
will the solution actually do ify(0) is between two steady states ?

Solution f(y) = (siny)? has% = 2sinycosy = sin 2y.

Now ﬁ = 0 at ALL THE STEADY STATESY = nn.

Since % d” = (siny)? is always positive, the solutiogp(t) will always increase toward
the next larger steady state.

We have an infinite stack &f—curves.

(Research projegtFind actual data on the US population in the years 1950, 1889
2010. What values of;, b, d in the solution formula (7) will fit these values? Is the
formula accurate at 2000, and what population does it préoti020 and 2100 ?

You could reset = 0 to the year 1950 and rescale time so that 3 is 1980.

Solution Resetting time give¥ = ¢(t — 1950). Rescaling gives(1980 — 1950) = 3
soc = llo. Thena, b, d depend on your data.

The graphs fromt = 1950 to 1980 will show 7' = (¢ — 1950) from 7" = 0 to 3.
If dy/dt = f(y), what s the limity(co) starting from each poing(0) ?

Solution
dy [y for y <1 has fixed pointsY = 0 and 2
dt 12—y fory>1

Slopef, = 1atY" = 0 (UNSTABLE). Slopeff. = —1aty = 2(STABLE),y(o0) = 2.

W@) )
40 é\ > Y Y

0 2 4

Fixed pointsy” = 0, 2, 4. Slope sj— 1,1, 1.

0,2,4 = STABLE, UNSTABLE, STABLE y(c0) = 0 if 5(0) < 2 andy(co) = 4 if
y(0) > 2.

(a) Draw a functionf(y) so thaty(t) approacheg(occ) = 3 from everyy(0).
Solution The right sidef(y) must be zero only &t = 3 which is STABLE.
Example:2¥ = f(y) = 3 — y has solutiong = 3 + Ce".

(b) Drawf(, ) so thaty(co) = 4 if y(0) > 0 andy(co) = —2if y(0) < 0.
Solution This requires” = 4, —2 to be stable an®” = 0 to be unstable.
Example:% = f(y) = —y(y —4)(y +2) NoticeL =8 at Y =0.

Which exponents: in dy/dt = y™ produce blowupy(T) = oo in a finite time ?
You could separate the equation inkg/y™ = dt and integrate frony(0) = 1.
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. d . 1=n
Solution —z = [ dt g|vesi/

=t + C. Theright side is zero at a finite time

t = —C. Theny blows up at that tim& n > 1.
If n = 1 the integrals givény = ¢ + C andy = ¢/*¢: NO BLOWUP in finite time.

Find the steady states @f/dt = y? — y* and decide whether they are stable, unstable,
or one-sided stable. Draw a stability line to show the findleg(co) from each initial
valuey(0).

Solution f(y) =y?>—y*=0aty =0,1,-1
0 atY = 0 (Double root off)
% —2y—4y =-2 atY = 1 (STABLE)
2 atY =—1 (UNSTABLE)
SinceY = —1 is unstabley(t) must go toward” = 0 if —1 < y(0) < 0.
SinceY = 1 is stabley(¢) must go toward” = 1if 0 < y(0) < 1.

<

—1 0 1
For an autonomous equatigit = f(y), why is it impossible fory(t) to be increasing

at one timef; and decreasing at another time?

Solution Reason: The stability line shows a movementyaf one direction, away
from one (unstable) steady state and toward another (stable) steady state. “One
direction” means thaj(¢) is steadily increasing or steadily decreasing.

Problem Set 1.8, page 69

1

Finally we can solve the exampilg /dt = y? in Section 1.1 of this book.
t

Y
d : o .
Start from y(0) = 1. Then/—‘g = /dt. Notice the limits ory andt. Find y(t).
)
1 0

Solution With those limits, integration gives-& + 1 = ¢. Then- = 1 — ¢ and
y(t) = 15

Start the same equatiofy/dt = y* from any valuey(0). At what timet does the
solution blow up ? For which starting valugg)) does it never blow up ?

i 1 1 . 1 1 0
Soluion 1 _ ¢ gives L — andy— y(0)
y  y(0) y  y(0) 1 —ty(0)

If y(0) is negative, the — ty(0) never touches zero far> 0: No blowup.

Solvedy/dt = a(t)y as a separable equation starting frgfd) = 1, by choosing
f(y) = 1/y. This equation gave the growth factG(0, t) in Section 1.6.

Solution ‘

i dy / . _ _
/ 5 O/Q(t)dt gives Iny(t) — Iny(0) = /a(t)dt

y(0) 0



1.8. Separable Equations and Exact Equations 33

y(t) = y(0) exp / a(t)dt | = G(0,1) y(0)

4 Solve these separable equations starting fyon = 0

dy_ dy_m n
(a) prial (b) pria ki

t
Solution (a) / /tdt andIny—Iny(0) = t?/2 : Theny(t) = y(0) exp(t?/2).
y(0)

—-n m 1/(1=n)
(b) L = ¢myn has/ /tm dt and—ylin — " Theny = (ﬁtm“)
forn ;é 1.

dy 2 _ a(t)
5 SoIveE =a(t)y’ = 742 as a separable equation starting fro(@) = 1.

Solution dy

= = oy

1
1

+1= [ a(z)dx givesy =

t
% / a(x)dx (u and x are justintegration variablgs
0
1
; 0

7
1- /a(:c) dx
0
dy

6 The equationcﬁ =y + t is not separable or exact. But it is linear ane-

Solution We solve the equation by taking advantage of its linearity:

Givena = 1, the growth factor ig!. The source term i Therefore using equation
(14) gives:

¢
y(t):ety(O)—i—/ =Ssds = ely(0) —t +e' — 1.
0

Check:dy/dt = e'y(0) — 1+ ¢' does equaly + t.

. d . . . .
7 The equatlond—:g = % has the solutioly = At for every constanfl. Find this solution

by separatingd = 1/y from g = 1/t. Then integrately/y = dt/t. Where does the
constant4d come from ?

Solution We use separation of variables to find the constant
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dy dit
vt
/d_u [
y(l u 1 T
In(y) —In(y(1)) =In
Y _
y(1)
Yy —y(l)t

Therefore we find that the constastis equal toy(1), the initial value.
. . dy ct —ay

8 F hich berd is = =
or which numberd is — AT by

equation by finding a suitable functldﬁ(y, t)+ C(1).
Solution f(y,t) = At + by andg(y,t) = ct — ay

The equation is exactif5f = —5¢ andA = a.

an exact equation ? For thi4, solve the

We follow the three solution steps for exact equations.
1 Integratef with respect tay:

[ rwtrdy = [Car+byydy = aty+ 00 = Flw.o)

2 ChooseC(t) so that2- (F(y,t) + C(t)) = —g(y,t)
gt(Aty—i- by’ +C(t) = Ay+C'(t) = —ct + ay
C'(t) = —ct and C(t) = —%ctQ
3 We therefore have that:

dy _ 9(y,t)
at f(y,t)

is solved by F'(y,t) + C(t) = constant

1 1
Aty + §by2 - §Ct2 = constant
9 Find a functiony(t) different fromy = ¢ that hasly /dt = y?/t2.
Solution Using separation of variables:
dy/dt = y*/t?
dy/y* = dt/t?

y
du dzr
w? ) a2
y(to) to

1 1 _ 1 1
Ty Ty T TR

. —1
to =landy(to) =2give— oy + 5= —¢ +landy(t) = (; - 3) = 2
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10 These equations are separable after factoring the riglut $ides :

11

12

dy dy
Solve =2 =¢¥tt and =2 =yt t+1.
7 e gt yt+y+t+

Y t
. d
Solution (a)d_z = e¥e! and /e_ydyz /etdt
Yo to
—e Y e Y0 = et — gelo

eY =e Y0 — et 4 el

y = —Infe ¥ — et 4 el0]
(b)dy/dt = (y +1)(t + 1)
Y d t
Y
—_— = t+1)dt
= [+
Yo to

1My+1%dmm+4)=%ﬁz—ﬁ%+@—m):G

y+1=(yo+1)e”

. . d d
These equations are linear and separable: Sg%v& (y +4)cost andd—:g = yel.

Y t
. d
Solution (a)/ Y /costdt
y+4
Yo to
In(y +4) —In(yg + 4) = sint — sinty
y+4=(yo+4)exp(sint — sintg)

Y d t
(m/ﬁz/aﬁ
Yy
Yo to

Iny — Inyy = et — eto

y = yoexp(e’ —e')
Solve these three separable equations starting fi@mn= 1:

Yy t
. d d
Solution (a)d—:g = —4dty has/—y = /—4tdt
Y
1 0

Iny = —2t* and y = exp(—2t?)

Yy t
d d 11 1
() & — 43 has/—‘g:/tdt and —— + = = =t
Sy 2y° 2y 2
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1 1
N
v

1 —1/2 —1/2
y = (_z_tQ) =0 (1= 179)

Yo

t
dy 4dt

1 0
Iny=4In(1 +1¢) —4In(1) = 4In(1 + ¢)
y=@1+t)*
Check (14 t)% = 4(1 +1)(1 +1)% = 4y

t
Test the exactness conditio®g /8y = —af /0t and solve Problems 13-14.
13 Test the exactness conditio®g/dy = —af/Ot.
Solution (a) ¢ = —3t* —2y> hasdg/dy = -4y
=4ty + by? has —90f/0y = —4y : EXACT

Step 1 :/fdy = / (4ty + 6y%) dy = 2ty* +2y° + C(t)

Step 2:2 (2ty? + 2y° + C(t)) = 2y% + C'(¢).

This equals-g whenC'’(t) = 3t? andC(t) = ¢3.
Step 3: Solutiorty? + 2y3 + t3 = constant
Solution (b) g = —1 — ye'¥ hasdg/0y = —yte'¥ — e'¥
f=2y+te has—af /ot = —ytel¥ — et¥ 1 EXACT

Stepl:/fdy:/(2y—|—tety) dy =y* + e + C(t) = F(y,t)

Step 2: 2 (y2 + e + C(t)) = ye!¥ + C'(t) = —g whereC'(t) = 1
Step 3:C’(t) = 1 givesC(t) = t and the solution is
F(y,t) + C(t) = —yte!¥ — e*¥ 4 t = constant
14 Test the exactness conditio®g/dy = —af/Ot.
; d of .
Solution (a)g =4t —y and f =t — 6y have 3¢ = —1 = 3 EXACT

Stepl:/fdy:ty—3y2+0(t)

Step 2:2 (ty —3y*> + C(t)) =y + C'(t) = —g = y — 4t when C(t) = —2¢>
Step 3: Solutioty — 3y? — 2t2 = constant
Solution (b)g = —3t*—2y* and f = 4ty +6y? have 32 = —dy = -3 : EXACT

Step 1 :/ fdy = / (4ty + 6y%) dy = 2ty* + 2y + C(t)
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15

16

17

Step 2: 2 (2ty? + 2y° + C(t)) = 2y> + C'(t) = —g = 3t> + 2y when O’ = 3¢2
and C =3
Step 3: Solutiorty? + 2y3 + t3 = constant
dy y? .d Y .
Show thatE =5 is exact but the same equatua% =5 is not exact. Solve

both equations. (This problem suggests that many equatiecsme exact when mul-
tiplied by an integrating factor.)

; _ _ dg _ _af.
Solution ¢ = —y? and f = 2ty have 50 = -2y = —5;  EXACT
— _ 9, af
g =—yandf =2t have B_Z NOT EQUAL TO — 57
Solve the second form which is SEPARABLE

dy dt . 1
== ——= Iny =—=Int
/y / 5 gives Iny 5 o +C

Theny = ¢“t~1/2 is the same ag = ¢t /2.
The same solution must come from Steps 1, 2, 3 using the exawt f

Exactness is really the condition to solve two equationk thié same functiof/ (¢, y) :

oH oH Of  0g
By f(t,y) and i —g(t,y) can be solved |fa T

Take thet derivative ofo H/0y and they derivative of0 H/Jt to show that exactness
is necessarylt is alsosufficientto guarantee that a solutidii will exist.

Solution The pointis to see the underlying idea of exactness.

OH 0’H  of
OH 0*H dg

The cross derivatives dff are always equallF a function H solves both equations
then% must equal—g—z. So behind every exact equation is a functién exactness is
a necessary and also sufficient to fildwith 9H /0y = f and 0H /0t = —g.

. . d : . . .
The linear equa‘uo%% = aty + ¢ is not exact or separable. Multiply by the integrating

factore~ / @t 4t and solve the equation starting frayD).
Solution This problem just recalls the idea of an integrating factor :

d . 1
Ford—? = aty + q the factor isP = exp (— /at dt) = exp (—QatQ).

ThenP (% - aty) agrees with Py)’ = P& + 4B,

So the original equation multiplied b is 4 (Py) = Pgq.

t
Integrate both side®(¢)y(¢t) — P(0)y(0) = /P(t)q dt. Divide by P(t) to find y(t).
0
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Second order equationsF'(t,y,y’,y’’) = 0 involve the second derivativey”.
This reduces to a first order equation for ¢’ (not y) in two important cases:

I. Wheny is missing inF, sety’ = v andy” = v’. ThenF(t,v,v’) = 0.
dv  dvdy dv ( dv)

Il. Whent is missing inF, sety” = — = —— = y—. ThenF —
g V'S s T war Y v vy

See the website foreduction of order when one solutior(t) is known.

18 (y is missing) Solve these differential equations for= y’ with v(0) = 1. Then
solve fory with y(0) = 0.

Solution (@)y” +y’ = 0. Sety’ = v. Thenv’ + v = 0 givesv(t) = Ce~ .

Now solvey’ = v = Ce~t tofind y = —Ce~* + D.

Solution (b)2ty” —y’ = 0. Sety’ = v. Then2tv’ — v = 0 is solved by
d dt .

/—v = / % andlnv = In+/t + C andv = ¢v/t. Now solvey’ = v = ¢/t to find
v

Yy = clt?’/2 + co.

19 Bothy andt are missing iny”’ = (y’)2. Setv = y’ and go two ways :

d , 1 , ,
I. Solve " = 42 to findv = —— as in Section 1.1.
dt 11—t

dy 1 N O ) N B
Thensolvea_v_mtoflndy——T+§W|thy(O)_O.

d d )
II. Solvev = v? or == = v to findv = eV,
dy dy

dt
and—e~Y =t — 1: not the same solution as part | (?7?)
20 An autonomous equationy’ = f(y) has no terms that contain(t is missing).

Then@ =u(y) =é¥ gives/ e Ydy= /dt satisfyingv(0) = 1,4(0) = 0

Explain why every autonomous equation is separable. A nwor@mous equation
could be separable or not. For a linear equation we usuaylyL$& (linear time-
invariant ) when it is autonomous: coefficients are constant, not narwiith z.

. . . dy
Solution Every autonomous equation separates ifte—=~ = [ dt.

()

Linear equations can b% = a(t)y : Non-autonomous

LTI equations aredd—g = ay (linear and alsa is time-invariant=- autonomous).
21 my” + ky = 0 is a highly important LTI equation. Two solutions areswt and

sinwt whenw? = k/m. Solve differently by reducing to a first order equation for

y' = dy/dt = vwithy” = vdv/dy as above:

d . 1 1
mvd—v + ky = 0 integrates togmv2 + EkyQ = constantZ.
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22

For a mass on a spring, kinetic energywz plus potential energ%kgﬂ is a con-
stant energyt. What is £ wheny = coswt? What integral solves the separable
m(y")? = 2E — ky? ? 1 would not solve the linear oscillation equation this way.

Solution Withy’ = v andy” = vj—z, the equatiomny” + ky = 0 becomes
mvj—z + ky = 0. This isnonlinearbut separable Integratenv dv = —ky dy to get

1 1 .
§mv2 + §ky2 = constantE [Conservation of Energy]

If y = cos(wt) thenv = y’ = —wsin(wt) andE' is $m cos?(wt) + 3 Kw? sin®(wt).

1/2
Th bl tion(y)2 = 2E—ky? could be solved by ———— | dy =
e separable equation(y ) y-~ could be solve (2E—Ky2) Y

dt. The integral could lead toos ! y = wt andy = cos wt.

my" + ksiny = 0 is thenonlinearoscillation equation: not so simple. Reduce to a
first order equation as in Proble :

d : 1
mvd—v + ksiny = 0 integrates toimv2 — kcosy = constantE.
Y

With v = dy/dt what impossible integral is needed for this first order saiplarequa-
tion? Actually that integral gives the period of a nonlingaendulum—this
integral is extremely important and well studied even if oapible.

2
Solution Take square roots ifzflm (%) = Kcosy + FE.

m/2 1/2
Then separate intp——— dy = dt.
P %K cosy + E} 4
An unpleasant integral but important for nonlinear ostidia. Chapter 1 is ending
with an example that shows the reality of nonlinear difféiedrequations: Numerical
solutions possible, elementary formulas are often imptessi
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Problem Set 2.1, page 79

1

Find a cosine and a sine that soW&y/dt?> = —9y. This is a second order equation
S0 we expectwo constant€’ and D (from integrating twice) :

Simple harmonic motion  y(¢) = C cos wt + D sin wt. Whatisw ?

If the system starts from rest (this meahg dt = 0 at¢ = 0), which constanC or D
will be zero?

Solution Lettingy(t) = C cos(wt) + D sin(wt):
d2
%XQJ + 9y = —w?C cos(wt) + 9C cos(wt) — w? sin(wt) + 9 sin(wt) = 0
w=3

Differentiatingy(t) and equating to zero at tinte= 0 gives us:
y'(t) = —Cwsin(wt) + Dw cos(wt) = 0
Att=0:Dw=0—-D=0

In Problem 1, whichC' and D will give the starting valueg(0) = 0 andy’(0) =17
Solution y(0) = C cos(w0) + D sin(w0) = 0 givesC' = 0
Differentiatingy(t) and equating ta at timet = 0 gives us:

'0) — Duw — _1_1
y'(0)=Dw=1 andD_w =3
Draw Figure 2.3 to show simple harmonic motign= A cos (wt — «) with phases
a=m7/3anda = —7/2.

Solution Notice thatA is the maximum heighfiax. Att = 0 we seey = A cos(—a) =
A cosa.

Suppose the circle in Figure 2.4 has radtuand circular frequency = 60 Hertz.
If the moving point starts at the anglet5°, find its z-coordinateA cos (wt — «). The
phase lag isx = 45°. When does the point first hit theaxis ?

Solution f = w/27 = 60 Hertz is equivalent tav = 1207 radians per second.
With magnitudeA = 3 anda = —45° = —x/4 radians,A cos(wt — ) becomes
3 cos(1207t + 7/4). The point going around the circle hits theaxis when that angle
is a multiple ofw. The first hit occurs at207t + n/4 = = and120¢ = 3/4 and

t = 3/480 = 1/160.

If you drive at60 miles per hour on a circular track with radiis= 3 miles, what is
the timeT for one complete circuit? Your circular frequencyfis= and your
angular frequency is = (with what units ?). The period i8.

Solution The distance around a circle of radills= 3 miles is27R = 67 miles.
The timeT for a complete circuit a60 miles per hour i¥" = 67/60 = 7 /10 hours.
FromT = 1/f = 2x/w the circular frequency i = 10/ cycles per hour and
w =27 f =27 /T = 20 radians per hour.
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10

The total energy in the oscillating spring-mass system is 9
E = kinetic energy in mass- potential energy in spring= % <d—y) + gyz.
ComputeFE wheny = C cos wt + D sin wt. The energy is constant!
Solution y = Ccoswt + Dsinwt has dy/dt = —wCsinwt + wD coswt.
The total energy isE = $mw?(C? sin® wt — 20D sinwt coswt + D? cos? wt)
+ 1k(C? cos® wt + 2CDsinwt coswt + D? sin® wt).
Whenw = \/k/—m andmw? = k, usesin? wt + cos? wt = 1 to find

1 1
E = 5Ic (C? 4+ D?) (sin® wt + cos® wt) = 5l<:(02 + D?) = constant

Another way to show that the total enerfyis constant :
Multiply my” + ky = 0 by y’. Then integratemy’y” and kyy’.
Solution (my” + ky)y’ = 0is the same a%(%myﬂ + $ky?) = 0.

This says that? = Lmy’? + 1ky? is constant.

A forced oscillation has another term in the equation afidos wt in the solution:
d2
Wg—i—ély:Fcos wt has y = C cos 2t + D sin 2t + A cos wt.

(a) Substitute; into the equation to see ha@ and D disappear (they giveg,). Find
the forced amplitudet in the particular solutiosy, = A cos wt.

(b) In casew = 2 (forcing frequency= natural frequency), what answer does your
formula give forA ? The solution formula fogy breaks down in this case.

Solution (a) The frequencyw = 2 gives the null solutiong = C cos 2t + Dsin 2t :
The choice of4 gives a particular solutiony, = A coswt. Substitute thig,, :
yo+dy, = (—w? +4)Acoswt = Fcoswt and A = £

4—w?"’
(b) w = 2 leads toA = oo and that solutiony, breaks down resonance (The correct
yp Will include a factort)
Following Przoblerrs, write down the complete solutiap, + y, to the equation
d7y

m—— +ky = I cos wt With w # w, = \/k/m (no resonance)

The answeE‘ljthas free constants andD to matchy(0) andy’(0) (A is fixedby F).

Solution y =y, + yp = C cos (1/%15) + Dsin (1/%15) + k_—;?wQ coswt.

Suppose Newton’s Las = ma has the forcd’ in the samedirection as: :

my” = +ky including " = 4y.
Find two possible choices afin the exponential solutiong= e*!. The solution is not
sinusoidal and is real and the oscillations are gone. Ngus unstable.

Solution The exponentsip,, = CetV*/™ 4 De~tVE/™ are now real. Those numbers
++/k/m come from substituting = ¢*¢ into the differential equation:

my” — ky = (ms* — k)e** =0 when s = \/k/m and s = —\/k/m.
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Here is afourth order equation: d*y/dt* = 16y. Find four values ofs that give
exponential solutiongy = e*!. You could expect four initial conditions op:
y(0) is given along with what three other conditions ?

Solution Substitutey = ¢** in the differential equation to finel* = 16. This has four
solutions :s = 2, —2, 2i, —2i. The constants ip = cie? + cpe™2 + c3e? 4 cie 2%
are determined by the initial valug$0), y’(0),y"(0),y"(0).

To find a particular solution tg;” + 9y = e, | would look for a multiple
yp(t) = Ye of the forcing function. What is that numbé&f? When does your
formula giveY = oo ? (Resonance needs a new formula¥oy

Solution Substitutey, = Ve to find (¢ + 9)Ye = e andY = 1/(c* 4+ 9). This
is called the “exponential response function” in Sectigh Zhe resonant cagé = co

occurrs when®> + 9 = 0 or ¢ = £3i. Then a new formula fog(t) involvestect as
well ase“’.

In a particular solutiony = Ae™? to y” + 9y = €™!, what is the amplituded ?
The formula blows up when the forcing frequengcy= what natural frequency ?

Solution Substitutey, = Ae™? to find i?w? Ae™? + 9Ae™*t = ™. With i? = —1
this givesA = 1/(9 — w?). This blows up whe® — w? = 0 at the natural frequency
wnp = 3.

If y(0) > 0 andy’(0) < 0, doesx fall betweenr/2 andr or betweer8z/2 and2r ?
If you plot the vector fron{0,0) to (y(0), y’(0)/w), its angle isx.

Solution If y(0) > 0 andy’(0) < 0 thena falls betweer8w/2 and2x. This occurs
because the vector froff, 0) to (y(0),y’(0)/w) is in the fourth quadrant.

Find a point on the sine curve in Figure 2.1 whgre- 0 butv = 3’ < 0 and also
a = y"” < 0. The curve is sloping down and bending down.

Find a point whergy < 0 buty’ > 0 andy” > 0. The point is below the-axis but the
curve is slopindJP and bendindJP.

Solution ForZ < t < m (90° to 180°), y(t) = sint > 0 buty’(t) < 0 and
y"(t) <O.

Note that for2Z < ¢ < 27, y(t) < 0 buty’(t) > 0 andy”(t) > 0. The point is below
the x-axis but the bold sine curve is sloping upwards and bendingands.

(a) Solvey” + 100y = 0 starting fromy(0) = 1 andy’(0) = 10. (This is y,,.)
(b) Solvey” 4+ 100y = cos wt with y(0) = 0 andy’(0) = 0. (This can bey,.)
Solution (a) Substitute; = e¢*

y"” +100y =0
c2ect +100et =0
c? = —100
c==10¢

y = cellit 4 de—10it
This can be rewritten in terms of sines and cosineBlof Introducing the initial con-
ditions we have:
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y(t) = Acos(10t) + Bsin(10t)
y(0)=A=1
y'(0)=10B=10— B =1

y(t) = sin(10t) + cos(10t)
(b) As in equation (11) we assume the particular solution is

1
y(t) = m COS(wt)
Adding in the null solution and substituting in the initiareditions gives :

. 1
y(t) = Bsin(10t) + A cos(10t) + %007—‘”2 cos(wt)
y(0) = Bsni(O) + Acos(0) + 100 =2 cos(0) =0

A=
w? —100 w
/ _ _ . = .

y'(0) = 10B cos(0) — 10A sin(0) 100 =2 sin(0)

=10B=0—-B=0
Therefore the solution is:

y(t)

1
= m(cos(wt) — cos(10t))

17 Find a particular solutiory, = Rcos(wt — @) to y” + 100y = coswt — sinwt.
Solution

Right side: cos wt — sinwt = v/2 cos (wt +

N——

Diff. Eqn : —w?R cos(wt — ) + 100R cos(wt — a) = /2 cos (wt +

PR
N—

N——

(100 — w?)R cos(wt — a) = /2 cos (wt +

V2

™
ThenOé——Z andR—m

18 Simple harmonic motion also comes from a linear penduluke (i grandfather
clock). At timet, the height isA cos wt. What is the frequency if the pendulum
comes back to the start afteisecond ? The period does not depend on the amplitude
(a large clock or a small metronome or the movement in a wedoradl havel’ = 1).

Solution The equation describing Simple Harmonic Motion is:

x(t) = Acos(wt — ¢)

If the period isT" = 1 second, the frequency j§ = 1 Hertz orw = 27 radians per
second.
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19 If the phase lag is, what is the time lag in graphings(wt — «) ?

Solution
«

cos(wt — a) = cos (w (t — ;))
Therefore the time lag is/w.
20 What is the responsgt) to a delayed impulse ifiy " + ky = §(t — T) ?
Solution Similar to equation (15) we have
sin(wy,(t = 1T))

MWy,

Yp(t) =
The conditions at tim& are:

1
/
yp(T) = 0 and y)(T) = —
Note thaty, starts from time = 7. We havey, = 0.
t
21 (Good challenge) Show that= [ g(t — s)f(s)ds hasmy” + ky = f(t).
t 0
1Whyisy' = [g'(t — s)f(s)ds+ g(0)f(t) ? Notice the twa’s in y.
0
Solution 1 The variablet appears twice in the formula for, so the derivatively /dt
hastwo terms (called the Leibniz rule). One term is the valuegdf — s) f(s) at the

upper limits = t; this is from the Fundamental Theorem of Calculus. Sihe¢so
appears in the quantity(t — s) f(s), its derivativeg’(t — s) f(s) also appears ip’.
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t
2Usingg(0) = 0, explain whyy” = [ ¢”(t — s)f(s)ds + ¢'(0) f(¢).
0 t
Solution 2 Sinceg(0) = 0, part 1 produced’ = [¢'(t — s)f(s)ds. Using the
0
Leibniz rule again (now op’), we get the two terms in”.
3 Now useg’(0) = 1/m andmg” + kg = 0 to confirmmy” + ky = f(t).
t t
Solution3 my”+ky = m (fg”(t —5)f(s)ds —i—g’(O)f(t))—i—k (fg(t - s)f(s)ds) =
0 0
m(1/m)f(t). The integrals cancelled becausge” + kg = 0.
22 With f = 1 (direct current has = 0) verify thatmy” + ky = 1 for thisy :
t

Step response y(t) :/
0

sinwy (t — s) 1 1
———— = 1lds =y, +yn equals—- — — coswpyt.
MW, k k

Solution This y(t) certainly solvesny” + ky = 1. Comment That formula for
y(t) fits with the usualf g(t — s)f(s)ds when f = 1 and the impulse response is
g(t) = (sinwy,t)/mw, in equation (15). And always thiep response should be the
integral of the impulse response The natural frequency is,, = k/m:

t

/ sin(wy, (t — 8)) s — cos(wn(t — )

£ 1 cos(wnt)

y(t) =

mwy, mw? 0o kK k

Notice that without damping resistance, the step respossélates forever—not
approaching the steady statg = 1/k.

23 (Recommended) For the equatidhy/dt*> = 0 find the null solution. Then for
d*g/dt* = 6(t) find the fundamental solution (start the null solution w4tf)) = 0
andg’(0) = 1). Fory” = f(t) find the particular solution using formula (16).

Solution 2y
o) =0 givesy, = A + Bt.

We get the fundamental solutigri(t) = ¢ for t > 0 by starting the null solution with
g(0) = 0andg’(0) = 1. Theng(t) = t andg(t — s) = t — s. This gives the particular
solution ford?y/dt? = f(t) using formula (16):

t
o) = [ =915 ds.
0
24 For the equation?y/dt?> = ™! find a particular solutiony = Y (w)e™*. ThenY (w)
is the frequency response. Note the “resonance” whea 0 with the null solution
UYn = 1.
Solution Substitutey = Yei«!:

_Y(w)w2eiwt — eiwt
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The null solution tay” = 0 is y(t), = At + B.

WhenA = 0 andB = 1, we gety,, = 1. This causes resonance.at= 0, the solution
formulay, = ¢! /w? breaks down.

25 Find a particular solutio’e™? to my” — ky = e™“*. The equation has-ky
instead ofty. What is the frequency responséw) ? For whichw is Y infinite ?

Solution Substitutey(t) = Yet in my” — ky = !
Then — Ymw2e™? — kY et = it
~Ymw?-Yk=1
1
Tkt me?
Y is infinite forw = 2\/% No resonance at real frequencigsbecause the equation
has—ky instead ofky.

Y(w)

Problem Set 2.2, page 87

1 Markthe numbers; = 2+ andss = 1—24 as points in the complex plane. (The plane
has a real axis and an imaginary axis.) Then mark the su#n s, and the difference
S1 — S2.

Solution The sumiss; + so = 3 — ¢. The difference is; — s, = 1 + 3i.

2 Multiply s; = 2 + i timesss = 1 — 2. Check absolute values$s||sa| = |s1 2.
Solution The product(2 + i)(1 — 2i) is 2 + i — 4i — 2i> = 4 — 3i. The absolute
values of2 + i and1 — 2i arev/22 + 12 = /5. The productt — 3i has absolute value
V42 4 32 = 5, agreeing with(v/5)(1/5).

3 Find the real and imaginary parts bf(2 + ). Multiply by (2 —4)/(2 —4):

1 2—1 2—1

244 2—i |2+i]2

Solution 1 2—1 2—4 1 z
, - = Ingeneral— = —
2440 2—i 5 z  |z]?
4 Triple angles  Multiply equation (2.10) by another® = cos 6 + isin 6 to find
formulas forcos 36 andsin 36.

because:z = |z|*.

Solution Equation (10) icos @ + isin)? = cos 20 + i sin 26. Multiply by another
cosf + isinf:

(cosf +isinf)® = cosf cos 26 + i sin f cos 20 + i cos O sin 20 — sin 0 sin 260
= cos( + 26) + isin(6 + 26) by sum formulas
= cos 360 + isin 36

Real part cos 30 = cos® 6 — 3 cos#sin? § Imaginary part sin30 = 3 cos? §sin 6 —
sin’.
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5

10

Addition formulas  Multiply €% = cos 6+ sin 6 timese’® = cos ¢+isin ¢ to get
e0F9)  Its real part is:os (6 4 ¢) = cos 6 cos ¢ — sin 0 sin ¢. What is its imaginary
partsin (6 + ¢) ?

Solution The imaginary part ofcos 6 + i sin 8)(cos ¢ + i sin ¢) is the coeffieient of :
sin 6 cos ¢ + cos 0 sin ¢ must equain(6 + ¢).

Find the real part and the imaginary part of each cube robt 8how directly that the
three roots add to zero, as equation (2.11) predicts.

Solution The cube roots of are at angle$, 27/3,47/3 (or 0°,120°,240°). They
are equally spaced on the unit circle (absolute vajud he three roots areand

2mi/3 _ 05 2T 4 jsin 2T — 1 4 V3
e =cos 3 +isin 5 = 2—{—?,2
ari)3 _ dr | soodm 1 :A/3
€ —cos3+zsm—3— 2 15

The suml — % + z@ — % — z@ equalszero. Always : n roots of2” = 1 add to zero.

The three cube roots df arez andz2? and1, whenz = ¢27¥/3, What are the three
cube roots o and the three cube roots of (The angle for is 90° or 7/2, so
the angle for one of its cube roots willbe . The roots are spaced bg0°.)

Solution The three cube roots & are2 and2e™/3 = —1 4 /3i and2¢™/3 =
—1 — +/3i. (They also add to zero.)

The three cube roots 6f= ™/ aree™/6 ande®%/6 ande”™*/¢ still add to zero.

(@) The numberi is equal toe™/2. Then its ith power 3 comes out equal to
a real number, using the fact th@at )’ = e*t. What is that real numbef ?

(b) ¢™/2 is also equal toe®™/2.  Increasing the angle byr does not
changee’® — it comes around a full circle and back to Theni’ has another real
value(e®™/2)" = ¢=57/2, What are all the possible valuesib®?

Solution (a) Theit" power ofi = e™/2 is i = (e™/2) = ¢~™/2 by the ordinary rule
for exponents. Surprising thétis a real number.

(b) i also equals®™/? sinceZZ is a full rotation from%. So’ also equalge®™/2)¢ =
e~57/2—and infinitely many other possibilities ?7+1)7/2 for every whole number
n. We are on a “Riemann surface” with an infinity of layers.

The numberss = 3 + ¢ ands = 3 — i are complex conjugates. Find their sum
s +3 = —B and their products)(s) = C. Then show that? + Bs + C = 0
and als®? + Bs + C = 0. Those numbers ands are the two roots of the quadratic
equationz? + Bx + C = 0.

Solution —B=s+5=3+4)+(B3—1)=6. C=(s)(5) =(3+1)(3—14) = 10.
Thens ands are the two roots 0f? — Bx + C = 22 — 6z + 10 = 0. The usual
quadratic formula give§Ev35—10 — 6£2i _ 34

The numbers = a + iw ands = a — iw are complex conjugates. Find their sum

s+3% = —B and their products)(s) = C. Then show that? + Bs + C = 0. The two
solutions ofz? + Bz + C' = 0 ares ands.

Solution —B = (a +iw) + (a —iw) = 2a C = (a +iw)(a — iw) = a® + iw?.

Then the roots 0f? — 2az + a® + w? = 0 arex = 22549 — g 4y,
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11 (a) Find the numberél + 4)* and(1 + i)8.
(b) Find the polar formre® of (14 iv/3)/(v3 + ).
Solution (@) (1 +4)* = (V2e'™")* = (1/2)%e'™ = —4
(1+1)® = square of(1 +i)* = (square of-4) = 16.
(b) (14 iv3)(v/3 +1i) = V3 + 3i + i — /3 = 44. Dividing by (2)(2) = 4 this is
(cos f 4 isin @) (sin 6 + i cos §) = i(cos® O + sin? 0) = 3.
The unexpected part issin  + i cos 6 = cos(Z — §) + isin(% — 0) = e*("/2=9),
Then the product of”? ande’("/2-%) is ¢"/2 which equalsg as above.

12 The number: = €27/" solvesz™ = 1. The numbeZ = ¢>7/?" solvesZ?" = 1.
How is z related toZ ? (This plays a big part in the Fast Fourier Transform.)

Solution If Z = €*™/2" thenZ? = ¢*™/™ = 2. The square of thén th root is the
n th root. The angle foZ is half the angle foe.

The Fast Fourier Transform connects the transform at Bvéd the transform at level
n (and on down to:/2 andn /4 and eventually td, if these numbers are powers2jf

13 (a) If you knowe? ande=%, how can you findin 0 ?
(b) Find all angle® with e’ = —1, and all angles with e** = 1.
Solution (a)sinf = ;[(cosf +isinf) — (cosf — isinf)] = %(ew — e %9).
(b) The angles witk?® = —1 aref = = + (any multiple of 27) = (2n + 1)m.
The angles withke’® = 1 are¢p = any multiple of 27 = 2n.

14 Locate all these points on one complex plane:

@2+i (b) (2+i) (c)%ﬂ d) 2+

Solution 2 + i is in quadrantl. (2 + 4)? is in quadran®. 5L is in quadrant.

241
|2 +i| = /5 is on the positive real axis.

15 Find the absolute values= |z| of these four numbers. #fis the angle fo6 + 8:, what
are the angles for these four numbers?

@6-8  (b) (6-8) (c) ﬁ (d) 8i+6

Solution The absolute values ai® and100 and {5 and10.
The angles arér — 6 (or just—0), 27 — 20 (or just—26), 6, andé.
16 What are the real and imaginary parts6f" i™ ande® + iw 2
Solution 4™ = e%ei™ = —e~%(real) et = e cosw + ie sinw
17 (a) If |s| = 2 and|z| = 3, what are the absolute valuessafands/z ?
(b) Find upper and lower boundsin< |s + z| < U. When does$s + z| = U ?
Solution (a)|sz| = |s| |[z| =6 Is/z] =1|s|/|z] = 2/3.
(b) The bestbounds afe=1andU =5:1 < |s+ z| <5.
That bounds is reached wher andz have thesame angle.



2.2. Key Facts About Complex Numbers 49

18

19

20

21

22

23

(a) Where is the produgtin 6 + i cos 6)(cos 8 + i sin 8) in the complex plane ?
(b) Find the absolute valyé| and the polar anglé for S = sin 6 + ¢ cos 6.

This is my favorite problem, becausg combinescos § andsin 6 in a new way.
To find ¢, you could plotS or add angles in the multiplication of patt)(

Solution (sin #+i cos 0)(cos O-+i sin §) = sin @ cos f-+i(sin? f+cos? f) —cos f sin § =
1. The product is imaginary. The angles must adé6.
Sincecosf + isind is at angled and the product is at anglerr/2, the first factor

sin# + i cos @ must bee’® at anglep = 3 — 6. The absolute value i$. See also
Problem 2.2.11.

Draw the spirale:(1 =9 ande(2 — 20t Do those follow the same curves? Do they
go clockwise or anticlockwise ? When the first one reachendgativer-axis, what is
the timeT' ? What point has the second one reached at that time ?

Solution The spirale(!=9* = ¢te~ starts atl whent = 0. As t increases, it goes
outward (absolute valug) and clockwise (the angle ist). It reaches the negativé
axis whent = 7. The second spiral>~29? is the same curvebut traveled twice as
fast. Its angle-2¢ reaches-r (the X -axis) at timet = 7 /2.

The solution tad?y/dt? = —y is y = cos t if the initial conditions arey(0) =
andy’(0) = . The solution isy = sin ¢t wheny(0) = andy’(0) =

. Write each of those solutions in the forene™ + ¢y e~ %, to see that real
solutions can come from complex andc,.

Solution y = cost hasy(0) = 1 andy’(0) = 0. y = sint hasy(0) = 0 and
y'(0) = 1. Those solutions ar@st = (e + e~%)/2 andsint = (e — e~ /2i.

The complete solution tg” = —yisy = Cycost + Cysint. The same complete
solution is Cy(e® + e7)/2 + Co(e® — e7)/2i = cre® + coe” with
c1 = (Cl + 02)/2 and02 = (Cl — CQ)/2Z

Supposey(t) = e~ teit solvesy” + By + Cy = 0. What areB andC'? If this
equation is solved by = 3 what areB andC ?

Solution If y = ¢ solvesy” + By’ 4+ Cy = 0 then substituting:* shows that

s? + Bs + C = 0. This problem has = —1 + i. Then the other root is the conjugate
s = —1 — i (always assuming@ andC are real numbers). The supR is —B. The

product(s)(3) = 2is C. So the underlying equationig’ + 2y’ + 2y = 0.
From the multiplicatione’? ¢=B = ¢i(A—B) find the “subtraction formulas”
for cos (A — B) andsin (A — B).
Solution Start with the fact that*4e—*F = ¢(A~B)_ Use Euler’s formula:
(cos A + isin A)(cos B — isin B) = cos(A — B) + isin(A — B).
Compare real partsos A cos B + sin Asin B = cos(A — B).
Compare imaginary partsin A cos B — cos Asin B = sin(A — B).

(a) If r andR are the absolute values #and.S, show that-R is the absolute value of
sS. (Hint: Polar form?)

(b) If 5 and S are the complex conjugates efand S, show thatsS is the complex
conjugate okS. (Polar form!)
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Solution (a) Given: s = re® and S = Re'® for some angle® and ¢. Then
s8 = rRe*®+%)  The absolute value o0fS is rR = (absolute value ofs)
(absolute value of).

(b) Nows = re~ andS = Re**. Multiply to getsS = rRe"*+%), This is the
complex conjugate ofS = rRe*?*+%) in part (a).
Suppose a complex numbersolves a real equatios® + As> + Bs + C = 0

(with A, B, C real). Why does the complex conjugatealso solve this equation ?
“Complex solutions to real equations come in conjugate paénsd 5.

Solution The complex conjugate 6f + As2+ Bs+C = 0is5° + A5+ B5+C = 0.
We took the conjugate of every term using the fact thaB, C are real. (The conju-
gates ofs? ands® ares? ands® by Problem 23).

For quadratic equations® + Bz + C' = 0, the formula(—B + B2 —4C)/2 is
producingcomplex conjugates fromd- whenB? — 4C is negative.

(a) If two complex numbers add to+ S = 6 and multiply tosS = 10, what ares and
S ? (They are complex conjugates.)

(b) If two numbers add ta + S = 6 and multiply tosS = —16, what ares and
S ? (Now they are real.)

Solution (a) s andS must have the same real partThey each have magnitudél0.
SosandS are3 + i and3 — i.

(b) If s+ S = 6andsS = —16 thens andS are the roots of? — 6z — 16 = 0. Factor
into (z — 8)(x + 2) = 0 to see that andS are8 and—2. (Not complex conjugates! In
this exampleB? — 4AC = 36 + 64 = 100 and the quadratic has real ro8tand—2.)

If two numberss andS add tos + S = —B and multiply tosS = C, show thats and
S solve the quadratic equatiaf + Bs + C = 0.

Solution Just check thatz — s)(x — S) = 22 + Bz + C. The left side is
2? — (s + S)z + sS. Thens + S agrees with- B andsS matche<'.

Find three solutions te®> = —8i and plot the three points in the complex plane. What
is the sum of the three solutions ?

Solution The three solutions have the same absolute valuEheir angles are sepa-
rated byl120° = 27/3 radians = 47 /6 radians. The firstangle 5= —30° = —7 /6
radians (so tha3f = —90° = —n/2 radians matchesz).

The answers ar@e~™%/6, 2¢37%/6_2¢77i/6 They add t.

(@) For which complex numbers = a + iw doese®® approach) ast — oo?
Those numbers fill which “half—plane” in the complex plane ?

(b) For which complex numbers = a + iw doess™ approach0 asn — oco?
Those numbers fill which part of the complex plane ? Not a half-plane!

Solution (a) If s = a + iw, the absolute value ef’ is e**. This approache8if a is
negative The numbers = a + iw with negativeu fill the left half-plane.

(b) This part asks about the powes's instead ofe*t. Powers ofs approach zero if
|s| < 1. This is the same as? + w? < 1. These complex numbers fill thieside of
the unit circle.
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Problem Set 2.3, page 101

1 Substitutey = e°* and solve the characteristic equation for
@2y" +8y"+6y=0  (b)y" —2y" +y=0.

Solution (a) 2s* + 8s + 6 factors into2(s + 3)(s + 1) so the roots are = —3 and
s = —1. The null solutions arg = e 3! andy = e~* (and any combination).

(b) s* — 252 + 1 factors into(s? — 1) which is (s — 1)2(s + 1)2. The roots are
s = 1,1,—1,—1. The null solutions arg = cie! + cote! + c3e™t + cyte™t. (The
factort enters for double roots.)

2 Substitutey = e and solve the characteristic equation for a + iw :
@y"+2y"+5y=0  (b)y"" +2y" +y=0
Solution (a) s? + 2s +5 = 0 givess = (—2+ /4 —-20)/2 = —1 4+ 2i = a + iw.
Theny = e~ cos 2t andy = e~ ! sin 2¢ solve the (null) equation.

(b) s* + 25> + 1 = 0 factors into(s® + 1)(s*> + 1) = 0. The roots are, i, —i, —i.
The solutions arg = cie? + cote + cze™ + cyte™ . They can also be written as
y = Cypcost+ Cytcost + Cssint + Cytsint.

3 Which second order equation is solvedipy: cie™ 2! + coe™* ? Ory = tedt ?
Solution If s = —2 ands = 4 are the exponents, the characteristic equation must be
s? 4+ 6s + 8 = 0 coming fromy " + 6y’ + 8y = 0.

If y = ted is a solution, therd is adouble root. The characteristic equation must be
(s —5)? = 5% — 10s + 25 = 0 coming fromy” — 10y’ + 25y = 0.

4 Which second order equation has solutigns c;e 2 cos 3t + coe 2! sin 3t ?
Solution Those sine/cosine solutions combine to givé’e® ande=2'e~3¥. Then
s = —2 = 3i. The sum is—4 and4, the product i£2 + 32 = 13.

The equation must bgy”’ — 4y’ 4+ 13y = 0.

5 Which numbers3 give (under) (critical) (over) damping ity” + By’ + 16y =07

Solution The roots of4s?> + Bs + 16 ares = (—B + v/ B2 — 162)/2. We have
underdamping foB? > 162 (real roots); critical damping faB? = 162 (double root);
overdamping fo3? < 162 (complex roots).

6 If you want oscillation frommy” + by’ + ky = 0, thenb must stay below .
Solution Oscillations mean underdamping. We nééd< 4km.
Problems 7-16 are about the equatioms? + Bs 4+ C = 0 and the rootss, ss.
7 The rootss; ands, satisfys; + s2 = —2p = —B/2A ands;s2 = w? = C/A. Show
this two ways:
(a) Start fromAs? + Bs + C = A(s — s1)(s — s2). Multiply to sees; s, ands; + s».
(b) Start froms; = —p + iwg, 2 = —p — iwy

Solution (a) MatchAs? 4+ Bs+Ct0 A(s—s1)(s—s2) = As? — A(s1+s2)s+ Asisa.
Then—B = A(s; + s2) andC' = Asysq. Error in problem : s; + s2 equals—B/A
and not—B/2A.

(b) s1 4+ s2 = (—p + iwq) + (—p —iwq) = —2p = —B/A. Thenp = B/2A.
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Find s andy at the bottom point of the graph gf= As? + Bs + C. At that minimum
points = smin @andy = ymin, the slope isly/ds = 0.

Solution The minimum ofAs? + Bs + C is located by derivative- 24s + B = 0.
Thens = —B/2A (which isp). The value ofAs? + Bs + (' at that minimum point is
A(B?/4A%) — (B?/2A) + C = —(B%/4A) + C = (4AC — B?)/4A.

Notice: If B? < 4AC the minimum is> 0. ThenAs? + Bs + C # 0 for reals.

The parabolas in Figure 2.10 show how the graply 6t As? + Bs + C is raised
by increasingB. Using Problem 8, show that the bottom point of the graph radef
(change insmin) and down (change ipmin) whenB is increased b\ B.

Solution For the graph of = As?+ Bs+C, the bottom pointig = (4AC—B?)/4A
ats = —B/2A. WhenB is increaseds moves left and moves down. (The convention
isA>0.)

(recommended) Draw a picture to show the paths,ainds, whens? + Bs +1 =0
and the damping increases frath= 0 to B = oo. At B = 0, the roots are on the

axis. As B increases, the roots travel on a circle (why?). BAt= 2, the
roots meet on the real axis. F& > 2 the roots separate to approattand —oco.
Why is their producs; s, always equal td ?

Solution The roots ofs? + Bs + 1 will move asB increases from to co. At B = 0,
the roots ofs? + 1 = 0 areimaginary: s = +i. As B increases, the roots are complex
conjugates always multiplying te; s, = 1. They are on theunit circle. When B
reacheg, the roots ofs? + 2s + 1 = (s + 1)? meet ats = —1. (Each root traveled a
quarter-circle, fromti to —1.) For largerB and overdamping? > 4AC = 4(1)(1),
the rootss; s, arereal. One root moves from-1 towards = 0, the other moves from
—1 toward—oo. At all times s1s0 = C/A = 1/1.

(this too if possible) Draw the paths of ands; whens? +2s+ k = 0 and the stiffness

increases fromk = 0 to k = oo. Whenk = 0, the roots are .
At k = 1, the roots meet at = . Fork — oo the two roots travel up/down
ona in the complex plané/hy is their suns; + s, always equal to- 2?

Solution This problem changésin s2 + 2s + k = 0. So thesum s; + s; stays at-2,
theproduct s;s2 = k/1 increases frond to co.

Whenk = 0, the roots—2 and0 arereal. Whenk = 1, the roots are-1 and —1
(repeated. Whenk — oo, thenB? — 4AC = 4 — 4k is negative and the roots
s = —1 %+ qw arecomplex conjugates They lie on the vertical ling = Res = —1
in the complex plane.
If a polynomial P(s) has a double root at= s1, then(s — s1) is a double factor and
P(s) = (s — 51)?Q(s). CertainlyP = 0 ats = s;. Show that alsalP/ds = 0
ats = s;. Use the product rule to findP/ds.
Solution P = (s — s1)?Q(s) has a double roat = sy, together with the roots of
Q(s). The derivative is

dpP d .

== (s — 81)2d_Q +2(s —$1)Q(s). Thisis zero ats = s;.

S S

Show thaty” = 2ay’ — (a® + w?)y leads tos = a + iw. Solvey” — 2y’ + 10y = 0.
Solution Substitutey = e*¢ in the differential equation. Cancel’ from every term to
leaves? = 2as — (a2 + w?).
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15

16

17

The roots are + iw, their sum i2a, their product is:? + w?.

Fory” — 2y’ + 10y = 0 (negative damping!) the sum is + s, = 2 and the product
is 10. The roots areg = 1 % 3i. The solutiony(t) is c; e 39t 4 ¢pe(1=30)¢,

The undampedatural frequencys w,, = /k/m. The two roots ofns? + k = 0 are
s = +iw, (pure imaginary). Withp = b/2m, the roots ofms? + bs + k = 0 are
81,82 = —p £ \/p? — w2. The coefficienp = b/2m has the units of /time.
Solves? +0.1s + 1 = 0 ands? + 10s + 1 = 0 with numbers correct to two decimals.
Solution s? +0.1s+1 = 0 givess = (—0.14++/0.01 — 4)/2 = (—0.1 £4+/3.99)/2.
How to approximate that square root?

The square root of —  is close to2 — 2z. Computing(2 — 1z)? =4 — z + 2?/16
we see the small errar®/16. Our problem hagd — z = 3.99 andz = 1/100. So the
square root is close »— 5. The roots ares ~ (—0.1+1i (2 — 555)) /2. In other
wordss = —0.05 + (1 — 0.00125).

Fors®+10s+1 =0, the roots arg = (—104 /(100 — 4)/2 = -5+ /25 — 1. The
square root o5 — z is close to5 — %x, because squaring the approximation gives
25 — x + (%/100). Our example has = 1 ands ~ —5 + (5 — &), which gives the
two approximate roots = —% and—10 + %.

These add te-10 (correct) and multiply to99 (almost correct).

With large overdampingp >> w,, the square root\/p? —w?2 is close to
p — w?2/2p. Show that the roots ofns? + bs + k ares; ~ —w?2/2p = (small)
ands, =~ —2p = —b/m (large).

Solution Use that approximate square rgot w2 /2p in the quadratic formula:

w? w? w?
s=-pt/p?—wlm-pt (p—z—;>. Thens:—2—; and —2p+ 2—;

Whenp is large andv,, is small, a small root is nearw? /2p and a large root is near
—2p. (Their product is the correct?, their sum is close to the corree®p.)

With small underdamping << w,, the square root 0p? — w? is approximately
iwn — ip?/2w,. Square that to come close 6 — w?. Then the frequency for small
underdamping is reduced &g, ~ w,, — p?/2w,,.

Solution Now p is muchsmaller thanw,,. So the rootss = —p + /p? — w2 are
complex. The damped frequengy = /w2 — p? is close tow,, and the correction
term is—p? /2w,, from the approximatiow,, — p?/2w,, to the square root. (Square that
approximation to see? — p? + (p*/4w2).

Here8is arsth order equation with eight choices for solutions- e :

d . A
—g =y becomes s8¢t = ¢! and s® =1 : Eightroots in Figure 2.6.

Fin %WO solutionse®® that don't oscillate £ is real). Find two solutions that only
oscillate ¢ is imaginary). Find two that spiral in to zero and two tharapout.

Solution The equatior® = 1 hasS8 roots. Two of them are = 1 ands = —1 (real:
no oscillation). Two are& = ¢ ands = —i (imaginary : pure oscillation). Two are
s = e?™/® ands = e~2"*/® (positive real partsos T : (oscillating growth, spiral out).
Two ares = ¢3™/* ands = e 37/ (negative real parts : oscillating decay, spiral in).
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d™y
At

Then roots sy, ..., s, producen solutionsy(t) = et (if those roots are distinct).
Write downn equations for the constants to ¢, in y = cie®tt + --- + ¢, et by
matching the initial conditions fory(0), y/(0), . .., D"~ 1y(0).

18 A, +...+Al%+A0y:0|eadst0Ans”+---+A18+Ao=0-

Solution Then roots given solutionsy = e (when the roots are all different).
There aren constants iry = cie®'t + --- + c,e*»t. These constants are found by
matching thex initial conditionsy(0),4’(0), . . . Take derivatives ofy and sett = 0
c1+ca+- 4 =y(0)
181+ a8y 4 -+ cpsy =y'(0)
crsi + cas3 + -+ + casyy, = y"(0)

Then by n matrix A in those equations is the transpose dadermonde matrix :

1 1 --- 1
S1 S9 e Sn
A= 2 .2 2

81 82 S

19 Find two solutions to d2°1%y /dt?°15 = dy /dt. Describe all solutions te?°!® =s.

Solution With y = et we find s2915 = 5. One solution has = 1 andy = ¢'. The
other2014 solutions haves?°14 = 1 (s = 1 is double! Second solutiop = tet.)
The 2014 values ofs are equally spaced around the unit circle, separated byntijle a
27 /2014.

20 The solution toy” = 1 starting fromy(0) = y’(0) = 0is y(t) = t2/2. The
fundamental solution tg” = §(¢) is g(t) = t by Example 5. Does the integral
Jg(t—s)f(s)ds = [(t — s)ds from 0 to ¢ give the correct solutiop = ¢*/2?

Solution The main formula for a particular solution is correct :
(t—s)21" 2

wlt) = [ ot =55 ds = [(e=s)as =~ 5 -z
0 0 5=

21 The solution toy” + y = 1 starting fromy(0) = y’(0) = 0isy = 1 — cost. The
solution tog” + g = 6(¢) is g(t) = sint by equation (13) withv = 1 andA4 = 1.
Show thatl — cos ¢ agrees with the integrgl g(t — s) f(s)ds = [ sin(t — s)ds.

Solution The formula for a particular solution is again correct:
t t

yp(t) = /g(t— s)f(s)ds = /sin(t —5)ds = cos (t — s)|'_, = 1 — cost.
0 0
Theny, + y, = 1.
22 The step functiorf{ (¢t) = 1 for t > 0 is the integral of the delta functioi®o the step

responser(t) is the integral of the impulse responseThis fact must also come from
our basic solution formula:
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¢
Ar"” + Br' +Cr =1 with 7(0) =7'(0) =0 has r(t) = /g(t —38)1lds
0

t
Change — s to  and changés to —dr to confirm that-(t) = [ g(7)dr.
0

Section 2.5 will find two good formulas for the step respor(ge.

Solution For any equatiotdr” + Br’ + Cr = 1 with f(t) = 1, y, comes from the
integral formula:

¢ ¢
Yp :/g(t—s)f(s)ds: /g(t—s) ds. Changetot—s=r7 and —ds = dr and
0 0

t
—/Q(T)dT: +/g(7-)d7- = step response
0

t

Problem Set 2.4, page 114
Problems 1-4 use the exponential respongg, = eCt/P(c) to solve P(D)y = e°t.

1 Solve these constant coefficient equations with exporleiriiang force :

@y, +3y, +5y, =€ (0)2y) +4y, =€  ()y" =¢

Solution (a) Substitutey = Ye! to findY :

Ye! +3Ye! +5Ye! =¢' gives9Y =1 andY =1/9 :y =¢'/9

(b) Substitutey = Ye® : 2i2Yet +4Yet =t :2Y =1 1y = €'/2

(c) Substitutey = Yef tofindY = 1 andy = €.
2 These equationB(D)y = e use the symbab for d/dt. Solve fory,(t):

(@) (D? + 1)y, (t) = 103" (b) (D? + 2D + 1)y, (t) = e™*

(©) (D* + D? + 1)y, (t) = e

Solution (a) Substitute) = Ye 3 to find9Y +Y =10 : Y =1 andy = e3¢

(b) Substitutey = Ye™* to find ((iw)? + 2iw + 1)Y = 1 andY = 1/(1 — w? + 2iw).

(c) Substitutey = Ye'? to find ((iw)* + (iw)?+1)Y = LandY = 1/(1 —w? +w?).
3 How couldy, = e°*/P(c) solvey” + y = e’e’ and thery” + y = e’ cost ?

Solution First,y”+y = e(+)t hasc = 1+iandy = Ve = e 0! /((1+i)2+1) =
ete’ /(1 + 2i). Thereal part of thaty solves the equation driven ¥ cos:
1—-2:

=Re|e'(cost +isint) | 5——
Y e'(cos +zsm)<12+22

1
ﬂ = get(cost—l- 2sint).
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4 (a) What are the roots, to s3 and the null solutions tg;)” — y,, =0 ?

(b) Find particular solutions tg)" — y, = e’ and toy;" — y, = e' — e’’’

Solution (a)y = e*! leads tos® — 1 = 0. The three roots = 1, s = ¢>™/3 = —1 4
1V3,s = e /3 = —1_1/3 give three null solutiong,, = e, e~*/2 cos \/7§t, e /2 sin @t.
(b) The particular solution withf = e isy, = e /(i3 — 1).
The particular solution withf = e — e looks likey = ! /(1% —1) — e ((iw)3 —1).
But the first part ha$® — 1 = 0 and resonance : thefi/(1% — 1) changes by equation
(19) tote'/3: (The differential equation hag” — y = (D3 — 1)y = P(D)y and is
P'(D) =3D?andP’(c) = 3 because’ hasc = 1.)
Problems 5-6 involve repeated roots in y,, and resonanceP(c) = 0 in y,.

5 Which value ofC' gives resonance in” +Cy = e™“* ? Why do we never get resonance
in yl/ + 5y/ + Cy — ezwt ?
Solution y”+Cy = ™' has resonance wheft’* solves the null equation, géw)?-+
C = 0andC = w?. For thisC the particular solution must change fragn= ¢**/0
toy, = te'*t/2iw (because the derivative &t(D) = D? + Cis P/(D) = 2D and
thenP’(iw) = 2iw).
We never get resonance with D) = D?+ 5D+ C because’(iw) = (iw)?+ 5iw+C
is never zero angd = ¢! is never a null solution.

6 Suppose the third order equati®iD)y,, = 0 has solutiong = c;e! + c2e?! + cze’.
What are the null solutions to the sixth order equaityD)P(D)y,, = 0 ?
Solution The three roots ofP(s) must bes = 1,2,3. The sixth order equation
P(D)P(D)y = 0 has those adouble rootsof P(s)?. So the null solutions are

Yy = clet + cztet + 6382t + C4t€2t + C5€3t + 06te3t

7 Complete this table with equations fer ands, andy,, andy, :

Undamped free  my"” +ky =0 Yn = c1ent 4 cpe~iwnt
Undamped forced my” + ky = ¢! yp = €t /m(w2 — w?)
Damped free my” +by' +ky=0 y, = cre®1t 4 cye®?t

Damped forced  my” + by’ + ky = e y, = et/(mc? + bc + k)
Heres; andss are—b/2m + /b2 — 4mk/2m.
8 Complete the same table when the coefficients aed2Zw,, andw? with Z < 1.

Undamped free y" +wiy=0 Yn = crei@nt 4 cpe—iwnt

Undamped forced  y” + w2y = e'! Yp = et /m(w2 — w?)
Underdamped free  y” +2Zw,y’ + w2y =0 1y, = c1e% + cpe2?
Underdamped forced y” + 2Zw,y’ + w2y = e y, = et /(c? + 2Zwnc + w?)
Those use equations (20) in 2.3 and (32-33) in 2.4.

9 What equationg” + By’ + Cy = f have these solutions ? Hint: FirglandC from
the exponentsin y,, : s + s = —B ands;s; = C. Find f by substitutingy,.

(@)y = c1 cos2t + casin2t + cos3t y”’ + 4y = —5cos 3t
(b)y = cre t cosdt+coe tsindt+cos5t y!’! + 2y’ + 17y = —8 cos 5t — 10 sin 5t
©y=ciet+eate P +et y” + 2y’ +y = [(iw)? + 2iw + 1]e™?.
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10 If y, = te S cosTt solves a second order equatioty” + By’ + Cy = f,

11

12

13

what does that tell you about, B, C, andf ?

Solution This particulary, is showingresonancefrom the factort. (If this wasys,,
we would be seeing a double root 482 + Bs + C = 0.) The rootiss = —6 + 7i
from the other factors af,,.

So | believe that
As’+ Bs+C = A(s+6 —T7i)(s+ 6 + 7i) = A(s* + 12s + 36 + 49)
f=Fe 5 (AcosTt+ BsinTt)
(a) Find the steady oscillatioy),(¢) that solves)” + 4y’ + 3y = 5 coswt.
(b) Find the amplitudel of y,(¢) and its phase lag.
(c) Which frequencw gives maximum amplitude (maximum gain) ?

Solution (a)y, hassinwt as well ag:os wt. Use equations (22-23) fg, = M cos wt+
N sinwt :

D=(3-w?)?+16w? M=

(b) From equation (26) and the page 112 table:

Amplitude= G = —1> and the angle: has tangent {f = %

¢) The maximum gai: and the minimum oD = (3 — w?)2 + 16w? will occur when
(c) g

dD
- = —4w(B-w?)+32w=0 and 3 —w? =8 and w = +/5.
w
This “practical resonance frequency” is computed at thedrs@éction 2.5.
Solvey” + y = sinwt starting fromy(0) = 0 andy’(0) = 0. Find the limit ofy(¢) as
w approaches, and the problem approaches resonance.
Solution The solution isy = y, + yp, = c1cost + casint + Y sinwt. Substituting
into the equation gives w?Y sinwt + Y sinwt = sinwt andy” = —

1—w?"

y(0) = 0 givesc; = 0. Andy’(0) = ca + wY = 0 givescy = —wY :

—w 1 . sinwt — wsint
y(t)_l—w251Ht+1—w251HWt_ o2
Asw goes tal, this goes td) /0. Then the I'Hopital Rule finds the ratio af-derivatives
atw =1:
tcoswt —sint tcost — sint
- _> -
—2w -2
Does critical damping and a double reot= 1 iny” 4 2y’ + y = e° produce an extra
factort in the null solutiony,, or in the particulaw, (proportional toe“*) ? What isy,,
with constants;, co ? Whatisy, = Ve ?

= Resonant solution

Solution Critical damping is shown in the double root= —1, —1ins? +2s+1 =0
and in thenull solutions y,, = cie™t + cote™t. (Resonance would come wheris
also—1 in the right hand side.) The solutigp = Ye hasy” + 2y’ +y = ¢ and
(Y +2c¢Y +Y)=1andY =1/(c? +2c+1).
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If ¢ = iw in Problem13, the solutiony, toy” + 2y’ +y = et is . That fraction
Y is the transfer function ats. What are the magnitude and phas&’in= Ge = ?
Solution Setc = iw in the solution to Problem 13: o

Yp —|— Ve = et/ (iw? + 2w + 1) = Ge™ et
ThenG = 1/(1 — w? + 2iw) has magnitudéG| = 1//(1 — w?)2 + 4w? = 1/V/D.

The phase angle hasna = 2.

By rescaling both ¢ and y, we can reachA=C =1. Then w, =1 and
B = 2Z. The model problemisy” + 2Zy’ + y = f(t).

What are the roots of? + 2Zs + 1 = 0? Find two roots forZ = 0,
and identify each type of damping. The natural frequencyisa,, = 1.

Solution The roots are = —Z ++/Z2 — 1. (All factors 2 will cancel.)

1
11,2

Z =0:s8=d=i No damping

Z =3 :s=(-1%+/3i)/2 Underdamping
Z=1:s=-1,-1 Critical damping
Z=2:5=-2+3 Overdamping

Find two solutions toy” + 27y’ + y = 0 for everyZ exceptZ = 1 and—1. Which
solutiong(t) starts fromg(0) = 0 andg’(0) = 1? What is different about = 1?

Solution If Z2 # 1 the solutions arg = ce®1! + cpe®2t. Theimpulse responsey(t)

on page 97 comes from= —Z +r:
eslt _ 8ot

g(t) = S — e~ Zt(emt — ety /2r with r = \/Z2 — 1 in formula (2.3.12)

51 — 52
If Z = 1 (critical) thens; = s andr = 0 andg(t) changes tde~* (formula 2.3.15).
The equationmy” + ky = cosw,t is exactly at resonance. The driving frequency
on the right side equals the natural frequengy = +/k/m on the left side.

Substitutey = Rtsin(y/k/mt) to find R. This resonant solution grows in time be-
cause of the factar.

Solution y’ = Rsin\/£t+Ry/Etcos\/Ltandy” = 2R /£ cos/Et—REtsin /L,
Thenmy”+ky = 2RVkm cos / £t—Rktsin \/ Et+kRt sin /£t = 2RVEm cos y/ £¢.

This agrees withos w,t on the right side of the differential equatior® = 1/2vVkm.
Comparing the equationsy” + By’ +Cy = f(t) anddAz" + Bz’ +(C/4)z = f(t),
what is the difference in their solutions ?

Correction The forcing term in the-equation should bf(i)
Solution z(t) will be 4y(%). Thenz’ = /() andz" = 15" ().

4Az" + Bz' + £z equals term by term tly (1) + By/(%) + Cy(%) = f(L).
Find the fundamental solution to the equatidh— 3¢’ + 2g = §(¢).

Solution The roots ofs2 — 3s +2 = 0 ares = 2 ands = 1 : Real roots. Use formula
2.3.12 on page 97 to fing(¢) :
eslt _ eszt o .

g(t):mze —e'.

Notice thatg(0) = 0 andg’(0) = 1 (andA = 1 in the differential equation).
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20 (Challenge problem) Find the solutiong6+ By '+y = cos t that starts frony(0) = 0

21

andy’(0) = 0. Then let the damping constaBtapproach zero, to reach the resonant
equationy” + y = cos t in Problem 17, withn = k = 1.

Show that your solutiog(¢) is approaching the resonant solutigmsin t.

Solution The particular solution ig, = Stt. Theny” + y, = 0 and By, = cost.
Theroots ofs? + Bs +1 =0 ares = (—B+ VB2 —4)/2 = (—B +iV4 — B2)/2.

Theny = cre®t! + cpe®' + Lsint. Att = 0 we must haver; + ¢, = 0 and
s1c1 + Saco + % = 0. Putea = —¢y tofind (s1 — s2)c; = iv4d — B%2¢y = —1/B.
) 1
SolutionnearB =0 y = —————(e! — e2') + —sint.

N BQ( )+ 5
At B = 0 the roots arg; =i andsy = —%, andv/4 — B2 = 2.
The solutiony(t) approacheg = 552isint + & sint = § (sign of resonance).
I'Hopital asks for the ratio of thé-derivatives. Certainly3 in the denominator haB-
derivative equal td. Andv/4 — B? approache8. So we want theéB-derivative of the
numerator, where s;,so depend onB. Then asB — 0,y approaches

(e ) = 4 [enttly —ntd] Ly (<) o't (—1) ¢ = Ltsing. Wow

Suppose you know three solutions, 2, y3 to y” + B(t)y' + C(t)y = f(t).
(Recommended) How could you firél(t) andC(¢) and f (¢) ?

Solution The differences = y; — y2 andv = y; — y3 are null solutions:

u;/—i—B u' 4+ C(t)u =0

v + B(t)v' + C(thv =0
Solve those two linear equations for the numhbB(s) andC'(¢) at each time. Then
y1 is a particular solution s9;” + B(t)y, + C(t)y1 gives f(t).

Problem Set 2.5, page 127

1

(Resistors in parallel) Two parallel resista®s and R, connect a node at voltagé
to a node at voltage zero. The currents Byg?,; andV/R.. What is the total current
I between the nodes ? Writing,» for the ratioV’/1, what isR;5 in terms of R, and
Ry?

Solution CurrentsV/R; andV/R; in parallel give total currenf = V/R; + V/Ro.
Then the effective resistance In= V/R has

1_ 1 1 _R1+R2 R1R>

R R "R RR Ri+Rs
(Inductor and capacitor in parallel) Those elements cormaode at voltag e’ to a
node at voltage zero (grounded node). The currents (&féiwL)e™! and

V(iwC)e™t. The total current/e™’ between the nodes is their sum. Writing
Zy2e™* for the ratioVe™? /Ie™t, what isZ;» in terms ofiwL andiwC ?

Solution This is like Problem 1 with impedancésL and1/iwC in parallel, instead
of resistance®?; and R,. The effective impedance imitates that previous formuta fo
R = RlRQ/(Rl + RQ) .

and R =
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7 Z1Zy  iwLl(1/iwC)  iwl
- Z1+ Zs "~ wL + (iwC)—l T 1—-w2LC
The impedance of an RLC loop B = iwL + R + 1/iwC. This impedancé is real
whenw = . This impedance is pure imaginary when . This impedance is

zero when .

Solution Z is real wheniwL cancels withl /iwC = —i/wC. ThenwL = 1/wC and
w? = 1/LC. Z isimaginary whenR = 0. The impedance is zero when bath= 0
andw? = 1/LC.

What is the impedanc® of an RLC loop whemR = L = C' = 17? Draw a graph that
shows the magnitudé¢Z| as a function ofv.

Solution An RLC loop adds the impedanceR + iwL + i/(iwC). In case
R =L = C =1, the total impedance in seriesZs= 1 + iw + 1/iw. The magni-
tude|Z| = (1 4 (w — 1/w)?)/? will equal 1 atw = 1. For largew, | Z| is asymptotic
to the line| Z| = w. For smalky, | Z| is asymptotic to the curviZ| = 1/w.

Why does an LC loop with no resistor produc®@ phase shift between current
and voltage ? Current goes around the loop from a batteryltsfg®l” in the loop.

Solution The phase shift is the angle of the complex impedanic&Vith no resistor,
R=0andZ = iwL+ (1/iwC) = i(wL — (1/wC)). This pure imaginary number has
angled = +7/2 = £90 ° in the complex plane.

The mechanical equivalent of zero resistance is zero dampiny” + ky = coswt.
Find ¢; andY starting fromy(0) = 0 andy’(0) = 0 with w2 = k/m.

y(t) = c1 coswpt +Y coswt.

That answer can be written in two equivalent ways::
. —w)t . +w)t
y =Y (coswt — coswyt) = 2Y sin (@n 5 w) sin (n > w) .

Solution The complete solution ig = c¢; cos wy,t + ¢ sin wyt + (coswt) /(k — mw?).
The initial conditiongy = y’ = 0 determine:; andc, :
y(0)=0 c1 = —1/(k — mw?) y'(0)=0 ca =0.

Theny(t) = (coswt — cos wyt)/(k — mw?). The identitycoswt — cosw,t =
2sin W=gnlt gipy (en)t eypressey as the product of two oscillations.
Suppose the driving frequency is close tow, in Problem 2. A fast oscillation
sin[(w, + w)t/2] is multiplying a very slow oscillation2Y sin[(w, — w)t/2].
By hand or by computer, draw the graph of = (sint)(sin9¢) from 0 to 2.

You should see a fast sine curve inside a slow sine curve.i3 hiseat

Solution Whenw is close taw,,, the first (bold) formulain Problem 6 is ne@f0. The
second formulais much better:

- Wn t . . .
% ~ (w—wp)t sin — sinw,t Yy~ (w— wp)tsinw,t
This shows the typical factor for resonance. The graph @f= (sint)(sin 9¢) has
w = 10 andw,, = 8, so that(10 — 8)/2 = 1 and(10 + 8)/2 = 9. The graph shows a
fast “sin 9¢” curve inside a slow$in ¢” curve : good to draw by computer.

"
2 sin (w+wn)
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8 Whatm, b, k, F' equation for a mass-dashpot-spring-force correspondsrthikoff's

10

11

12

Voltage Law around a loop? What force balance equation onss marresponds to
Kirchhoff's Current Law ?

Solution The Voltage Law says thabltage drops add to zercaround a loop:

dl
T +
This corresponds towy " + by’ + ky = f. The Current Law says that “flow in equals
flow out” at every node. The mechanical analog is tfiatces balancé at every node.

. . 1 ,
Equation (5) isL RI+ ol /Idt = Vet

In a static structure (no movement) we can have force balameations in the, y, and
z direction. In a dynamic structure (with movement) the ferceelude the inertia term
my " and the friction terndy’.

If you only know the natural frequencay, and the damping coefficierit for one
mass and one spring, why is thabt enoughto find the damped frequenay, ?
If you know all of m, b, k what iswy ?

Solution If we only knoww? = k/m andb, that does not determine the damping
ratio Z = b?/4mk or the damped frequeney; = /p? — w2 with p = B/2A =
b/2m = w,Z in equation (2.4.30). We neellree numberss inm, b, k or two ratios
as inw? = k/mand2p = b/m.
Varying the number in a first order equatiop’ — ay = 1 changes thepeedof the
response. Varying andC' in a second order equatiori’ + By’ + Cy = 1 changes
theform of the response. Explain the difference.
Solution The growth factor in a first order equationd®. The units ofa are1/time
and this controls the speed. For a second-order equation By’ + Cy’ = f, the
coefficientsB andC' control not only the frequenay,, = +/C but also the form of
y(t) : damped oscillation i3 < 4C and overdamping i3? > 4C.
Find the step responsét) = y,, + v, for this overdamped system:

r” +25r +r =1 with »(0) =0 and r’'(0) = 0.
Solution The roots ofs? + 2.55 + 1 = (s + 2)(s + %) ares; = —2andsy = —
Then equation (18) for the step response gives

1 1 4
T(t) =1+ <_§€2t + 2625/2) /(_3/2) — 14+ 567215 _ geft/2.

1
5

Check that-(0) = 0 andr’(0) = 0 (andr(cc) = 1).

Find the step respons¢t) = y, + y, for this critically damped system. The double
roots = —1 produces what form for the null solution ?

r” +2r' +r =1 with »(0) =0 and r'(0) = 0.
Solution The characteristic equatiof + 2s + 1 = 0 has a double root = —1. The
null solution isy,, = c1e™* 4 cate™*. The particular solution withf = 1isy, = 1.
The initial conditions give;; andcs :
r(t) = cret + catet + 1
r0)=c+1=0 cp =—1
r’'(0) =—c1+ca+1=0 co3=—2
r(t) =1—(1+ 2t)e*
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13 Find the step responsét) for this underdamped system using equation (22):
r” 47" +r=1 with »(0) =0 and r’(0) = 0.
Solution Equation (22) gives the step response for an underdamptshsys

rit)=1- Yn o=t sin(wat + ).
wq

Thenr” +r’ +r =1hasm = b=k = 1 andb? < 4mk (underdamping).

b 1 5 k 2 2 o 3 D 1 ™
P=g5-=3 ¥ Wi =wn —P" = cos ¢ o T3 ¢ 3
e . 2 3
Substituting in the formula giveqt) = 1 — 7§e_t/2 sin (%t + g)

14 Find the step responsét) for this undamped system and compare with (22):
r” +r=1 with (0) =0 and r’(0) = 0.
Solution Nowr” +r =1 hasm = k = 1 andb = 0 (no damping):
Inthiscase p=0 w2 =1 Wy = Wy, cosp=2L=0 ¢=7.
Substituting into (22) gives(t) =1 —sin (t+ %) =1 — cos t.
15 For b?> < 4mk (underdamping), what parameter decides the speed at whécstep

response(t) rises tor(oco) = 1? Show that thepeak timeis T = w/wy when
r(t) reaches its maximum before settling backte 1. At peak timer’(T) = 0.

Solution With underdamping, formula (22) has the decay factoP’. Then
p = B/2A = b/2m is the decay rate. The “peak time” is the time whereaches

its maximum (its peak). That timf€ hasdr/dt = 0.
d n - _ :
d—:; S (—pe P sin(wat + ¢) + wae P cos(wat + ¢)) =0 at t =T (peak time)
wa
—psin(wgT + ¢) + wq cos(wgT + ¢) =0

tan(wqaT + @) = wq/p Whichis tan ¢

Thenw,T =7 and T = w/wq. (Note: | seem to getr/wy.)

16 If the voltage sourcé/(¢) in an RLC loop is a unit step function, what resistarite
will produce an overshoot toya = 1.2 if C = 1076 Farads and. = 1 Henry?
(Problem 15) found the peak tiffewhenr(T") = rmax)-

Sketch two graphs of(t) for p; < py. Sketch two graphs as; increases.
Solution The peaktime if" = 7/wy. Thenw,T = = and we want = 1.2:
Tmax(T) =1 — Z—Ze‘pT sin(m + ¢)

1.2=1+4 Z—Ze‘pT sin(¢) =1+ e P
0.2 = e~P™/wa
pr/wg = —In(0.2) =1Inb5

We substitutey = B/24 = R/2wL andwy = /w2 —w? = /(1/LC) — w?. With
known values of. andC and w we can findR.
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17

18

19

20

What values ofn, b, k will give the step responset) = 1 — v/2e *sin(t + Z)?

Solution This response(t) matches equation (22) when, = v/2wg andp = 1
and¢ = w/4. Then

wi=w? —p? =202 —1 giveswy =1 and w, = V2.

Thereforew? = k/m = 2 andp = b/2m = 1. The numbersn, b, k are proportional
to1,2,2.
What happens to the — w; — w, right triangle as the damping ratig, /p increases

to 1 (critical damping) ? At that point the damped frequengybecomes . The
step response becomgs) =

Solution Critical damping has equal roots = s, andb? = 4mk and damping ratio
Z = 1andwy = w,Vv1— 22 = 0. (The oscillation disappears and the damped
frequency goes tw; = 0 so thatp = 0.) Then the step response is

nt
r(t) =1-—

qte

— ptsin(wgt) — 1 — w,te P

The rootssy, s = —p = iwy are poles of the transfer function1 /(As? + Bs + C)

Show directly that the product of the roots = —p + iwg andss = —p — iwy is
5182 = w2. The sum of the roots is-2p. The quadratic equation with those roots
is s + 2ps + w? = 0.

M Imaginary axis

b iy

> Real axis

) Circle of radius wy,
— Wqg

Solution Multiplying the complex conjugate number = —p + iwg gives

s> = (—=p + iwq) (—p — iwq) = p* + w3 = w?.

For any quadraticAs? + Bs + C = A(s — s1)(s — s2),C matchesAs;sp. Then
5180 = C'/A = w?2. Complex rootstay on the circle of radiusw,,, as in the picture.

Adding —p + iw to —p — iw givess; + s2 = —2p. This always equals B/A.
Suppose is increased whilev,, is held constant. How do the roots ands, move ?

Solution Increasing will make both roots go along the circle in the direction-ab,, .
Problem 19 showed that they stay on the circle of radiysintil they meet at-w,,. At
that points; + so = —2w,, = —2p. Therefore that value qof is w,,.

Increasing beyondw,, will give two negative real rootsthat add to—2w,, .
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21 Suppose the masa is increased while the coefficierisandk are unchanged. What
happens to the rootg andss ?

Solution The key numbeB? — 4AC = b> — 4mk will eventually go negative when
m is increased. The roots will be complex (a conjugate paidrtter increasing the
massm will decrease both = b/2m andw? = k/m. The roots approach zero.

22 Ramp response How could you findy(¢) whenF = ¢ is a ramp function ?
y" + 2py’ + w2y = W3t starting fromy(0) = 0 and y’(0) = 0.

A particular solution (straight line) ig, = . The null solution still has the
formy, = . Find the coefficientg; andcy in the null solution from the two
conditions at = 0.

This ramp responsgt) can also be seen as the integral of .
Solution A particular solution igy, = C + ¢. Substitute into the equation:
y" +2py’ + Wiy =0+ 2p+ wi(C +t) = wit. ThusC = —2p/w?.

The null solution is stilly,, = c1e*1? + coe®2t. We findc; andc, att = 0:

y=cre’t e +C+t=ci+ca+C =0
y' = c151% %t 4 cps0e®t 41 =151 +caso +1 =0
Solving those equations gives = <22—L andc, = +=C54 with C = —2p/w?.

The ramp response is also the integral ofstep response

Problem Set 2.6, page 137

Find a particular solution by inspection (or the method of undetermined coefficients)

1 (@y"+y=4 (b)y" +y'=4 ©y" =4
Solution (a)y, =4 (b)y, = 4t (©)yp = 22

2 @y"+y +y=¢ 0)y" +y' +y=e
Solution (a)y, = 3¢’ Oy, =e/(P+c+1)

3 (@y" —y=cost (0)y” +y = cos 2t ©y"+y=t+e
Solution (a)y, = —4cost  (b)y, = —3 cos 2t ©) yp =t + 2et

4 For thesef (t), predict the form ofy(¢) with undetermined coefficients:
@ f(t) =1t (b) f(t) = cos 2t () f(t)=tcost
Solution (a)y, = at® + bt?> + ct +d (b) yp, = acos2t + bsin 2t

(€)yp = (At + B) cost + (Ct + D) sint
5 Predict the form for(¢) when the right hand side is
(a) F(t) = e (b) £(t) = te! (0) F(t) =’ cos t
Solution (a)y, = Ye Oy, = (Yt + Z)et (€)yp = ae' cost+be'sint
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6

For f(t) = e“* when is the prediction foy(¢) different fromY et ?
Solution There will be ate®* term iny,, whene®! is a null solution. This is resonance:

A + Bc+C =0and cis sy Or so.

Problems 7-11: Use the method of undetermined coefficiente find a solution y, (¢).

7

10

@y" + 9y =e* (b)y" + 9y = te*
Solution (a)y, = Ye? with 4Ye* + 9Ye? = ¢* andY = &
Oy, = (Yt+ Z)e* withy’ = 2Yt+Y +2Z)e* andy” = (4Yt +4Y +4Z)e*.
The equationy” + 9y = te?! gives(4Yt +4Y +4Z + 9Yt + 92)e?! = te?.
Thenl3Yt = tanddY+13Z = 0giveY = ; andZ = — &Y andy, = 5 (t — 75)e>".
@y"+y' =t+1 (0)y” +y" =t +1
Solution (@)y, = at* +bt andy” +y’' =2a+2at +b=1¢+ 1.
Thena = § andb =0 and y, = 1¢2.
*Notice thaty, = constant is a null solution so we needed to assymne at? + bt.
(b) yp = at*+bt*+ct (NOT +d) andy” +y' = (6at+2b)+ (3at*+2bt +c) = t*+1.
Then3a = 1and6a +2b =0and2b +c=1 : y, = 3t> — 1t% + 3.
(@y"” +3y=cost () y” +3y=tcost
Solution (a)y, = Acost + Bsint.
y;/ + 3y, = —Acost — Bsint + 3Acost + 3Bsint = cost.
Then2A = 1 and2B = 0 andy, = 1 cost.
(b) yp = (At + B) cost + (Ct + D) sint.

! .
Y, = (A+ Ct+ D)cost + (—At — B+ C)sint.
y, + 3yp = Ccost — Asint + (—A — Ct — D)sint + (—At — B + C)cost +
3(At + B) cost + 3(Ct + D) sint = tcost.

Match 34t — At = tandC — B+ C + 3B = 0 and-Ct + 3Ct = 0 and
—-A—-A—-D+3D=0.

Then A = %, C=0, B=0, D:A:% gives yp, = %tcost—i—%sint.
@y"+y' +y=1= Oy +y' +y=1t
Solution (a)y, = at*+bt+cgivey,+y,+y = (2a)+(2at+b)+ (at® +bt+c) = t2.

Thena = 1and2a +b =0and2a +b+c=0givea =1, b = -2, ¢ =0 :
yp =t — 2t.

(b) Nowy, = at? + bt + ¢ + dt>. Added into part (a), the newt* produces
y" +y +y=(2a)+ (2at + b) + (at> + bt + ¢) + d(6t + 3t> +t3) =t + =0

Thend = 1, 3d+a = 0, 6d + b+ 2a = 0, 20+b+c =0
gived =1,a=-3,b=0,c=6:y, = t> — 3t*> + 6.
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11 @y" +y' ' +y=cost O)y"+y' +y=tsint
Solution (a)y, = Acost + Bsint.
Yy +ys+uyp=(—A+ B+ A)cost + (-B — A+ B)sint = cost.
ThenB = 1 andA = 0 andy, = sint.

(b) The forms fory, andy, andy,’ are the same as in 2.6.9 (b). Thgfry, +y, equals
Ccost — Asint+ (—=A—Ct—D)sint + (—At — B+ C) cost + (A+ Ct+ D) cost
+(—At — B+ C)sint + (Ct+ D)sint = tsint.

Match coefficients of cost, tsint, cost,sint :

-A+C+A=0 -C-A+C =1 C-B+C+A+D+B=0
—-A-A-D-B+C+D=0.

ThenA=-1,C=0, B=2, D=1 give y, = —tcost + 2cost.
Problems 12—-14 involve resonance. Multiply the usual formfoy,, by t.
12 (@)y" +y=e" (b)y"” +y =cost
Solution (a) Look fory, = Yte®. Theny) =Y (it 4 1)e™.
Yy +yp = Y (i%t + 2ie™) + Yite' = 2iYe'.
This matcheg® on the right side whell = 1/2i andy,, = te®t/2i = —ite®t /2.
(b) Look fory,, = At cost+ Btsint. Theny, = Acost— Atsint+ Bsint+ Bt cost.
y, +y=—2Asint — Atcost + 2B cost — Btsint + Atcost + Btsint = cost.
ThenA =0 and B =1 and y, = 1tsint.
13 (@)y" —4y' +3y=¢" (b)y" -4y’ +3y ="
Solution (a) Look fory, = cte® with y) = c(t + 1)e’ andy, = c(t 4 2)e".

. 1 1
yé/ — 4y1§ + 3yp = (2¢ — 4c)e’ = €' with ¢ = —5 and yp, = —Etet.
(b) Look fory,, = cte® with y, = ¢(3t + 1)e* andy, = ¢(9t + 6)e™.
. 1 1
Yy — 4y, + 3y, = (6c — 4c)e® =¥ with ¢ = 3 and y, = Ete?’t.

14 @y —y=-¢t (b)y' —y =te! ©y'—y=-ctcost
Solution (a) Look fory, = cte with i) = ¢(t + 1)e’.
* when ¢ =1 and y, = te’.

(b) Look fory,, = ct®e’ with y, = c(t* + 2t)e".

Theny; —yy=ce' =e

1 1
Then y, — y, = c(t* + 2t — t*)e’ = te' when ¢ = 5 andy, = 5t2e’5.

(c) Look fory, = Ae’ cost + Be'sint. Then
y, = Ae’ cost — Ae’sint + Be'sint 4 Be' cost.

/_

Yp — Yp = —Ae'sint + Be' cost = e’ cost whenA =0, B = 1, andy,, = etsint.
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15

16

17

18

19

Fory” + 4y = e? sin t (exponential times sinusoidal) we have two choices:
1 (Real) Substitute, = Me' cos t + Ne' sin ¢: determineM and N
2 (Complex) Solve:” 4 4z = e+t Theny is the imaginary part of.
Use both methods to find the sam@)—which do you prefer ?
Solution Method 1 hasy, = Me'cost — Me'sint + Ne'sint + Ne'cost =
(M + N)etcost + (—M + N)et sint.
Theny, +4y, = (M + N)e' cost — (M + N)e'sint 4+ (—M + N) e’ sint +
(—M + N)e'cost +4M e cost + 4N e’ sint.
This equals:! sint when2N +4M = 0 and—2M + 4N = 1.
Then N = —-2M and 2M — 8M = landM = -+ N = 2
Yp = —i5€’ cost+ el sint.
Method 2 Look forz, = Ze(tD. Thenz) + 4z, = Z [(1+14)% +4] e+t =
(1)t givesZ = 1/(4 + 24).
Take the imaginary part of, :

(1+4)t t t i sint)(4 — 24 et
mS = Im® (cost + isint)( i) = —(—2cost + 4sint).
4421 16 +4 20

This complex method was shorter and easier. It producedsines,.
(@) Which values of give resonance fay” + 3y’ — 4y = tet ?

I

Solution ¢ +3c—4= (c—1)(c+4). Soc = 1 andc = —4 will give resonance.
(b) What form would you substitute fai(¢) if there is no resonance ?

Solution With no resonance look fay, = (at + b)e*.

(c) What form would you use wheanproduces resonance ?

Solution With resonance look fog, = (at? + bt)e. If we also look forde, this
will be a null solution and we cannot determise

This is the rule for equationB(D)y = e with resonance’(c) = 0:

If P(c)=0andP’(c) # 0, look for a solutiony,, = Cte®* (m =1)
If cis a root of multiplicitym, theny, has the form .

Solution If ¢ is a root of P with multiplicity m, then multiply the usuat’ et by t™.
(a) To solved*y /dt* — y = t3e>, what form do you expect fay(t) ?
(b) If the right side becomes cos 5t, which8 coefficients are to be determined ?

Solution (a) The exponent = 5 is not a root of P(D) = D* — 1 (5% # 1).
So look fory, = (at® + bt? + ct + d)e.

(b) If the right side i cos 5t then
yp = (at® + bt% + ct + d) cos 5t + (et + ft? + gt + h) sin 5t.

Fory’ —ay = f(t), the method of undetermined coefficients is looking for @ht
hand sidesf (¢) so that the usual formulg, = ¢ [ e~ f(s)ds is easy to integrate.
Find these integrals for the “nice functiong™= e, f = ¢™*, andf =t
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/e_asecsds /e“”emsds /e_“ssds

Solution The equation hag’ — ay so the growth factor (the impulse response) is
g(t) = e%. This problem connects the method of undetermined cosftiito the

ordinary formulay, = [ g(t — s)f(s) ds. The integral[ e®*=*) f(s) ds is easy for:

(c—a)s ) (iw—a)s
/efasecs dS — € \/\efaSeZUJS dS — e.
(c—a) iw—a

1
/sefas ds = — (2 + ¥> e .

Problems 20-27 develop the method of variation of parametsr

20 Find two solutionsy;, y2 toy” + 3y’ + 2y = 0. Use those in formula (13) to solve
@y"+3y +2y=e"  (b)y"+3y'+2y=e""

Solution (a)y” + 3y’ + 2y leads tos? + 3s + 2 = (s + 1)(s + 2). The null solutions
arey; = e~* andy, = e~ 2. The Variation of Parameters formula is

ya f : s _ _
Yp =—1 %-Fyz % with W = y1y5 —yoys = (—2—1)e fe ?' = —3e7 3t

[ = €' givesy, = +— -

3 e3¢ 3
1 1 1
—— et = —et.
6 9 18

(b) Againy; = e~! andy, = e~ 2!. Now f = e~ ! gives resonance archppears :

+ e—t / 6_2t€_t e—2t / e—te—t e—t t e—2t . 1 (t 1) s
— _ — = —1 — e = — —_ e .
Yp 3 =3t 3 oot 3 3 3

e—t e—2tet e—2t / e—tet e—t 6215 e—2t 3t

e

21 Find two solutions tg;” + 4y’ = 0 and use variation of parameters for
(a)y// +4y/ — 2t (b)y" +4y/ — e 4

Solution (@) y” + 4y’ = 0 has null solutiong;; = 1 = €% andy, = e .
ThenW = y1ys — y2y{ = —4e~%t. The equation hag = 2.

e—4tp2t (1)6215 e2t bt ezt
From (13):y, = —1 ‘4t/ =—4e ¥ —)=—.
(13):5 /—46*‘“ te e w5 ¢ \T:m) T 12

(b) f = e~* is also a null solution : expect resonance and a factor

Yp = _1/Le4t+e4t/ (1)67“ _ _e_4t _ e 4t E .
JP _46—4t —46_4t 16 4
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22

23

24

25

Find an equatiorny” + By’ + Cy = 0 that is solved byy; = e andy, = te’.
If the right side isf (¢) = 1, what solution comes from thé P formula (13) ?

Solution With y; = e andy, = te?, the exponent = 1 must be a double root :
As* 4+ Bs + C = A(s — 1)? and the equation can bg” — 2y’ +y = f(t).
With f(t) = 1andW = y1ys — yay{ = et(e! + tet) — tel(et) = e2t, eq. (13) gives

tet(1) et(1) _ _ _
yp = —et/ 7 —|—tet/7 =—e(—te" —e ) +tel(—e) =1

yp = 1 isa good solution toy” — 2y" +y = 1.

y" — 5y’ + 6y = 0 is solved byy; = e?' andy, = €3, becauses = 2 and
s = 3 come froms? — 55 + 6 = 0. Now solvey” — 5y’ + 6y = 12 in two ways:

1. Undetermined coefficients (or inspection)2. Variation of parameters using (13)

The answers are different. Are the initial conditions diffiet ?

Solution Solvingy” — 5y’ + 6y = 12 givesy, = 2 by inspection or undetermined
coefficients.

Usings? — 5s +6 = (s — 2)(s — 3) we havey; = e andy, = €3 andW = €%,
Then setf = 12:

3t 2t —2t —3t
oy [e(12) gy [e®(12) 5 [ 12e 5 [ 12e B B
yp = —€ / e5t +e e5t = —€ _—2 +e _—3 = 6—4 =2

But if those two integrals are computed fréno ¢, the lower limit gives a differeny,, :
t t
12 —atqt 12 —3tqt
_821&/e—2t(12)+83t/6—3t(12)_ezt[ e ] +e3t|: e }
-2 0 —3 0
0 0

=2 — 6e?t + 4e3* = 2 4+ null solution.

What are the initial conditiong(0) andy’(0) for the solution (13) coming from varia-
tion of parameters, starting from agy andy, ?

t
Solution Every integrall (t) = / h(s) ds starts fromI(0) = 0 andI’(0) = h(0)

0
by the Fundamental Theorem of Calculus. For equation (1®),divesy,(0) = 0
andy, (0) = 0 (which can be checked fgf, = 2 — 6¢*' + 4¢3 in Problem 23).

The equation;” = 0 is solved byy; = 1 andy, = t. Use variation of parameters to
solvey” =t and alsoy”’ = 2.

Solution Those null solutiong; = 1 andy, = t give W = y;y4 = 1. Then
T
O L R e

Those are correct solutions4d = t andy” = 2.
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26 Solvey,” + y, = 1 for the step response using variation of parameters, regigfdm
the null solutiong; = cos t andy, = sin t.

Solution The Wronskian ofy; = cost andy, = sint is W = (cost)(sint)’ —
(sint)(cost)’ = 1. Setf = 1 andW = 1 in equation (13):

t (e t
t)(1 t)(1
Yp = —cost/ %—i—smt/ (60871)() = —cost(—cost+ 1) + sint(sint)
0 0

=1 —cost : Stepresponse

27 Solvey,” + 3y’ + 2y, = 1 for the step response starting from the null solutions
_ _ 2t
y1 = e “andy, = e 4.

Solution The Wronskian of; = e~f andy, = e~?'is

W =et(-2e72) — e’zt(—e’t) = —e 3 Setf = 1in (13):
t
2t
_ .t [€ -2t —trt —o |1 o 1
yp = —e / 83t dt+ / 83t =+4e ‘e —1]+e |:§€ —i—ﬂ
0 0
1 1
=—_ —et4+ —e 2
2 + 2

The steady state ig,(co) = 1. This agrees withy” + 3y’ + 2y = 1 wheny =
constant.

28 SolveAy” +Cy = coswt whenAw? = C (the case of resonance). Example 4 suggests
to substitutey = Mt coswt + Ntsinwt. Find M andN.

Solution y = Mtcoswt + Ntsinwt has
y' = M(coswt — wtsinwt) + N (sinwt + wt cos wt).
Now computedy” 4+ Cy whenC = Aw?. The resultis

AM (—2wsinwt — w?t coswt) + Aw? Mt coswt + AN (2w coswt — w?tsinwt) +
Aw? N sin wt = cos wt.

Simplify to AM (—2w sin wt)+ AN (2w coswt) = coswt. ThenM = 0andN = 1/2Aw.
29 Putg(t) into the great formulas (17)-(18) to see the equations atimra.
Solution The equation above (17) came irom tieof P equation (13)t:

Particular solution ettt T es2t o
Constant coefficients ¥r() = J— /e ST )dT+S T /8 > f(T)dT
0 0
s1(t—T) e52(t=T) o
This is the integral ofif( )+ f(T) whichis exactlyy(t —T') f(T).
82 — 51 S2 — 81

For equal roots; = s2, the equation after (17) is tHé of P equation:

t t
Particular solution s s s .
Null solutions eSt,tzelgt yp(t) = —e t/Te TF(T)dT + te t/e Tf(T)dT
0 0
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This is the integral of-Te**=T) f(T) + te*t=T) f(T) dt = (t — T)e**=1) f(T).
This is exactlyg(t — T) f(T) wheng(t) = te*t in the equal roots case.
Neat conclusion Variation of Parameters gives exactly[ g(t — T') f(T)dT.

Problem Set 2.7, page 148

1 Take the Laplace transform of each term in these equatiodssatve forY (s),
with y(0) = 0 andy’(0) = 1. Find the roots; andsy — the poles ofY’(s) :

Undamped y' + 0y +16y =0
Underdamped y' 4+ 2y + 16y =0
Critically damped y'+ 8y + 16y =0
Overdamped Yy’ +10y" + 16y = 0

For the overdamped case us@RE&write Y (s) = A/(s — s1) + B/(s — s2).
Solution (a) Taking the Laplace Transform gf’ 4+ 0y’ + 16y = 0 gives:
s2Y (s) — sy(0) —y’(0) +0-sY (s) — 0-y(0) + 16Y(s) =0
s?Y (s) =14+ 16Y(s) =0
Y(s)(s*+16) =1

1
M,
The poles oY’ = roots ofs? + 16 ares = 4i and—4i.
(b) Taking the Laplace Transform of” + 2y’ + 16y = 0 gives:
s2Y (s) — sy(0) —y’(0) +2-sY (s) —2-y(0) + 16Y(s) =0
s2Y(s) — 1+ 2sY(s) + 16Y(s) =0
Y(s)(s?+2s+16) =1
1
V) = st 16

The roots ofs> + 2s + 16 are—1 — i1/15 and—1 + iy/15. Underdamping.
(c) Taking the Laplace Transform of’ + 8y’ + 16y = 0 gives:
s2Y (s) — sy(0) —y'(0) + 8- sY (s) — 2-y(0) + 16Y(s) =0
s2Y(s) — 1 +8sY(s) + 16Y(s) =0
Y(s)(s? +8s+16) =1
1 1

2185416 (s 4)2
There is a double pole at= —4. Critical damping.

(d) Taking the Laplace Transform gf’ + 10y’ + 16y = 0 gives:

Y(s) =
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s2Y (s) — sy(0) —y’(0) + 10 - sY(s) — 10 - y(0) + 16Y(s) =0
s2Y(s) =1+ 10sY (s) +16Y(s) =0
Y (s)(s* +10s + 16) = 1

1 1 1 1

Y(s) = =
) = 105716 572658 6612 6678
The poles ofY (s) are—2 and—8: Overdamping.
Invert the four transform¥ (s) in Problem 1 to findy(¢).

Solution ()Y (s) = ﬁ = % P16 inverts toy(t) = 35in(4t)'

(b) Y(s) = m = m inverts by equation (28) to
y(t) = e~ t cos(v/15t) /V/15.

(€)Y (s) = G _&4)2 inverts toy(t) = te—4t.

(d)Y(s) = 6(51 2~ 6(514— ) inverts toy(t) = %e—zt — %e_&.

(a) Find the Laplace Transforii(s) from the equation’ = e** with y(0) = A.
(b) Use PR to breakY (s) into two fractionsCy /(s — a) + Ca/s.

(c) InvertY (s) to findy(¢) and check thay’ = e** andy(0) = A.

Solution (a) Taking the Laplace Transform gf = e gives:

1 -1

(b) By using partial fraction¥ (s) = 4 + 4+ =
s (s—a) s

(c) The inverse Laplace Transform of each term gives:
1

1
y(t) = A+ —eot — —
a a

1 . 1 1
—e = e withy(0) = A+ — — —
a a a

(a) Find the transforn (s) wheny” = et with y(0) = A andy’(0) =
(b) SplitY (s) intoC1 /(s — a) + C2/(s — a)* + C3/s.

(c) InvertY (s) to findy(¢). Checky” = e andy(0) = A andy’(0) = B.
Solution (a) The Laplace Transform gf’ = e gives:

Differentiating gives y'(t) = a A.
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1
2Y _ ! —
WOV O =
s?Y(s) =sA+ B+ ——
A B 71
Y(s) =242 4 -
() s 82 s%(s—a)
(b) 1 7Cs+D+ E  (s—a)(Cs+ D)+ Es?
s2(s—a) 82 s—a s2(s —a) '
1 1 1
That numerator matchésvhenD = ——,C = ——  F = —.
a a a

1t 1
©)ylt)=A+Bt+C+Dt+ FEe' = A+ Bt — — — — + —e°.
a2 a a?

5 Transform these differential equations to firids) :
(@) y" — v = 1withy(0) =4 andy’(0) =0
(b) v + y = cos wt with y(0) =¢'(0) = 0 andw # 1
(€) ¥+ y = cos twith y(0) = 3'(0) = 0. What changed fow =17

Solution (a) The Laplace Transform gf’ —y’ = 1is

2 (s) = 59(0) ~ y'(0) ~ (s (s) ~ y(0)) =
2 (s) —ds — s (s) +4 =
Y (s)(s? — ) = é tds—4
v = S
Y(s) = =+ >+ —

82 s s—1

(b) The Laplace Transform gf” + y = coswt with y(0) = 0 andy’(0) = 0:

_5
52 4+ w?
_5
52 + w?
S
(s24+w?)(s?2+1)
(c) The Laplace Transform af” + y = cost with y(0) = 0 andy’(0) = 0:

s?Y (s) — sy(0) —y'(0) + Y (s) =
s?Y(s)+Y(s) =

Y(s) =

73
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S
S
Y (s) = ———— : Double poles from resonance
(s) EFE p

6 Find the Laplace transformfs,, I, F3 of these functiongy, f2, f3:
@ fi(t) =e® =" (b) f2(t) =™ e () fa(t) =tcost

R a—>b
s—a s—b (s—a)(s—b)
. b 1 1 2s
(b) The Laplace Transform ef'* 4+ ¢~ %" is + = .
s—a s+a s2—a?
(c) The Laplace Transform af® is ﬁ by equation (19). Withy = i, write
tcost = ite' + Lte~". Then the transform ofcost is

Solution (a) The Laplace Transform ef? — e’ is

11 +1 1 I(s+i)2+(s—i)? s*2—-1
2(s—4)2  2(s+4)2 2 (s—9)2(s+14)?2  (s241)2
7 For any real or complex:, the transform off = te® is . By writing
cos wt as (et + e~ /2, transformg(t) = tcos wt and h(t) = te' cos wt.
(Notice that the transform df is new)
Solution The transform ofte®t is ﬁ by equation (19). Here:s = iw.
Thent coswt = 1te™? + Lte=™! transforms to

1 1 1
2 (s — iw)? A (s+iw)? 2 (s—iw)(s+iw)®  (s2 +w?)?’
Similarly te! coswt = Ste(+i)t + Lie(1=w)t transforms to

1 1(s+iw)?+ (s —iw)? 52 — w?

1 1 +1 1l -ltiw)’ (s —1—iw)*  (s—1)°-w?
2(s—1—iw)?2 2(s—14+iw)2 2 (s—1—iw)2(s—1+iw)2  ((s —1)24+w?)?’

8 Invert the transformg?, Fy, F5 using PR and PB to discoverfy, fo, f5:

1 S 1
(@) Fi(s) = G-a(-0 (b) F(s) = (s—a)(s—b) (©) Fi(s) = §3—s
Solution (a) Fi(s) = (s—a)(s—0b) - (a—0b)(s—a) * (b—a)(s—b)
The inverse transform ig, = ! et + ! e’

(a — b) (b — (1)

S a b
b _ _ .
O ) = =6 —0 " @-he - T G-aG-b)
The inverse transform i, = e + ot

(a—0) (b—a)
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N

(©) Fy(s) = 85 (s—=1)(s+ 1)s -

+

1
! ! % S+1+SilusingPF3.
. . 1 1
The inverse transformifs = —1 + Ee_t + Eet'
9 Step1 transforms these equations and initial conditions. Stegplves forY (s).
Step3 inverts to findy(t) :
@y —ay=twithy(0) =0
(b) y" + a®y = 1 with y(0) = 1 and y'(0) = 2
(©) y" + 3y’ + 2y = 1 with y(0) = 4 and ¢/(0) = 5.
What particular solutiom,, to (c) comes from using “undetermined coefficientsj,? = %

Solution (a)y’ — ay = t transforms tasY (s) — y(0) — aY (s) = ig with y(0) = 0.
S

1 %  —i: =
Y — — a a a
() s2(s —a) s + 52 +s—a
. . 1 1 1
The inverse transform ig(t) = —— — —t + —e*%.
a? a a?

(b)y" + ay = 1 transforms ta2Y (s) — sy(0) —y’(0) + a?Y (s) = 1 with (0) = 1
S
andy’(0) = 2. Thisis(s? + a?)Y (s) = y'(0) + sy(0) + E :
S

2 S 1 2 a s 1 1 S
Y(s) = + + =

s2+a2 2402 s(s2+a?) as?+a? s2+a? a?s a?s?+a?’

2 1 1
The inverse transform ig(t) = — sin(at) + cos(at) + — — —; cos(at).
a a a

(©)y"+3y'+2y = 1 becomes?Y (s) —sy(0)—y'(0)+3sY (s) —3y(0)+2Y (s) = %

Theny(0) = 4 andy’(0) = 5 give

Y (s) = 1 n 4s+5 1 4(s+1)+1
Cs(s24+35+2)  (s24+3s5+2) s(s+1)(s+2) (s+1)(s+2)

The inverse transform can come frd?3 on page 143. It comes much more quickly

and directly (without Laplace transforms!) from knowingth

Y=Yp+yn=75+cre +ee

y(0) = 2 +c1+c; =4andy’(0) = —c; —2c; = 5add tog — ¢, = £ and
y(t) = % 4+ 127t — %e‘zt.

Questions 10-16 are about partial fractions
10 Show that PE in equation (9) is correct. Multiply both sides by — a)(s — b) :

(%) 1= +

(a) What do those two fractions ir)Y equal at the points = ¢ ands = b?
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(b) The equation ) is correct at those two points and b. It is the equation of
a straight . So why is it correct for every ?

Solution (usingb instead ofcin PF2):

—b -

1=2 + 5T @ after multiplying equation (9) bys — a)(s — b).
a—b b—a

(a) Ats = awe getl = 2=2. At s = b we getl = 2=2.

(b) When the equation of straight lineis correct for two values = ¢ ands = b, it is
correct for all values of.

11 Here is the PE formula with numerators. Formula) had K = 1 andH = 0:
Hs+ K Ha+ K Hb+ K

PR’ G-a)G-b G-aa-b G-ak—b

To show that P® is correct, multiply both sides bys — a)(s — b). You are left
with the equation of a straight . Check your equation at = ¢ and ats = b.
Now it must be correct for alt, and PR’ is proved.

Solution Multiplying by (s — a)(s — b) produces
(Ha+ K)(s—b) (Hb+ K)(s—a)
+ .
a—b b—a
At s = athisisHa+ K = Ha + K + 0: correct. Similarly correct at = b. Since

(*) is linear ins, it is the equation of a straight line. When correct at 2 point o and
s = b, itis correct for every.

12 Break these functions into two partial fractions usin@RRd PR’ ;

*) Hs+ K =

@ 5 0) 5 © 5t
. 1 1 1 1
Solton @) 1 = =962 -9 Y | 1D
1 1
T4(s—2) 4(s+2)
(b) S _ s _ 2 n -2
s2—4  (5—=2)(s+2) (s5—2)2+2) (-4)(s+2)
1 1
_2(5—2)+2(s+2)
Hs+K  Hs+K
© 2 —55+6 (s—2)(s—3)
9OH + K 3H+ K

C(s—2)(2-3)  (3-2)(s—3)
2H+ K 3H+ K
N s—2 s—3
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13 Find the integrals ofa)(b)(c) in Problem 12 by integrating each partial fraction. The
integrals ofC/(s — a) andD/(s — b) are logarithms.

Solution N ds = / 1 — ! d
@ / s2—4%° 4(s—=2) 4(s+2) §
1 s— 2

1 1
zzln(s—Z)—Zln(s+2):_1n

4 s+ 2
s 1 1
(b) /52—4d82/2(s—2)+2(s+2)d8

1 1 1
:51n(s—2)+§ln(s+2):§ln(sz—4)

————ds = d
© s s—2 s—3 y

Hs+ K / 2H+K+3H—|—K
52 —-554+6

—(2H+ K)In(s —2)+ (3H 4+ K) In(s — 3)
14 Extend PB to PR3’ in the same way that PFrextended to PE :

Gs’+ Hs+ K Ga’ + Ha+ K 77
PF3’ = + =+ <.
(s—a)(s=b)(s—¢c) (s—a)la—b)la—c) 7 ?

2
Solution We want Gs tHs+ K = A B © .
(s—a)(s=b)(s—¢c) s—a s—b s—c

We can multiply both sides b{s — a)(s — b)(s — ¢) and solve ford, B, C'. Or we can
use A as given in the problem statement—and permute lettgisc to get B andC
from A. That way is easier, and our three fractions are
a’G+aH+ K 1 b’G+bH+ K 1 AAG+cH+ K 1
(a—b)(a—c) s—a b—a)b—c) s—b (c—a)(c—0b) s—c¢
15 The linear polynomials — b)/(a — b) equalsl ats = a and0 ats = b. Write down a
guadratic polynomial that equalsats = a and0 ats = b ands = c.
(s =b)(s—c)
(a—Db)(a—r¢)
16 What is the numbef’ so thatC'(s — b)(s — ¢)(s — d) equalsl ats = a ?
NoteA complete theory of partial fractions must allow doubletso@vhenb = a). The
formula can be discovered from IBpital's Rule (in PB for example) when

b approaches.. Multiple roots lose the beauty of BFand PB’—we are happy
to stay with simple roots, b, c.

Solution equals) for s = b ands = c. It equalsl for s = a.

1

Solution ChooseC' = .
(a —b)(a —c)(a—d)

Questions 17-21 involve the transformF'(s) = 1 of the delta function f(¢t) = d(t).
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17 Find F(s) from its definition [ f(¢)e~*'dt whenf(t) = 6(t — T'), T > 0.
0

Solution The transform ofi(t — T') is F'(s) = /5(t —T)e *dt = e~*T.
0

18 Transformy” — 2y’ + y = §(¢). Theimpulse responsey(t) transforms intd’ (s) =
transfer function. The double root; = s; = 1 gives a double pole and a net).
Solution With y(0) = y’(0) = 0, the transform igs? — 2s + 1)Y(s) = 1. Then
Y(s) = ﬁ and the inverse transform is the impulse resparigp= g(t) = te?.

19 Find the inverse transformgt) of these transfer functiori(s) :

2

S S S
(a)s_a (b) PR (©) PR
Solution (a)Y (s) = — _s-ata 4, ¢
s—a Ss—a s—a
y(t) = 3(t) + aet
s s 1 1

(b) Using PF2 we haveY (s) = —— 5= G_alsta) = 30 —a) + 2+ a)

. . 1 1
The inverse transform ig(t) = Eeat + Ee—at = coshat

s? 5?2 —a?+a? a? a a
©Y(s) s2 —a? s2 — a? + s2 —a? + 2(s—a) 2(s+a)

y(t) = o(t) + geat — ge_at = 4(t) + asinh(at)

20 Solvey” + y = 4(t) by Laplace transform, witly(0) = ¢’(0) = 0. If you found
y(t) = sin t as | did, this involves a serious mystery¥hat sine solveg” + y = 0,
and it doesn't havg’(0) = 0. Where doe#(¢) come fron? In other words, what is
the derivative ofy’ = cos t if all functions are zero fot < 0?

If y = sint, explainwhyy” = —sint + §(t). Remember thaty = 0 for ¢ < 0.

Problem (20) connects to a remarkable fact. The same impetgonsey = g(t)
solves both of these equation&n impulse att = 0 makes the velocityy ’(0) jump
by 1. Both equations start from(0) = 0.

y" 4+ By’ + Cy = &(t) with y'(0) =0 4" + By’ + Cy = 0 with y'(0) = 1.

Solution y” +y = §(¢) transforms intas?Y (s) + Y (s) = 1.

ThenY (s) = SQLH has the inverse transforgit) = sin ¢.

At time ¢t = 0 the derivative ofy’ = cos(t) is noty” = sin(0) = 0, but rather
y’" = sin(0) + &(t), since the functiog’ = cos(t) jumps from0 to 1 att = 0.
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21 (Similar mystery) These two problems give the sari{e) = s/(s? + 1) and the same
impulse responsg(t) = g(t) = cos t. How can this be ?

@)y’ = —sin t with y(0) = 1 (b)y' = —sin t + &(t) with “y(0) = 0"

Solution (a) The Laplace transform gf (t) = — sin(¢) with y(0) = 1 is
b
s2+1

1 s2+1—-1 &

Y =1- = =
sY(s) s2+1 s2+1 s24+1

sY(s)—1=—

»

Y(s) = s2+1

(b) The Laplace transform of' (t) = — sin(¢) + 6(¢) with y(0) = 0 is
1
sY(s) —y(0) = 21 +1

s24+1-1 _ 52

$24+1 s2+1

S
s2+1
These two problems (a) and (b) give the sar{@) and therefore the samgt). The
reason is thab(¢) in the derivativey’ gives the same result as an initial condition
y(0) = 1. Both cause a jump from = 0 beforet = 0 toy = 1 right aftert = 0. And
both transform td.

sY(s)—0=

Y(s) =

Problems 22-24 involve the Laplace transform of the integrbof y(t).

22 If f(¢) transforms toF'(s), what is the transform of the integralt) =

o,

f(T)dT ?
Answer by transforming the equatidn/dt = f(t) with 2(0) = 0.

t
Solution If h(t) = [ f(T')dT thendh/dt = f(t) with h(0) = 0. Taking the Laplace
0
Transform gives:
F(s)

sH(s) = F(s) and H(s) = .

t
23 Transform and solve the integro-differential equatior- [y dt = 1, y(0) = 0.
0
t
A mystery like Problem 20y = cos t seems to solvg’ + [ ydt = 0,y(0) = 1.
0

t
Solution The Laplace transform aof + [ydt =1 with y(0) =0 is
0
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25

26

27
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1 1
Y(s) = =
) (s + %) s s2+1
The inverse transform ofY (s) is y(t) = sin(t)
About the mystery: The derivative @bst is —sint + §(¢) becauserost jumps at
t = 0 from zero fort < 0 (by convention) tal. But | am not seeing a new mystery.

t
Transform and solve the amazing equatigridt + [y dt = &(t).
0

t
Solution The transform of% + /ydt =4(t) is sY(s) + Ys) _ 1.
0

1 S
ThenY (s) = =
(s) (s+1)s s2+1
Note that this follows from Problem 20, where we found tha{(t) has integrain(¢)
and derivative- sin(t) + 4(¢).
The derivative of the delta function is not easy to imagingeis-icalled a “doublet”
because it jumps up t&oco and back down te-co. Find the Laplace transform of the
doubletdd /dt from the rule for the transform of a derivative.

Adoublets’(t) is known by itsintegral i 6'(¢)F(t)dt = — [ §(¢t)F'(t)dt = —F’(0).
Solution The Laplace transform af(¢) is 1. The Laplace transform of the derivative
is sY'(s) — y(0). The Laplace transform of the doublgtt) = dd/dt is therefores.

(Challenge) What function(t) has the transforny (s) = 1/(s? + w?)(s® + a?)?
First use partial fractions to finef and K :

and y(t) = cost.

H K

Yis) = 2+ Pt

1 1 1 1
Solution Y'(s) = = — .

oY) = A @) T @ ) () (@ o)
Theny(t) — sin wt sinat
= w(a? —w?) a(a? —w?)’

Why is the Laplace transform of a unit step functififit) the same as the Laplace

transform of a constant functiof(¢) = 1?
Solution The step function and the constant function are the samieXob.
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Problem Set 3.1, page 160

1 (a) Why do two isoclineg (¢, y) = s; and f (¢, y) = s2 never meet ?
(b) Along the isoclinef (¢, y) = s, what is the slope of all the arrows ?
(c) Then all solution curves go only one way across an .
Solution (a) Isoclines can’t meet becaugg, y) has one fixed value along an isocline.
(b) The slope of the arrows is fixed &along the isocling' (¢, y) = s.
(c) All solution curves go one way (with slopg across the isocling(t, y) = s.
2 (a) Areisoclinesf(t,y) = s; andf(t,y) = so always parallel ? Always straight ?
(b) Anisoclinef(t,y) = s is a solution curve when its slope equals .
(c) The zeroclingf (¢, y) = 0 is a solution curve only whepis _ : slope0.

Solution (a) In casef(t,y) does not depend an(autonomous equation) the isoclines
are horizontal lines. In general isoclines need to be pdrmaillstraight.

(b) If the slope of the isoclinef(t, y) = s happens to be (slope of arrows equals slope
of curve, so the arrows go along the isocline) then the isedk actually a solution
curve. Example: A steady state wheféy) = 0 has arrows of slope zero. That
horizontal isocline is also the graph of the constant sofujit) = Y.

(c) The zerocline is a solution curve when the slope is zedoyans constant

3 If y1(0) < y2(0), what continuity off (¢, y) assures thay; (t) < y»(¢) forall ¢ ?
Solution Two solution curveg; (t) andy-(t) can't meet or cross if they are continuous
curves: this will be true iff anddf/dy are continuous.

4 The equationdy/dt = t/y is completely safe ify(0) # 0. Write the equation as
ydy = tdt and find its unique solution starting fropf0) = —1. The solution curves
are hyperbolas—can you draw two on the same graph ?

Solution dy/dt = t/yleads tof ydy = [tdt andy? = > + C. If y(0) = —1 then
y(t) = —V/12 + 1. The hyperbolag? = t? + C are asymptotic to thé5° and—45°
linesy =t andy = —t.

5 The equationdy/dt = y/t has many solutiong = Ct in casey(0) = 0. It has

no solution ify(0) # 0. When you look at all solution curves= C't, which points
in thet, y plane have no curve passing through ?

Solution The solution curveg = C't (allowing all numberg™) go through all points
(t,y) with suitableC' = y/t—exceptthe points on the vertical line = 0 (other
than the origin(0,0) that all the linesy = Ct will pass through). You cannot solve
dy/dt = y/t with an initial value likey(0) = 1, because the right sidg/t would be
1/0.

6 Fory’ = ty draw the isoclinesy = 1 andty = 2 (those will be hyperbolas).
On each isocline draw four arrows (they have slopesd?2). Sketch pieces of so-
lution curves that fit your picture between the isoclines.

Solution The solution curvesly/dt = ty havedy/y = tdt andlny = 3t* + ¢ and
y = exp (3t% 4+ ¢) = Cexp (5t?). Solution curves cross isoclingst,y) = s with
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that slopes! The arrows with that slope are tangent to the curves as they ass the
isocline

The solutions tg)” = y arey = Ce’. ChangingC' gives a higher or lower curve. But

y' = y is autonomous, its solution curves should be shifting right left!

Drawy = 2¢! andy = —2e¢! to show that they really améght-left shiftsof y = ¢!
andy = — e’. The shifted solutions tg’ = y aree!*¢ and— e!*¢.

Solution For all autonomous equatiorg/dt = f(y), the solution curves are horizon-
tal shifts of each other. In particular fgi(y) = y, the curves; = Cet shift right-left
asC increases-decreases.

Fory’ = 1 — 32 the flat linesy = constant are isoclines — y> = s. Draw the
linesy = 0 andy = 1 andy = —1. On each line draw arrows with slofge— 2.
The picture says that = andy = are steady state solutions. From

the arrows ory = 0, guess a shape for the solution cugve: (ef — e™t)/(et + e~ t).

Solution The picture will show the horizontal lings= 1 andy = —1 as “zeroclines”
wheref(t,y) = s = 1 —y? = 0. So those are steady state solution cupgs=Y =
1or—1.

The isocliney = 0 is ther-axis, along withf(t,y) = 1 — y?> = 1 = s. (The arrows
cross ther-axis at45 °, with slopes = 1.) So the solution curves arg-curves going
up from the liney = —1 to the liney = 1, rising at45° along thez-axis halfway
between those two lines.

The parabolay = ¢?/4 and the liney = 0 are both solution curves fay’ = /|y|.
Those curves meet at the point= 0, y = 0. What continuity requirement is failed
by f(y) = /|yl to allow more than one solution through that point ?

Solution The functionf(y) = +/|y| is continuous ay = 0 but its derivativelf /dy =

1/2+/]y| blows up (because df/0.) So two solutions can start from the same initial
valuey(0) = 0, and they do.

Suppose = 0 up to timeT is followed by the curve) = (¢ — T')2/4. Does this solve
y’ = /|y| ? Draw thisy(¢) going through flat isoclineg/|y| = 1 and2.

Solution Yes,y’ = \/|y| is solved by the constani{t) = 0. It is also solved by the
curvey(t) = (t — T)?/4 becausely /dt = (t — T)/2 equals the square root pf(t)|.

So solution curves can lift off the-axisy = 0 anywhere they want, and start upwards
on a parabola.

The equationy’ = y? — t is often a favorite in MIT’s course 18.03: not too easy.
Why do solutiongy(t) rise to their maximum op? = ¢ and then descend ?

Solution Below the parabola? = t (which opens to the right instead of opening
upwards) the right side afy/dt = y? — t will be negative. The solution curves have
negative slope and they can’t cross the rising parabola.

Construct f(¢,y) with two isoclines so solution curves gep through the higher
isocline and other solution curves gownthrough the lower isoclineTrue or false
Some solution curve will stay between those isoclindsontinental divide.

Solution We want the isoclingf(¢,y) = s = 1 to beabovethe isoclinef(t,y) =
s = —1. A simple example would b¢ (¢, y) = y. Then the equatiody/dt = y has
solution curvegy = Cet, C' > 0 goingup through the isoclingf(¢,) = 1 (which is
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the flat liney = 1). The curveg, = Ce with C < 0 go down throughy = —1. The
continental divide is the solution curve(t) = 0 with C' = 0. Certainlyy(t) = 0 does
solvedy/dt = y.

There is always a “continental divide” where solution cuer(léke water in the Rockies)
can’t choose between the Atlantic and the Pacific.

Problem Set 3.2, page 168

1

Draw Figure 3.6 for a sink (the missing middle figure) with= cie~2! + cpe?.
Which term dominates as— oo ? The paths approach the dominating line as they
go in toward zeroThe slopes of the lines are-2 and —1 (the numbers; ands,).
Solution Thecye™t term dominates at— oo since it decays at a slower rate.

Then y(t) = sin wt sinat
v = w(a? —w?) a(a? —w?)’
Draw Figure 3.7 for a spiral sink (the missing middle figuréjhwootss = —1 + 4.

The solutions arey = Cie fcost + Coe tsint. They approach zero because
of the factore—*. They spiral around the origin becausecof ¢t andsin ¢.

Solution The spiral goes clockwise in toward, 0). Not easy to draw to scale, by
hand!

Which path does the solution take in Figure 3.6yif= e + ¢'/2? Draw the
curve(y(t), y’(t)) more carefully starting at= 0 where(y,y’) = (2, 1.5).

Solution Ast — oo, the path of the pointy(t),y’(¢)) comes closer and closer to the
path fory = e!—because e* dominates the other termet/2. The path fory = e
has pointgy,y’) = (e!, e!) so it is a straight5 ° line in the(y, y’) plane.

Which path does the solution take around the saddle in Fig@iiey = e*/? + et ?
Draw the curve more carefully startingtat= 0 where(y,y’) = (2, —3).

Solution The functiony = e/ 4+ e~* comes from exponen%; and—1 (positive and
negative will give asaddle point The graph shows the spiral is unwinding clockwise
as it leaves the tight spiral and goes outward. For large dominant part ofy, y’)

will be (e!/2, Let/2) from the growing terme!/2 in y.

Redraw the first part of Figure 3.6 when the roots are equal= s; = 1 andy =
c1et + cotel. There is nose-line. Sketch the path foy = et + tet.

Solution y = et +te! hasy’ = 2e! +tet. The larger termie! gives(y, y') = (tet, tet)

on the45° line in they, y’ plane. Att = 0 it starts from(y(0),y'(0)) = (1,2).

The solutiony = e2* — 4¢? gives a source (Figure 3.6), wi = 2e?* — 4¢t. Starting
att = 0 with (y,y’) = (=3,—2), where is(y,y’) whene! = 1.1 ande?! = .25 and
et =27

Solution Substituting the valuels= In 1.1 andIn 0.25 andln 2, we get:
1. Foret = 1.1 we have(y, y’) = (—3.19, —1.98)

2. Foret = .25 we have(y,y’) = (—0.9375, —0.875)

3. Fore! = 2 we have(y,y’) = (—4,0)
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Those early times don’t show the situation for latgehen the dominant tere?? gives
(y,y") = (2!, 2¢%) and the path approaches a straight livith slope 2

The solutiony = e’(cost + sint) hasy’ = 2¢! cost. This spirals out because of.
Plot the pointy,y’) att = 0 andt = w/2 andt = , and try to connect them with a
spiral. Note that™? ~ 4.8 ande™ ~ 23.

Solution

1. Fort =0, (y,y') = (1,2)

2. Fort =%, (y,y') = (e™/2,0) ~ (4.8,0)

3. Fort =7, (y,y') = (—e™, —2e™) ~ (—23.1, —46.2)

Maybe we can see the path better by writiggy’) = e!(cost, cost) + ef(sint, cost).
The first term goes forward and back on #ie° line. the second term circles around
and spirals out because @f So we have a big circle around a moving slider.

The rootss; and s, are+2i when the differential equation is . Starting from
y(0) = 1 andy’(0) = 0, draw the path ofy(t),y’(t)) around the center. Mark the
points whert = /2, 7, 37 /2, 27. Does the path go clockwise ?

Solution The differential equationig’’ + 4y = 0. The solution starting &y, y') =
(1,0)is (y(t),y'(t)) = (cos 2t, —2 sin 2t). This is an ellipse in the equation

yQ + Z(y/)Q = cos® 2t + sin?2t = 1.

The path is clockwise around that elliptical center.

The equatiory” + By’ +y = 0 leads tos? + Bs +1 = 0. ForB = -3, -2, —1, 0,
1, 2, 3 decide which of the six figures is involved. FBr= —2 and2, why do we not
have a perfect match with the source and sink figures ?

Solution To determine which figure is involved, we solve the quadragjgation:

—B+vB2-4

s1 and sy are —a
B = —3 hass; = 225 ~ 0.38 and s, = 3£Y5 ~ 2.6. Sourcewith 0 < s; < s2
B = —2hass; =1 and s; = 1. Since 0 < s; = s5 we have asource
B = —1hass; = 1+T‘/5 and sy = 1+—5/§ Spiral Source (outward) Re(s;) = Re(s3) > 0
B = 0hass; =i and s; = —i. Since 0 = Re(s1) = Re(s2) we have aenter
B = 1hass; = =143 ands, = =143 Spiral Sink (inward) Re(s;) = Re(s2) < 0
B = 2hass; = -1 and s = —1. Since s; = s < 0 we have asink
B = 3hass; = 25¥5 ~ 26 and s, = =32¥5 ~ —0.38. 51 < s5 < 0. Thisis asink

The special cas® = 2 andB = —2 gaveequal rootss; = s». Then there will be a
factor “t” in the null solution. The path won't close on itself like ade or ellipse. As
it turns, it will go slowly outward from that factor.
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10 Fory” 4+ y’ + Cy = 0 with dampingB = 1, the characteristic equation will be

5?2 + s+ C = 0. Which C gives the changeover fromsink (overdamping) to a spiral
sink (underdamping) ? Which figure h&s< 0?

Solution The solutions to the quadratic equatign+ s + C = 0 are

—-1+£+v1-4C
2

s1 and sy are

The change from a sink to a spiral sink occur€at %. Those are sinks because the
real part ofs is negative. Wheid' is less than zero, we change to one positive root and
one negative root. Then the path becomeaddle

Problems 11-18 are aboutly /dt = Ay with companion matrices [ o 1 ] .

11

12

13

14

-C -B
The eigenvalue equation d + B\ + C = 0. Which values ofB andC give com-

plex eigenvalues? Which values BfandC' give \; = Ay ?
Solution Look at the solution to the quadratic equatioh+ BA 4+ C =0:

~B++vB?2-4AC -B++B?2-4C
24 - 2
Therefore wherB? < 4C we get complex eigenvalues.
On the other hand, wheR? = 4C we get\; = Ay = —B/2 (the square root ig).

Find A\; and ), if B = 8 andC = 7. Which eigenvalue is more important@ass oo ?
Is this a sink or a saddle?

Solution We solve the quadratic eigenvalue equationfpandX; :

_ VB2 — _ /64 - 98
A= B+vEB 4AO: 8+ v6d - 28 gives A\; = —7 and Ay = —1.

A 2
Sinces; < sy < 0 we have asink. The more negative, gives slower decay as
t — 0.

Why do the eigenvalues have + Ay = —B? WhyisAi Ao = C'?
Solution This refers to the eigenvalues of the companion matrix :

A1 and Ay =

[
A= {_(g _é] comes from Z;, _ y_zcy ~ By Theny!” = yJ isy/' + By +
Cyl =0.

The eigenvalued; and )\, are the roots oA%> + BX + C = 0 just as the roots; and
so are the roots 0f? + Bs + C = 0. We know from factoring intds — s1)(s — s2) or
(A — A1) (X — o) that the coefficient oA? is 1, the coefficient of\ is B = —\; — Ao,
and the constant form 8§ = \; times\s.

Which second order equations did these matrices come from ?

A = [ (1) (1) } (saddle) Ag = { _(1) (1) ] (center)

Solution Write the matrix equation’ = Ay as two coupled first order equations. For
A we get
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3/1, =Y2

Y2 =1
Theny{’ = y4 = y; and the second order equationji¥ = y.
The second matrid, givesy; = y» andys = —y.

Theny{’ = y5 = —y; and the second order equationji¥ + y = 0. (Notice that we
also findys' = —y2.)

The equationy” = 4y produces a saddle point é1,0). Finds; > 0 andsy < 0
in the solutiony = cie®1? + cae®2?. If c1ca # 0, this solution will be (large) (small) as
t — oo and also ag — —oo.

The only way to go toward the saddlg, ') = (0,0) ast — ccisc; = 0.
Solution Assuming a solution of the form(t) = e*t gives:

y" —4y =0
s2e5t _ 4est —
s?2—4=0
s =22
Therefores; = 2 ands; = —2. The solution becomeg = cie?! 4 cye~ 2. As

t — oo, thee?! term will grow unlesg; = 0. Inthatcaséy,y’) = (cae ™2, —2coe %)
goes to the saddle poiff, 0).

If B =5andC = 6 the eigenvalues arg, = 3 and)» = 2. The vectorey = (1, 3)
andv = (1, 2) areeigenvectorsf the matrixA : Multiply Awv to get3v and2wv.

Solution v = (1, 3) is an eigenvector with eigenvalug = 3:

o2 -

Similarly v = (1, 2) is an eigenvector with eigenvalug = 2:

-5 3] ] =[] -2s]

Notice that these eigenvectors of the companion mattave the formv = (1, A).
In Problem 16, write the two solutiong = vert to the equationyy’/ = Ay.
Write the complete solution as a combination of those twatsmis.

Solution The eigenvectors; = (1,3) andvz = (1,2) give two pure exponential
solutionsy = ve :
2t

egt e
Y1 = |:3e3t:| and Y2 = |:262t:| .

The complete solution ig(t) = ¢1y1 + coy2. Two constants to match two components
of the initial vectory(0) at¢ = 0. Theny(0) = c1v1 + c2v2.
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18

19

20

The eigenvectors of a companion matrix have the forea (1, \). Multiply by A to
show thatdv = \v gives one trivial equation and the characteristic equatfon B+

C=0.
0 1][1]_,[1 i< A =
—C B || AT A —C—BXx =)\2

Find the eigenvalues and eigenvectorsiof [ :f é }

Solution The eigenvectors of a companion matrix have the special foen(1, ), as
the problem statement shows—becauge — BA = A2 from the eigenvalue equation
A2+ BA+C=0.

The exampled is nota companion matrix!

A= {3 1] has eigenvectore; = [}] and v, = [

1 .
1 3 ]Wlth A =4 and \, = 2.

-1

3 111 1 31 1 1
HElIESE b)) =2
The equation foA is A2 — 6\ + 8 = 0 with 6 coming from the trac8 + 3 and8 coming

from the determinari — 1.

An equation is stable and all its solutions = c;e't + c2e2! go to y(oo) = 0
exactly when

(s1 <0o0rsy; <0) (s1 < 0andsy <0) (Re s1 < 0and Re s2 < 0)?

Solution The correct answer is (Re< 0 and Resy < 0).
If Ay” + By’ + Cy = D is stable, what ig/(cc) ?
Solution The steady state solution to this equation is the congjésd) = D/C.

Because the equation is stable, the null solutig(t) will go to zero as — co. The
rootss; ands, have negative real parts.

Problem Set 3.3, page 182

1

If y/ = 2y + 3z + 4y? + 522 andz’ = 6z + Tyz, how do you know that” = 0,
Z = 0 is a critical point ? What is the by 2 matrix A for linearization around
(0,0) ? This steady state is certainly unstable because .

Solution Herey’ = f(y,z) andz’ = g(y,2) havef = g = 0 at the point(y, z) =
(0,0). Then this point is a critical point (stationary point). Thacobian matrix of
derivatives at that poir(D, 0) is

_ { (2) g ] at (y,2) = (0,0).

The eigenvalues of this triangular matrix &@nd6 (on the diagonal). Any positive
eigenvalue means growth and instability.

of/oy Of/0z | | 2+8y 3+10z
dg/0y 9Dg/dz | — Tz 6+ Ty
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2 In Problem 1, changeéy and6z to —2y and —6z. What is now the matrix4 for
linearization aroundo, 0) ? How do you know this steady state is stable ?

Solution
A:[ —24+8y 3+10z }

-2 3 .
7y 64Ty |~ [ ] now has eigenvalues=—2, —6: stable

0 —6

3 The systeny’ = f(y,z) = 1 —y?> — 2z, 2/ = g(y,2) = —5z has a critical point
atY = 1, Z = 0. Find the matrixA of partial derivatives off andg at that point:
stable or unstable ?

Solution Heref =g =0when(Y, Z) = (1,0).
of/oy 0of/o —oy -1 _9 1
[ 39?35 39;8:2 } = { % _5 } = { 0 —5 } . Stable

4 This linearization is wrong but the zero derivatives arerect: What is missing?
Y =0, Z = 0is not a critical point ofy’ = cos (ay + bz), 2’ = cos (cy + dz).

y" | | —asin0 —bsin0 y| |00 Yy
z' | 7 | —esin0 —dsin0 z| 100 z |-

Solution Atthe point(Y, Z) = (0,0), the functionsf = cos(0-+0) andg = cos(0+0)

are equal td.. This is not a critical point.

5 Find the linearized matri¥d at every critical point. Is that point stable ?
! __ I __ 3
y'=1-yz Yy =-y —z
(a) P — (b) 2=yt 23

Solution (a) f(y,2) = 1 — yz andg(y, z) = y — 2> are both zero whep = 23 and
thenl —yz = 1 — 2% = 0. ThenZ = 1 goes withY = 1 andZ = —1 goes with
Y = —1: two critical points.

a- [ ][ )= [ 3] e [1 4]

The eigenvalues solv&t(A — AI) = 0.

At (1,1) det{_ll_)\ _?)_i/\}:)\2+4/\+420, A=—2,-2

1-x 1 42 -~ _
1 _3_A] =XN4+2\-4=0, A=-14++5

Then(Y, Z) = (1,1) is stablebut (-1, —1) is unstable (because-1 + v/5 > 0).

(b) f = —y®> — z andg = y + 2> are both zero atY,Z) = (0,0) and (1, —1)
and (—1,1): three critical points becausg = 0 givesz = —y* and theng = 0
givesy = y“, leading toy = 0,1, or —1. The stability test applies to the matrix of
derivatives:

-3y -1

322

At (—1,—1) det {

A:

] has det(A — M) = A% + \(3y% — 32%) + 1 — 93222

At (0,0) X +1=0and\=+i Unstable (neutrally stable)
At (1,—1) and (—1,1) A>—-8=0 Unstablewith A\ = /8.
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6 Can you create two equatiop$ = f(y, z) andz’ = g(y, 2) with four critical points:
(1,1)and(1,-1) and(—1,1) and(—-1,-1) ?

| don’t think all four points could be stable ? This would bieelia surface with four
minimum points and no maximum.

Solution An example would bg’ = y2 — 22 andz’ =1 — 22. Thenz> -1 =10
andy? — 2% = 0 have the four point§Y, Z) = (+1, +1) as critical points. In this case
the linearized matrix (Jacobian matrix) is

gg;gg gggi ] = [ 2Oy :;z } andonly (Y, Z) = (—1,1) is stable

7 The second order nonlinear equation for a damped pendulythisy’ + siny = 0.
Write ~ for the damping terny’, so the equation is’ + z + siny = 0.

Show thatY” = 0, Z = 0 is a stable critical point at the bottom of the pendulum.
Show thaty” = 7, Z = 0 is an unstable critical point at the top of the pendulum.

8 Those pendulum equatiops = z andz’ = —siny — z have infinitely many critical
points! What are two more and are they stable ?

Solutions to 7 and 8 The systemy’ = z andz’ = —z — sin y has critical points when
z = 0 andsiny = 0 (this allows all valuesy = n).

The Jacobian matrix of derivatives ofand—z — sin y is a companion matrix :

A— 0 1| 0 1 or 0 1
| —cosy —1 | | -1 -1 1 -1

We have— cosy = —1aty = 0, 27, +4x,...and— cosy = +1 aty = +x,+3m, ...
The eigenvalues satisfy? + A\ +1=00r\2 + ) —1=0:

A =1(-1+£+=3) = 3(-1+iy/=3) isstable aty = 2n.

A =1(-1£+/5) isunstable at y = (2n + 1)x.

The pendulum is stable hanging straight down (at 6:00) arstiabte when balanced
directly upward (at 12:00).

9 The Liénard equation” + p(y)y’ + q(y) = 0 gives the first order systep! = > and
2! = . What are the equations for a critical point ? When is it &&bl

Solution The coupled equations agé = z andz’ = —p(y)z — q(y). These right
sides are zero (critical point) when= 0 andq(y) = 0.

The first derivative matrix is
of /oy 0f/)0z | _ 0 0o | _ 0 1
dg/0y 0g/0z | | —p'z—q¢' -p | | -C =B |’

That companion matrix is stable (according to Section 3HgmB > 0 and C > 0.
10 Are these matrices stable or neutrally stable or unstable¢e or saddle) ?

EI R T e
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Solution The stability tests arerace < 0 anddeterminant > 0. This is because
determinant= (A1)(A2) and trace= sum down the main diagonal A\; + \y. Apply
these tests to find

stable, unstable (saddle withdet < 0), stable, unstable, stable
The second matrix has = +3: which gives undamped oscillation and neutral stability.

Suppose a predatereats a prey that eats a smaller prey:.
de/dt = —x + xy Find all critical pointsX, Y, Z
dy/dt = —zy +y +yz Find A at each critical point
dz/dt = —yz + 2z (9 partial derivatives)

Solution The right hand sides arg1 — y) andy(—z + 1 + z) andz(—y + z). These
are all zero athree critical points (X,Y, Z): (0,0,0) (0,2,—1), (1,1,0)

(Follow the two possibilitiest = 0 or Y = 1 needed forX (1 — Y') = 0.) The matrix
of first derivatives of those right hand sides is

1—y —x 0
[ -y —r+1+4+z Y ] . Substitute the three critical vectofsX,Y, Z) :
0 —z 2—y

A:

1 0 0 -1 0 O 0 -1 0

0 1 0 1 l -2 0 2 ‘| l -1 0 1 ‘|

0 0 2 0 1 0 0 0 1

The dampinginy”+(y’)?+y = 0 depends on the velocity = z. Thenz’+23+y =

0 completes the system. Damping makes this nonlinear systdnies—is the linearized
system stable ?

Solution y’ =z andz’ = —y — 23 has only(Y, Z) = (0, 0) as critical point:

A = first derivative matrix= [ _01 _;ZQ ] has determinant 1, trace= —3z%:
unstable
Determine the stability of the critical points, 0) and(2,1):
/ / 2
y =—y+dztyz y' =y 4z
@ 2= —y— 224 2yz (0) 2! =y — 22%

Solution (a) The first derivative matrix dty, z) = (0,0) or (2,1) is

ol z=1 44y | | -1 4 0 6 | (unstable)
A_[z—l 2y—2}_[—1 —2](Stab'e)°r{1 2} (trace 2)

(b) The first derivative matrix aty, z) = (0,0) or (2, 1) is (replace x by z)

| -2y 4 | 0 4 | (unstable) -4 4
A_{ 1 —8z3]_ [1 O] (race0) ' [ 1 _8}(stable)
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Problems 14-17 are about Euler’s equations for a tumbling bx.

14

15

16

17

The correct coefficients involve the moments of inedtjal,, I3 around the axes.
The unknowng:, y, z give the angular momentum around the three principal axes:
dx/dt = ayz with a=(1/I3 —1/13)
dy/dt = bxz with b= (1/ — 1/I3)
dz/dt = cxy with  ¢= 1/, —1/I).
Multiply those equations by, y, ~ and add. This proves that + y? + 22 is .
Solution Multiply by «, y, andz to get
zr! = aryz
yy' = bryz
22! = cryz

2(@? +y* +2%) = (a+ b+ c)zyz = 0 forthe givena, b, c.

Thenz? + 4% + 22 = constantbecause its derivative is zero.
Find the 3 by 3 first derivative matrix from those three right hand sidésg, h.
What is the matrixA in the6 linearizations at the santecritical points ?
Solution The first derivative matrix in Problem 14 is

of/0x Of/0y Of/0z 0 az ay

[ 0g/0x 0g/dy 0g/0z 1 = [ bz 0 bz 1

Oh/O0x Oh/Oy Oh/Oz cy cx O

The 3 right sides are zero at the 6 critical poifitd, 0, 0), (0, =1, 0), (0,0, +1).

0 0 0 0 0 +a 0 4a 0
0 0 b, 0 0 0|, | £ 0 0
0 +c 0 tc 0 0 0 0 0

All six points are neutrally stableRe A = 0).

You almost always catch an unstable tumbling book at a momden it is flat.
That tells us: The poink(t), y(t), z(¢t) spends most of its time (near) (far from)
the critical point(0, 1, 0). This brings the travel timeinto the picture.

Solution This neat observation was explained to me by Alar Toomre. vidhecity
(f,g9,h) = (ayz,bxz, cxy) is low near a critical point where, y, z are small. Then
the book spends most tirmear the point where the book is flat and easy to catch.

In reality what happens when you

(a) throw a baseball with no spin (a knuckleball) ?

(b) hit a tennis ball with overspin ?

(c) hit a golf ball left of center ?

(d) shoot a basketball with underspin (a free throw) ?

Solution (a) The knuckleball is unstable—hard for the batter to judge
(b) The topspin brings the tennis ball down faster with a bighounce.
(c) The golf ball slices to the right off the fairway.

(d) The basketball with underspin is more stable with lessnice around the rim.
It is more likely to end up in the basket.
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Problem Set 3.4, page 189

1 Apply Euler's methody,, 11 = yn + At f,, to findy; andy, with At = 1 :

@y'=y Oy =y> ©y' =2ty (all with y(0) = yo = 1)
Solution (@) y1 = yo + At yo = 1+ At = 1.5 yo = (1 + At)? =y, =
(1+ At =225

By =yo+ At 2 =1+At=15 yo =y +Aty? =1+ At + AL +2At +
At?) = (1+ At)(1 + At + At?) = (1.5)(1.75)

(©y1 = (1+2t+ At)yo = 1 because =0 y2 = (1 + 2t + At)y; = 1.5 because
t = At.

2 For the equations in Problem 3, find andy, with the step size reduced vt = %.
Now the valuey, is an approximation to the exacgj(t) at what time¢?
Thenys, in this question corresponds to whigh in Problem 3 ?

Solution With At = %, y2 Will now be an approximation to the true SO|Uti@I(I%)
becaus@At = 3.

@y =1+At=5/4=1.35 Yo = (1+ At)? = 25/16
(D)yr =1+ At =125 ve=01+3)1+3+5) =) (%)
©uy =1 yp=(1+2t+ Aty = (1+3) = (2)
3 (a) Fordy/dt = y starting fromyy = 1, what is Euler'sy,, whenAt = 1?

(b) Is it larger or smaller than the true solutign= ¢! at timet = n ?

(c) What is Euler'sj;,, whenAt = § ? This is closer to the trug(n) = e”.

Solution (@) yn+1 = (1 + At)y, = 2y, SOy, = 2"

(b) 2™ is smaller thare™

(©) Ynt1=(1 4 Ab)yn = 2y,.. Thenys, = (1+1)*" is above2" becausd1+1)*> 2.

4 Fordy/dt = —y starting fromy, = 1, what is Euler's approximation, aftern steps
of size At ? Find all they,,’s whenAt = 1. Find all they,,'s when At = 2. Those
time steps ar#oo largefor this equation.

Solution y,4+1 =Y, — Aty, S0y, = (1 — At)"yp.
If At =1thenall ofYy,Y5,Ys,... are zero.

If At =2thenY,,+1 = —y, andy, = (—1)".

The approximation will blow up foAt > 2.

In reality it seems useless fdxt > 0.1.

5 The true solution ta)’ = 3?2 starting fromy(0) = 1is y(t) = 1/(1 — t). This
explodes at = 1. Take3 steps of Euler's method withht = % and take4 steps
with At = i. Are you seeing any sign of explosion ?

Solution With At = 1, Euler's method fory’ = y* becomesy,, 11 = y,, + Aty2.
Three steps wit\¢ = £ and four steps witii\t = 1 give
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10

Yi=35 Y2a=23% ys=__ =% Y= Ys=__ Ya=__
We are not reaching infinity at time= nAt¢ = 1 but asAt — 0 andn = 1/At the
numbersy,, will keep growing past any bound.

The true solution taly /dt = —2ty with y(0) = 1 is the bell-shaped curue= et
decays quickly to zero. Show that step + 1 of Euler's method gives
Ynt+1 = (1 — 2nAt?)y,. Do they,,’s decay toward zero ? Do they stay there ?

Solution A step of Euler's method starting at timte= nAt givesy,11 = yn —
2(nAt)y,. In the early steps we are multiplying, by 1 — 2nAt¢ which is normally
less thanl. So they, are decreasing at first. But whenis larger thanl /At¢, we are
multiplying by a number below-1. At that point they,, start growing and changing
sign at every step : serioursstability.

The equationg’ = —y andz’ = —10z are uncoupled. If we use Euler's method for
both equations with the sana&t between% and2, show thaty,, — 0 but|z,| — co.

The method is failing on the solution= ¢~ that should decay fastest.

Solution The Euler formulas arg, 11 = (1 — At)y, andz,+1 = (1 — 10A¢)z,. For
time stepsAt betweenll0 and2, they factor hagl — At| < 1. But thez factor has

|1 — 10At| > 1. The true solutions arg = Ce~* andz = Ce~ 10t

But that quickly decreasing has a quickly increasing,, when|1 — 10A¢| > 1:
instability.

What valuesy; andy, come frombackward Eulerfor dy/dt = —y starting from
yo = 1?2 Show thay? < 1 andy? < 1 even if At is very large. We havabsolute
stability: no limit on the size ofAt.

Solution Backward Euler fory’! = —y iS yp41 — yn = —Aty,i1 (NOt —Aty,,).
Theny,+1 = y./(1 + At). For any At that factot /(1 + At) is less thanl : absolute
stability.

The logistic equation’ = y—y? has anS-curve solution in Section 1.7 that approaches
y(oo) = 1. This is a steady state becauge= 0 wheny = 1.

Write Euler’s approximationy,, 1 = to this logistic equation, with stepsize
At. Show that this has the same steady stgig; equalsy,, if v, = 1.

Solution y’ = y—y? is approximated by,, .1 = v, +At(y, —y2). This equation has
a steady state whep, 1 = y,—and this requires thAt factor to be zeroy,, — y2 =
0. So the two steady states agg 1 forever) and ¢,, = 0 forever).

The important question in Problem 3 is whether the steadg gta = 1 is stable
or unstable. Subtradtfrom both sides of Euler's,, 1 = y, + At(y, — y2):

Ynt1 — 1= yn + At(yn — 9721) — 1= (yn — 1)(1 — Atyn).
Each step multiplies the distance franby (1 — Aty,,). Near the steady., = 1,
1 — Aty, has sizg1l — At|. For whichAt is this smaller than to give stability ?

Solution y,, — 1 is the distance from steady state. The equation in the proshows
that this distance is multiplied at each step by a fadter Aty,,. This factor has
|1 — Aty,| < 1 when0 < Aty,, < 2. Wheny, is nearl, this meansAt can be
almost2 for stability.
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Apply backward Euley?, | = y,+AtfB | =y, +At [yfﬂ - (yfﬂ)?} to the logis-

tic equationy’ = f(y) = y —y% Whatisyf if yo = 3 andAt = 12
You have to solve a quadratic equation to figfd. 1 am finding two answers foy”.

A computer code might choose the answer closegto

Solution At each new time step, Backward Euler becomes a quadratitiequfor
Yn41 in the logistic equation. Ifiy = 1 andAt = § the equation fog; (= y?) is

At(y1)* + (1 - At)y1 —yo =0 OR iy% + Zyl - % = 0.
Multiply by 4. The solutions of? + 3y; — 2 = 0 are
Y1 = #ﬁ The better choice near %) is yP = #ﬁ
For the bell-shaped curve equatigh = —2ty, show that backward Euler divides

yn by 1 + 2n(At)? to find y2 ;. Asn — oo, what is the main difference from
forward Euler in Problem 3?

Solution Backward Euler fory’ = —2ty iS yp11 — Yn = —2tAtyn i1 OF Ypy1 =
Yn/ (1 + 2t + Ab).

That fraction is smaller tham for all ¢t and At. Then the numberg,, are steadily
decreasing as — oo, like the true solutiony(t) = et (Forward Euler was hopeless
in Problem 6, withY;, increasing and changing sign at every step beyordl /At.)
The equationy’ = \/m hasmany solutionstarting fromy(0) = 0. One solution
stays aty(t) = 0, another solution iy = ¢*/4. (Theny’ = ¢/2 agrees with,/7.)
Other solutions can stay at = 0 up tot = 7, and then switch to the parabola
y = (t — T)?/4. As soon ag leaves the bad poinj = 0, wheref(y) = y'/?
has infinite slope, the equation has only one solution.

Backward Eulery; — At\/w = yo = 0 gives two correct valueg?® = 0 and
yP = (At)%. What are the three possible valueg/§f?

Solution Backward Euler for? will be y2 — At\/|y=| = Yi. If yP = 0 theny?

can be0 or (At)2. If yP = (At)? thenz = /|y?| solvesz? — Atz — (At)? = 0.
Again two possibilities :
1

Because\/m is continuous but its derivative blows upat 0, multiple solutions are
possible.

Every finite difference person will think of averaging fomdand backward Euler :
. 1 1
Centered Euler/ Trapezoidal ¢S, — yn = At <§fn + Ef'?“)'

Fory’ = —y the key questions amccuracyandstability. Start withy(0) = 1.
1— At/2

1+ Aae/2 7™

11 .
y$ —yo = At (— %0 — ny) gives y& =

Stability Show thafl — At/2| < |1 + At/2| for all At. No stability limit onAt.



3.5. Higher Accuracy with Runge-Kutta 95

Accuracy Fory, = 1 compare the exaq); = e 2t = 1 — At + %Aﬁ —
withy¢ = (1 - 2A8)/(1— 1At = (1 - LAH(1 — LAt + 2A2 — ...
An extra power ofAt is correct:Second order accurach good method.

Solution Stability is |yn+1| < |yn| for an equation likey’ = —y where the true
solutiony = e~ is decreasing. In this problem

1—At/2 1—At/2 At At
¢ / 1= Atj2 1+7’>’1——

yo has growth factor < 1 because

T TTA2 1+ At)2 2

Accuracy is decided by comparing to the exacy;. The two series agree in the terms
1 and—At and 1 (At)?: Second order accuracybecause the¢At)? error appears in
1/At time steps to reach the typical time= 1. Sign correction in text to:

y$ = (1—%&) / <1+%At> _

The rest is correct and produckes- At + %(Azﬁ)2 ... as required.

The website has codes for Euler and Backward Euler and Cented Euler. Those
methods are slow and steady with first order and second ocdaracy. The test problems
give comparisons with faster methods like Runge-Kutta.

Problem Set 3.5, page 194

Runge-Kutta can only be appreciated by using it. A simple cod is on math.mit.edu/dela.
Professional codes are ode 45 (iMATLAB) and ODEPACK and many more.

1 Fory’ = y with y(0) = 1, show that simplified Runge-Kutta and full Runge-Kutta
give these approximationg to the exacy(At) = e®*:

Yy =1+ At + %(At)Q i =14 At + %(At)Q + %(At)3 + i(At)‘*
Solution Simplified Runge-Kutta (equation (1) in this section) whée- f (t,y)=vy:

1 1
Yntl = Yn + At |:§f(tn7yn) + §f (tn+17 yrl?illcr)]

1 1
=yn + At [Eyn + 3 (Yn + Atyn)]

=y, + Aty, + %(Aﬁ)yn (3 good terms o&Aty,,)
Full Runge-Kutta is in equation (5)—now applied whgf, y) = y:

k1 :lyn ks :1 (3/71"‘g (yn'i‘gyn))
2 2 2 2
1
2

+£ k —l + At +£ +§
Yn B Yn 4 = 5 Yn Yn 5 Yn 5 Yn

ko =
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Then the Runge-Kutta choice fgy, .1 is correct throughlfAt)*!

At At At At
yn+?(k$1+2k2+2/€3+/€4):yn |:1+?+?<1+7)+

B (1A (1 &)Y 8 (g B0 (1 81)))

— 1 2 1 3 1 4

= Un {1 + At + 2(At) + G(At) + 24(At) }
With At = 0.1 compute those numbegg andy% and subtract from the exagt=
eAt. The errors should be close tat)3 /6 and(At)® /120.

Solution Whenyy = 1 andAt = 1—10, the first step in the solution above gives

Simplified Runge-Kuttd + & + % (%)2 =1.105.

1o, 1(1N2 113 1 r1y4 1 1 1 1
Runge-Kuttal + 75 + 5 (75)” + 5 (15)" + 31 (f5) = 16 + 200 + 5000 T 0000 =
1.1051708.

The exact growth factor isxp (1) = 1.1051709. Error10~7 is nearl0—°/120.

Those valuegy andyf** have errors of ordefAt)? and(At)°. Errors of this size at
every time step will produce total errors of size and attimeT’, from N
steps of size\t = T'/n.

Those estimates of total error are correct provided errond drow (stability).

Solution Local errors of sizé At)? or (At)® produce global errors of sizgAt)? or
(At)* after1/At—provided the system is stable and local errors don’t grow.
dy/dt = f(t) with y(0) = 0 is solved by integration wheyi does not involvey.
From timet = 0 to At, simplified Runge-Kutta approximates the integraf ¢f) :

f(At)
1 1 at f(0)
yY = At <§f(0) + §f(At)) is close to y(At) = /f(t)dt
0 0 At

Suppose the graph ¢f(¢) is a straight line as shown. Then the region isegpezoid
Check that its area is exactly. Second order means exact for lingar

Solution The area of a trapezoid {base) (average height) = (A¢t)(f(0)+ f(At))/2.
This is exactly the answer chosen by simplified Runge-Kutta.

Suppose again that does not involvey, sody/dt = f(t) with y(0) = 0. Then full
Runge-Kutta front = 0 to At approximates the integral ¢ft) by 37K :

Yt = At (c1 £(0) + cof (At/2) + s f(AL)) . Find c1, ¢z, cs.

At
This approximation tof f(t) d¢ is called Simpson’s Rule. It ha€" order accuracy.
0

Solution Full Runge-Kutta allows the top edge of the trapezoid talmwed: it is the
graph of a nonlineaf(t). The area under this curve is well approximated by Simpson’s
Rule:
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1 4 At 1
area =~ At [Ef(o) + Ef <7> + Ef(At)} .

If you apply Runge-Kuttatg’ = f(t) from 0 to At, with the right hand side indepen-
dent ofy, the result is

ki = %f(o) ka = %f (%) ks = %f (%) ka = %f (89)

At At 4At At
?(/{14—2]@-‘1—2/{34—/{4) = gf(())-i-?f (7

6 Reduce these second order equations to first order sygtéms f (¢, y) for the vector
y = (y,y'). Write the two components af” (Euler) andyy .
@y" +yy' +yt=1  (B)my” +by’ +ky = cost
Solutions to Problems 6 and Mrite z for y’. The first order systems are

@y == (b)y y' ==
4

) + %f (At) : Simpson’'s Rule

2 =1—-yz—y mz' = —ky — bz + cost

Then Euler's method giveg?”, 2) from (yo, 20) :

E
Y Yo 20
2z 20 1 —yoz0 — (20)
B z
SR S L N
mzf mzo —kyo — bzg + cos0

Simplified Runge-Kutta findsy?, z©) from (yo,29) by addinghalf of those Euler
correctionglus half of the updated correction:

@ v [w ] At] LA A

24 20 2 | 1—yoz0 — (20)* 2 | 1-yfaf = (D)
(b) y1s | Yo At | Zo n At | 2P

mzy 20 2 | —kyo... 2 | —kyf —b2F + cos At

8 Fory’ = —y andy, = 1 the exact solutiony = e~* is approximated at timé\¢ by 2
or3orbterms:

1

yP=1-At yf = 1—At+%(At)2 Yyt = 1—At+%(At)2—%(At)3+24

(At

(a) With At = 1 compare those three numbers to the exaét What errorE ?

(b) With At = 1/2 compare those three numbers:to/2. Is the error neaF/ /16 ?

Solution (a) At = 1givesyf’ =0 yf =1 i =2 =

2 .375 compared to the
exacte™! =.368 ETK =.007.
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(b) At =LgivesyP =1 yf =3 yfK= % =.60677 e /2 =.60653
EFK = 00024.
Two steps withA¢t = £ would leave an error abo(.00024) = —.00048 which is
close t0.007/16.

Fory’ = ay, simplified Runge-Kutta giveg;,;, = (1 + aAt + 1(aAt)?)ys,.
This multiplier ofy,, reached — 2 + 2 = 1 whenaAt = —2: the stability limit

(Computer experiment) For N = 1,2,...,10 discover the stability limit, = Ly
when the series far—* is cut off afterN + 1 terms:

1 3 1 N| _
L0 sl =1

1
1-L+=L%—
*3 6

We knowL = 2 for N = 1 andN = 2. Runge-Kutta haé = 2.78 for N = 4.
Solution The stability limits Ly for N = 1,. . .,10 come from MATLAB:
2.0 2.0 2513 2785 3.217 3.55 3.954 4.314 4.701 5.070.
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Problem Set 4.1, page 206

1 With A = I (the identity matrix) draw the planes in the row picture. ddsides of a
box meet at the solution = (z,y,2) = (2,3,4):

lr+0y+0z=2 1 0 0 T 2
Oz +1y+0z=3 or [O 1 O][y]:[?)].
0 0 1

Ox+0y+1z=4 z 4

Draw the four vectors in the column picture. Two times columplus three times
column2 plus four times colum equals the right sida.

The columns aré = (1,0,0) andj = (0,1,0) andk = (0,0,1) andb = (2,3,4) =
2¢+ 37 + 4k.

2 If the equations in Problem 1 are multiplied ®y3, 4 they becoméDV = B:

2c+0y+0z= 4 2 00 x 4
Oz + 3y + 0z 9 or DV_[O 3 O]ly]_[9]_B
Ox + 0y +4z =16 0 0 4 z 16

Why is the row picture the same? Is the solutidrihe same as? What is changed in
the column picture—the columns or the right combinationite d3?

The planes are the sante: = 4isx = 2,3y =9isy = 3,and4z = 16isz = 4. The
solution is the same poilX = x. The columns are changed; but same combination.

3 If equation 1 is added to equation 2, which of these are ctdarthe planes in the row
picture, the vectors in the column picture, the coefficieatnr, the solution? The new
equations in Problem 1 would he= 2,z +y =5, z = 4.

The solution is not changed! The second plane and row 2 of #iexand all columns
of the matrix (vectors in the column picture) are changed.

4 Find a point withz = 2 on the intersection line of the planes+ y + 3z = 6 and
x —y + z = 4. Find the point withz = 0. Find a third point halfway between.

If z=2thenxz+y = 0andz—y = z give the poin{1, —1,2). If z = 0thenz+y =6
andz — y = 4 produce(5, 1,0). Halfway between those {8, 0, 1).

5 The first of these equations plus the second equals the third:

T+ y+ z=2
r+2y+ z2=3
2¢ + 3y + 2z = 5.

The first two planes meet along a line. The third plane cost#iat line, because
if z,y,z satisfy the first two equations then they also . The equations have
infinitely many solutions (the whole link). Find three solutions oh.

If z,y, 2z satisfy the first two equations they also satisfy the thirdatipn. The line
L of solutions containg = (1,1,0) andw = (3,1,3) andu = 1v + fw and all
combinationgv + dw with ¢+ d = 1.
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6 Move the third plane in Problem 5 to a parallel pl&@ae+ 3y + 2z = 9. Now the three
equations have no solutionshy no? The first two planes meet along the lihebut
the third plane doesn’t that line.

Equationl + equatior2 — equatior3 is now0 = —4. Line misses planeaio solution

7 In Problem 5 the columns ar@, 1,2) and (1,2, 3) and(1, 1,2). This is a “singular
case” because the third columnis . Find two combinations of the columns that
giveb = (2,3,5). This is only possible fob = (4,6, ¢) if ¢ =
Column3 = Column 1 makes the matrix singular. Solutidnsy, z) = (1,1,0) or
(0,1,1) and you can add any multiple ¢f1,0,1); b = (4,6, ¢) needsc = 10 for
solvability (thenb lies in the plane of the columns).

8 Normally 4 “planes” in 4-dimensional space meet at a . Normally 4
vectors in 4-dimensional space can combine to proddce What combination
of (1,0,0,0), (1,1,0,0), (1,1,1,0), (1,1,1,1) producesb = (3,3,3,2)?

Four planes in 4-dimensional space normally meet poiat The solution toAxz =
(3,3,3,2) is ¢ = (0,0,1,2) if A has columng(1,0,0,0),(1,1,0,0),(1,1,1,0),
(1,1,1,1). The equationsare+y+z+t=3,y+ 2+t =32+t =3,t = 2.

Problems 9-14 are about multiplying matrices and vectors.

9 Compute eachlx by dot products of the rows with the column vector:
2 1 0 0 1

1 2 4772
@) —231“2] Ol
41

01 2

DO = =

2 3

o O

(@) Ax =(18,5,0) and (b) Az = (3,4,5,5).
10 Compute eacllx in Problem 9 as a combination of the columns:

1 2 4
9(a)becomesAa:=2[—2 +21 3 [+3 1]=[ 1
—4 1 2

How many separate multiplications fdre, when the matrix is 3 by 3"?

Multiplying as linear combinations of the columns gives saeneAx. By rows or by
columns:9 separate multiplications f& by 3.

11 Find the two components ofx by rows or by columns:

3
2 3|14 3 6 2 1 2 4
{5 1“2} and {6 12“-1} and {2 0 1} h]
Ax equals(14,22) and(0,0) and O, 7).
12 Multiply A timesx to find three components ofx:

0 0 1 T 2 1 3 1 2 1 1
lo 1 O] [y] and [1 2 3] [ 1] and [1 2] [1}
1 0 0]z 3 3 6] -1 3 3

Ax equals(z, y,x) and(0,0,0) and 8, 3,6).
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13 (a) A matrix withm rows andn columns multiplies a vector with components
to produce a vector with components.

(b) The planes from the: equationsdx = b are in -dimensional space. The
combination of the columns of is in -dimensional space.

(a) « hasn components andx hasm components (b) Planes from each equation
in Ax = b are inn-dimensional space, but the columns arenifdimensional space.

14 Write 2x 4 3y + z + 5t = 8 as a matrixA (how many rows?) multiplying the column
vectore = (x,y,z2,t) to produceb. The solutionse fill a plane or “hyperplane”
in 4-dimensional spacd.he plane i3-dimensional with ndD volume

2r+3y+2+5t = 8is Az = bwiththel by4 matrixA =[2 3 1 5]. The solutions
x fill a 3D “plane” in 4 dimensions. It could be callechgperplane

Problems 15-22 ask for matrices that act in special ways on gtors.
15 (a) Whatis the by 2 identity matrix?/ times|[3 | equals| |.
(b) What is the2 by 2 exchange matrix? times |3 | equals| ¥ .

@r=[5 1] @r=[7

16 (a) What2 by 2 matrix R rotates every vector b§0° ? R times [} | is [_Y].
(b) What2 by 2 matrix R? rotates every vector b}80° ?

90° rotation fromR = [_0 1}, 180° rotation fromR? = [_1 O} =1

1 0 0 —1

17 Find the matrixP that multiplies(z,y, z) to give (y, z,x). Find the matrix@ that
multiplies (y, z, «) to bring back(z, y, 2).

0 1 0 0 0 1

P=10 0 1] producedy, z, x) and@ = [1 0 O] recoveryz,y, z). @ is the
1 0 0 0 1 0

inverse ofP.

18 What2 by 2 matrix £/ subtracts the first component from the second component 2 Wha
3 by 3 matrix does the same ?
3 3
5| =12].
7 7
1 00

31 _ 1|3
E [ 5 ] = [ 9 } and FE
-1 1 O] subtract the first component from the second.
0 01

19 What 3 by 3 matrix £ multiplies (z,y, z) to give (z,y,z + x) ? What matrixE—!
multiplies (z,y, z) to give (z,y,z — z) ? If you multiply (3,4,5) by E and then
multiply by E~1, the two results aré ) and( :

1 00 1 0 0
0 1 O]andE_lle 1 0

101 101
(3,4,5).

10
E= {_1 1] andE =

E = , Ev = (3,4,8) and E~!Ewv recovers
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20 What2 by 2 matrix P; projects the vectofz, y) onto thexz axis to producéx,0) ?
What matrixP, projects onto the axis to producé0, ) ? If you multiply (5, 7) by Py
and then multiply byP,, you get( ) and( ).

P = [(1) 8} projects onto thes-axis andP, = 8 (1) projects onto they-axis.

5 5 0
v = [7} hasPiv = [0] andP,Piv = [O]

21 What2 by 2 matrix R rotates every vector througts® ? The vector(1,0) goes to

(v/2/2,4/2/2). The vector0, 1) goes ta—/2/2, v/2/2). Those determine the matrix.
Draw these particular vectors in thg plane and findR.

R[22

rotates all vectors by 45 The columns of? are the results from
NG \/5] y

rotating(1, 0) and(0, 1)!

22 Write the dot product of1,4,5) and (z,y, z) as a matrix multiplicationAv. The
matrix A has one row. The solutions tdv = 0 lie on a perpendicular to the
vector . The columns ofd are only in -dimensional space.

x

The dot productdz = [1 4 5] ly} = (1 by 3)(3 by 1) is zero for pointyz, y, z)
z

on a plane in three dimensions. The columnglare one-dimensional vectors.

23 In MATLAB notation, write the commands that define this mattband the column
vectorsv andb. What command would test whether or nbt = b ?

w3l el

A=[12; 3 4]andz =[5 —2] andb=[1 7]’.7 =b— Axax prints as zero.

24 If you multiply the 4 by 4 all-ones matrixA = ones(4) and the columiv = ones(4,1),
what isAxv ? (Computer not needed.) If you multipB/= eye(4) + ones(4) times
w = zeros(4,1) + 2xones(4,1), what isBxw ?

ones(4,4) xones(4,1)=[4 4 4 4]"; Bxw=[10 10 10 10]".
Questions 25-27 review the row and column pictures in 2, 3, @ dimensions.

25 Draw the row and column pictures for the equatiens 2y = 0, z + y = 6.
The row picture has two lines meeting at the solutiéy2]. The column picture will
have4(1,1) + 2(—2, 1) = 4(column 1)+ 2(column 2)= right side(0, 6).

26 For two linear equations in three unknowngy, z, the row picture will show (2 or 3)
(lines or planes) in (2 or 3)-dimensional space. The columstupe is in (2 or 3)-
dimensional space. The solutions normally lieona .

The row picture show® planesin 3-dimensional space The column picture is in
2-dimensional spaceThe solutions normally lie on lane.
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27

28

29

30

31

For four linear equations in two unknownsandy, the row picture shows four .
The column picture is in -dimensional space. The equations have no solution
unless the vector on the right side is a combination of .

The row picture shows fouiines in the 2D plane. The column picture is four-
dimensional space. No solution unless the right side is edamation ofthe two columns

Challenge Problems

Invent a3 by 3 magic matrix M3 with entries1,2,...,9. All rows and columns
and diagonals add to 15. The first row could®@8,4. What isM; times(1,1,1) ?
What isM, times(1, 1,1, 1) if a 4 by 4 magic matrix has entries ..., 16 ?

8 3 4 54u S5—u+v 5H—w
M=|1 5 9|=|5b—u—v 5 S54+u+ov|; Ms(1,1,1) = (15,15,15);
6 7 2 54v S54+u—v H—u

My(1,1,1,1) = (34,34, 34, 34) becausd + 2 + - - - + 16 = 136 which is4(34).

3 ) 3

Supposes andwv are the first two columns of &by 3 matrix A. Which third columns
w would make this matrix singular ? Describe a typical colunatyse of Av = b in
that singular case, and a typical row picture (for a randpm

A is singular when its third columm is a combinatioreu + dv of the first columns.
A typical column picture had outside the plane af, v, w. A typical row picture has
the intersection line of two planes parallel to the thirdy@al hen no solution

Multiplying by A is a “linear transformation”. Those important words mean:

If w is a combination ot andv, thenAw is the same combination ofu and Av.

It is this “linearity” Aw = cAu + dAwv that gives us the naniimear algebra

If u= [ (1) ] andv = [ (1) ] then Au and Av are the columns ofl.

Combinew = cu + dv. If w = [ ? } how is Aw connected toAu and Av ?

w = (5,7) isbu + Tv. ThenAw equalss timesAu plus7 times Av.

A 9by9 Sudoku matrix S hasthe numbers ..., 9in every row and column, andin
every3 by 3 block. For the all-ones vectar= (1,...,1), whatisSv ?

A better question isWhich row exchanges will produce another Sudoku matrix?
Also, which exchanges of block rows give another Sudoku imatr

Section 4.5 will look at all possible permutations (reomdgs) of the rows. | see
6 orders for the firsB rows, all giving Sudoku matrices. Algdpermutations of the
next3 rows, and of the last rows. And6 block permutations of the block rows ?

x=(1,...,1)givesSz = sum of each row=1+---+9 = 45 for Sudoku matrices.
6 row orders(1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1) are in Section 2.7.
The sames permutations oblocksof rows produce Sudoku matrices, b= 1296
orders of the) rows all stay Sudoku. (And alsi?296 permutations of th@ columns.)
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32 Suppose the second row dfis some number times the first row:

a b
A_{ca cb]'

Then ifa # 0, the second column ofl is what numbew times the first column?
A square matrix with dependent rows will also have dependentolumns This is a
crucial fact coming soon.

The second column i = b/a times the first column. So the columns are “dependent”
when the rows are “dependent”.

Problem Set 4.2, page 215

Problems 1-10 are about elimination or2 by 2 systems.

1 What multiple/s; of equation 1 should be subtracted from equation 2 ?

2z 43y =1
10z 4 9y = 11.

After this step, solve the triangular system by back sulgsbin, y beforez. Verify that
x times (2, 10) plusy times(3,9) equals(1,11). If the right side changes tal, 44),
what is the new solution ?

Multiply by 51 = 12 = 5 and subtract to fin@z + 3y = 14 and—6y = 6. The
pivots to circle are 2 and-6. If the right hand side is multiplied by, the solution is
multiplied by4.

2 If you find solutionsv andw to Av = b and Aw = ¢, what is the solution: to
Au = b+ ¢? What is the solutiol/ to AU = 3b + 4¢? (We saw superposition for
linear differential equations, it works in the same way fibtiaear equations.)

If Av =bandAw = cthenA(v + w) = b + ¢. The solution tcAU = 3b + 4cis
U =3v+4w.

3 What multiple of equation 1 should Isebtractedrom equation 2 ?

2z —4y =6
—x+ 5y =0.

After this elimination step, solve the triangular systerfithe right side changes to
(—6,0), what is the new solution ?

Subtract—% times equation 1 from equation 2. This leaves+ 3y = 3. Theny =1
and the first equation becom2s — 4 = 6 to givex = 5.

If the right side changes fror(6,0) to (—6,0) the solution changes frorb, 1) to
(=5, -1).
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4 What multiple/ of equation 1 should be subtracted from equation 2 to remo®e

ar+by=f

cx+dy=g.
The first pivot isa (assumed nonzero). Elimination produces what formulatier t
second pivot ? The second pivot is missing whén= bc: that is thesingular case
Subtract = ¢ times equation 1. The new second pivot multiplyinig d — (cb/a) or
(ad — be)/a. Theny = (ag — ¢f)/(ad — be).

5 Choose a right side which gives no solution and another rahé which gives

infinitely many solutions. What are two of those solutions ?

3z 42y =10

Singular system 6z + 4y =

6x + 4y is 2 times3x + 2y. There is no solution unless the right sideis10 = 20.

Then all the points on the lingx + 2y = 10 are solutions, including, 5) and(4, —1).
(The two lines in the row picture are the same line, contgi@ithsolutions).

6 Choose a coefficieritthat makes this system singular. Then choose a rightgsitiat
makes it solvable. Find two solutions in that singular case.

2z 4+ by = 16
dr 4+ 8y = g.
Singular system ib = 4, becausdz + 8y is 2 times2z + 4y. Theng = 32 makes the

lines become theame infinitely many solutions liké8, 0) and(0, 4).
7 For whicha does elimination break down (1) permanently or (2) templyrar

ax + 3y = —3
4x + 6y = 6.

Solve forz andy after fixing the temporary breakdown by a row exchange.
If @ = 2 elimination must fail (two parallel lines in the row pictyreThe equations
have no solution. Witla = 0, elimination will stop for a row exchange. Thép = —3
givesy = —1 and4x + 6y = 6 givesz = 3.

8 For which three numberk does elimination break down? Which is fixed by a row
exchange ? In these three cases, is the number of solutiank @roo ?

kx+3y= 6
3z + ky = —6.
If £ = 3 elimination must fail: no solution. Ik = —3, elimination gives) = 0 in

equation 2: infinitely many solutions. A= 0 a row exchange is needed: one solution.
9 What test orb; andb, decides whether these two equations allow a solution? How

many solutions will they have ? Draw the column picturetice (1,2) and(1,0).

3r — 2y =by

6x — 4y = bo.
On the left side¢x — 4y is 2 times(3z — 2y). Therefore we neelh, = 25, on the right
side. Then there will be infinitely many solutions (two péeHines become one single
line).
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10 In thexy plane, draw the lines + y = 5 andxz + 2y = 6 and the equatiop =
that comes from elimination. The lide: — 4y = ¢ will go through the solution of these
equations it =
The equatiory = 1 comes from elimination (subtract+ y = 5 from x + 2y = 6).
Thenz = 4 andbz — 4y = ¢ = 16.

11 (Recommended) A system of linear equations can’t have gxaai solutions. If(z, y)
and(X,Y) are two solutions telv = b, what is another solution ?

If v = (z,y) and alsoV = (X,Y) solve the systemlv = b, then another solution
is 3v + 3 V. (All combinationsu = cv + (1 — ¢)V will be solutions sincedu =
cAv+ (1 —c)AV =cb+ (1 —-c)b=0b.)

Problems 12-20 study elimination or8 by 3 systems (and possible failure).
12 Reduce this system to upper triangular form by two row openat

2043y +z =38
Eliminate x — 4o+Ty + 5z = 20
Eliminate y — —2y+2z=0.
Circle the pivots. Solve by back substitution fany, .

Elimination leads to an upper triangular system; then cofmask substitution.
20 +3y+ 2=38 x =2
y+3z=4 gives y=1 Ifazerois atthe start of row 2 or 3,
8z=28 z =1 thatavoids a row operation.
13 Apply elimination (circle the pivots) and back substitutim solve

2x — 3y =3
dx —dby+ z=7
20 — y—3z=05.

List the three row operations: Subtract  times row from row

2z — 3y =3 2z — 3y =3 20 —3y=3 x=3
dr —5y+ z=7 gives y+ z=1 and y+ z=1 and y=1
22— y—32=5 2y + 32 =2 —52=0 z2=0

Subtract 2x row 1 from row 2, subtract &k row 1 from row 3, subtract % row 2
from row 3

14 Which numbew forces a row exchange ? What is the triangular system (ngtikin)
for thatd ? Whichd makes this system singular (no third pivot) ?

2c4+5y+2=0
der+dy+2z=2
y—z=23.

Subtrac® times row 1 from row 2 to reacil —10)y —z = 2. Equation (3) igj—z = 3.
If d =10 exchange rows 2 and 3. df= 11 the system becomes singular.
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15 Which numbem leads later to a row exchange ? Whickeads to a singular problem
that row exchanges cannot fix? In that singular case find aamorsolutionz, y, z.

x+ by =0
r—2y—2=0
y+2=0.
The second pivot position will contain2 — b. If b = —2 we exchange with row 3. If
b = —1 (singular case) the second equatior-ig— z = 0. A solution is(1, 1, —1).
16 (a) Construct 8 by 3 system that needs two row exchanges to reach a triangular
form.
(b) Construct & by 3 system that needs a row exchange for pidiut breaks down
for pivot 3.
Example of Oz +0y+22=4 Exchange Oz + 3y +42=4
() 2 exchanges T+2y+22=5 (b) but then T+2y+22=5
g Oz +3y+42=6 break down 0z + 3y +42=6
(exchange 1 and 2, then 2 and 3) (rows 1 and 3 are not consistent)

17 If rows 1 and 2 are the same, how far can you get with elimimaadlowing row
exchange) ? If columns 1 and 2 are the same, which pivot ismgi8s

Equal 2z —y+2=0 2r+2y+2=0 Equal
rows 2z—y+2z2=0 4r+4y+2z=0 columns
de+y+2=2 6x + 6y + 2z = 2.

If row 1 =row 2, then row 2 is zero after the first step; exchange thermsvavith row
3 and there is nthird pivot. If column2 = column 1, then colum@ has no pivot.

18 Construct a3 by 3 example that ha$ different coefficients on the left side, but rows
2 and 3 become zero in elimination. How many solutions to yaystem withb =
(1,10,100) and how many wittb = (0,0,0) ?

Exampler + 2y + 32 = 0, 4x + 8y + 12z = 0, 5z + 10y + 15z = 0 has 9 different
coefficients but rows 2 and 3 becorfhe- 0: infinitely many solutions.

19 Which numbergy makes this system singular and which right stdgves it infinitely
many solutions ? Find the solution that has- 1.

r+4y—2z=1
T+ Ty—62==06
3y +qz=t.

Row 2 become8y — 4z = 5, then row 3 become§g + 4)z =t — 5. If ¢ = —4 the
system is singular—no third pivot. Thentit= 5 the third equation i® = 0. Choosing
z = 1 the equatior8y — 4z = 5 givesy = 3 and equation 1 gives = —9.

20 Three planes can fail to have an intersection po@ven if no planes are parallel
The system is singular if rol is a combination of the first two rows. Find a third
equation that can’t be solved together with- y + z = 0 andz — 2y — z = 1.

Singular if row 3 is a combination of rows 1 and 2. From the eiesvwthe three planes
form a triangle. This happens if rovis-2 =row 3 on the left side but not the right side:
z+y+2=0,x—2y—z=1,2z—y=1. No parallel planes but still no solution.
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21

22

23

24

25

26

Find the pivots and the solution for both system® (= b andSw = b):

2z 4+ y =0 2r— y =0
r+2y+ =z =0 —r+2y— =z =0
y+2z4+ t=0 - y+2z— t=0
z+2t=95 — z+2t=05.
(a) PivotsQ,§ 4 éintheequationQ:c—l—y:O, %y+z:0,%z+t:0, %t:Safter

J L 1374 o )
elimination. %ack substitution gives= 4,z = -3,y = 2,2 = —1.

(b) If the off-diagonal entries change froml to —1, the pivots are the same. The
solutionis(1, 2,3, 4) instead of(—1, 2, —3,4).

If you extend Problem 21 following thé,2,1 pattern or the—1,2,—1 pattern,
what is the fifth pivot? What is theth pivot?.S is my favorite matrix.

The fifth pivot isg for both matrices (1's or-1's off the diagonal). Thesth pivot is
ntl

.
If elimination leads tar + y = 1 and2y = 3, find three possible original problems.

If ordinary elimination leads ta: + y = 1 and2y = 3, the original second equation
could be2y + ¢(x +y) = 3+ ¢ for any¢. Then? will be the multiplier to reacl2y = 3.

For which two numbersa will elimination fail on A = {Z Z] ?

Elimination fails on[z Cﬂ ifa=2o0ra=0.
For which three numbekswill elimination fail to give three pivots ?

a 2 3
a a 4] is singular for three values af
a a a

A:

a = 2 (equal columns); = 4 (equal rows)a = 0 (zero column).
Look for a matrix that has row sums 4 and 8, and column s2iarsds :

o |a b a+b=4 a+c=2
Ma”'x—[c d} ctd=8 b+d=s
The four equations are solvable onlysif= . Then find two different matrices

that have the correct row and column sufastra credit: Write down thet by 4 system
Av = (4,8,2, s) with v = (a, b, ¢, d) and makeA triangular by elimination.

Solvable fors = 10 (add the two pairs of equations to get b+ c+ d on the left sides,
12 and2 + s on the right sides). The four equations fam, c, d aresingular! Two

1 00 1 1 00

. 1 3 0 4 1 01 0 0O -1 1 0
solu'uonsare{1 7] and{2 6},14: 00 1 1 andU = 0 0 1 1
01 0 1 0O 0 0 O
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27 Elimination in the usual order gives what matiikx and what solution(z,y, z) to
this “lower triangular” system ? We are really solvingflayward substitution

3x =3
6z + 2y =8
9r —2y+ 2 =9.

Elimination leaves the diagonal matrix di@g2,1) in 3z = 3,2y = 2,2z = 4. Then
r=1y=12=4.

28 Create aMATLAB commandA(2, : ) = ... for the new row2, to subtract3 times
row 1 from the existing row 2 if the matrix is already known.

A(2,:) = A(2,:) — 3% A(1,:) subtracts3 times row1 from row 2.

29 If the last corner entry ofd is A(5,5) = 11 and the last pivot ofA is
U(5,5) = 4, what different entryA (5, 5) would have madel singular ?

A change up or down (5, 5) produces the same changdiii5, 5). If A(5,5) = 11
gaveU(5,5) = 4, then subtract: A(5,5) = 7 will give U(5,5) = 0 and a singular
matrix—zero in the last pivot positiofi (5, 5).

Challenge Problems

30 Suppose elimination take$ to U without row exchanges. Then raiof U is a com-
bination of which rows ofA? If Av = 0,isUv =0? If Av =b,isUv =0b"?

Row j of U is a combination of rows, ..., j of A. If Az = 0thenUx = 0 (not true
if b replace®). U is the diagonal ofA when A is lower triangular.

31 Start with 100 equationsdv = 0 for 100 unknownsv = (v1,...,v100). Suppose
elimination reduces th&)0th equation t® = 0, so the system is “singular”.
(a) Elimination takes linear combinations of the rows. s $ingular system has the
singular property : Some linear combination of t® rows is .

(b) Singular systemgv = 0 have infinitely many solutions. This means that some
linear combination of thé00 columnsis .

(c) Invent al00 by 100 singular matrix with no zero entries.
(d) For your matrix, describe in words the row picture and ¢bkumn picture of
Av = 0. Not necessary to dran)0-dimensional space.
The question deals with 100 equatiofi® = 0 whenA is singular.
(a) Some linear combination of the 100 rowshe row of 100 zeros
(b) Some linear combination of the 186lumnsis the column of zeros
(c) A very singular matrix has all onesd = eyg100). A better example has 99

random rows (or the numbets, . .., 100¢ in those rows). The 100th row could
be the sum of the first 99 rows (or any other combination ofehasvs with no
Zeros).

(d) The row picture has 100 planeseting along a common line throughd. The
column picture has 100 vectors all in the same 99-dimenkiymerplane.
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Problem Set 4.3, page 223

Problems 1-16 are about the laws of matrix multiplication .

1 Ais3byb, Bisbby3,Cis5by1,andD is 3 by 1. All entries arel. Which of these
matrix operations are allowed, and what are the results ?

BA AB ABD DBA A(B +C).
If all entries of A, B, C, D arel, thenBA = 3 oneg5) is5 by 5; AB = 5 oneg3) is
3by3; ABD = 150neg3,1)is3 by 1. DBA andA(B + C) are not defined.
2 What rows or columns or matrices do you multiply to find

(a) the third column ofAB ?
(b) the first row ofAB ?
(c) the entry in row 3, column 4 od B ?
(d) the entryinrow 1, column 1 agf'DE ?
(&) A (column 3 ofB) (b) (Row1o0fA) B (c) (Row 3 ofA)(column 4 ofB)
(d) (Row 1 ofC)D(column 1 ofE).
3 Add AB to AC and compare wittd(B + C) :

1 5 0 2 3 1
A_[z 3] and B_[O 1} and C_[O 0}

3 8
6 9

4 In Problem 3, multiplyA timesBC'. Then multiplyAB timesC.

AB+ AC isthe same ad(B + C) = { } . (Distributive law).

A(BC) = (AB)C by theassociative law In this example both answers a[% 8]

from columnl of AB and row2 of C' (multiply columns times rows).
5 Computed? andA3. Make a prediction ford®> and A™ :

A:[(l) ?} and Az[g (2)}
, [1 2b n o [1 mb . [4 4 n o [2m o2n
(a)A_[O 1]andA_[0 1]. (b)A_[O O]andA _{0 0].

6 Show that( A + B)? is different fromA? 4 2AB + B2, when

A_[l 2} and B_[l 0}

0 0 3 0
Write down the correct rule foqfA + B)(A + B) = A% + + B2
(A4 B)? = [12 é] — A2+ AB+ BA+ B2 ButA% +24AB + B2 = {12 (ﬂ
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7 True or false. Give a specific example when false :

(a) If columns 1 and 3 oB are the same, so are columns 1 and 3\ &
(b) If rows 1 and 3 ofB are the same, so are rows 1 and 3Ad?.
(c) Ifrows 1 and 3 of4 are the same, so are rows 1 and 3Aa@tC.
(d) (AB)? = A%2B2.
(a) True (b) False (c) True (d) False: usuglyB)? # A2B2.
8 How is each row ofD A and E A related to the rows ofl, when
3 0 0 1 a b
D:[O 5} and E:{O 1] and A:{C d}?

How is each column ofAiD and AF related to the columns of ?

The rows ofD A are3 (row 1 of A) and5 (row 2 of A). Both rows ofE' A are row?2 of A.
The columns ofAD are3 (column1 of A) and5 (column2 of A). The first column of
AF is zero, the second is columrof A + column2 of A.

9 Row 1 of A is added to row 2. This giveE A below. Then column 1 of/ A is added
to column 2 to producéE A) F'. Notice E andF' in boldface.

1 0 a b a b
EA:[I 1}{0 d}:[a—i-c b—i—d]

a a+b }

0 1

(EA>F—(EA)[1 1]_{a+c at+c+b+d

Do those steps in the opposite order, first multigly” and thenE(AF). Compare
with (FA)F. What law is obeyed by matrix multiplication ?

a a-+b

AF = { N ] and E(AF) equals(FA)F because matrix multiplication is
& (&

associative

10 Row 1 of A is added to row 2 to producBA. ThenF adds row 2 ofE/ A to row 1.
Now F'is on the left, for row operations. The resulti§ £ A) :

F(EA):[llH a b ]:[2a+c 2b+d}

0 1 at+c b+d at+c b+d

Do those steps in the opposite order: first add 2ow row 1 by F A, then add row 1
of FFA to row 2. What law is or is not obeyed by matrix multiplicati®n

at+c b+d at+c b+d

c a+2c b+2d
same a¥'(F A) because multiplication is not commutative.

11 (3 by 3 matrices) Choose the onfy so that for every matrix
(a) BA=4A

FA= [ ] and thenE(FA) = { } E(FA)isnotthe
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(b) BA = 4B (tricky)
(c) BA has rows 1 and 3 ofl reversed and row 2 unchanged
(d) All rows of BA are the same as row 1 df.

0 01

(@ B=41I (b) B=0 (c) B=|0 1 O] (d) Every row ofBis 1, 0, 0.
1 00

12 SupposedB = BA andAC = C A for these two particular matricds andC':

a b . 1 0 0 1
A:{C d] commuteswnhB:{O O] and C:{O 0]‘

Prove thatn = d andb = ¢ = 0. ThenA is a multiple of/. The only matrices that
commute withB andC' and all other by 2 matrices arel = multiple of /.

0 b
AB = { ¢ 0 ] = BA = [ g 0 ] givesb = ¢ = 0. ThenAC = C A givesa = d.
C
The only matrices that commute withandC' (and all other matrices) are multiples of
I. A=al.

13 Which of the following matrices are guaranteed to equal— B)?: A% — B?,
(B—A)?, A2—2AB+B? A(A—B)—B(A—B), A>— AB— BA+ B2?

(A-B)?2=(B—-A?=AA-B)-B(A-B)=A?>—-AB-BA+B% Ina
typical case (whenl B # BA) the matrixA? — 2AB + B2 is different from(A — B)2.
14 True or false:

(a) If A% is defined them is necessarily square.
(b) If AB andBA are defined ther and B are square.
(c) If ABandBA are defined thed B and BA are square.
(d) If AB=BthenA=1.
(a) True (42 is only defined whem is square) (b) False (ift is m by n and B

isn by m, thenAB is m by m and BA is n by n). (c) True (d) False (take
B =0).
15 If A ism by n, how many separate multiplications are involved when
(a) A multiplies a vectore with n components?
(b) A multiplies ann by p matrix B ?
(c) A multiplies itself to produced? ? Herem = n andA is square.
(a) mn (use every entry o)  (b) mnp = pxpart(a) (c)n? (n? dot products).
16 ForA = [2 Z3] andB = [1§ ], compute these answeasd nothing more

3 -2

(@) column 2 ofAB (b) row?2ofAB (c) row 2 ofA?
(d) row 2 of A3.

(8) Useonly column?2oB (b) Useonly row?2ofd (c)-(d) Use row 2 of first.
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Problems 17-19 use;; for the entry in row %, column j of A.
17 Write down the3 by 3 matrix A whose entries are

(@) a;; = minimum ofi and; (b) ay; = (-1)"7 (€) ay =i/j.

1 11 1 -1 1
A=|1 2 2 |hase; =min(i,j). A=| -1 1 =1 |hase; =(-1)" =
1 2 3 1 -1 1
1/1 1/2 1/3
“alternating sign matrix’A = | 2/1 2/2 2/3 | hasa,;; = i/j (this will be an ex-
3/1 3/2 3/3

ample of arank one matrix.
18 What words would you use to describe each of these classesaices? Give a

3 by 3 example in each class. Which matrix belongs to all four eags
(a) Q5 = 0if 4 #_] (b) Q5 = 0ifi< 7 (C) Qij = Gjj
(d) aij = ayy.
Diagonal matrix, lower triangular, symmetric, all rows efjuiZero matrix fits all four.
19 The entries ofd area;;. Assuming that zeros don’t appear, what is
(a) the first pivot?
(b) the multiplier¢s; of row 1 to be subtracted from ro$s?
(c) the new entry that replaces, after that subtraction ?
(d) the second pivot?

(@ ain  (b) fsr=as/ann  (C) az2 — (§2)arz  (d) az2 — (£2)ar.

aii

Problems 20-24 involve powers ofA.
20 Computed?, A3 A* and alsodwv, A%v, A3v, A*v for

0 2 0 07 T
oo 20 oy
A=lg oo 2| adv=|]
000 0| t
0040 00087
0004 0000 . . .
A? = , A3 = , A* = zero matrix forstrictly triangular A.
0000 0000
0000 0000 J
T 2y 4z 8t
2z 4t 0
Thendv=4| | = | A% = | APy = | Atv = 0.
z 2t 0 0
t 0
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21 Find all the powersi?, A3, ... andAB, (AB)?,. . . for

b b 1 0
A_{ﬁ _5] and B_{O _1].

5 J) %) .
A=A?2=A3=... = { 5 s ] butAB = [ . ] and(AB)? = zero matrix!
22 By trial and error find real nonzetbby 2 matrices such that

A*=-1 BC=0 DE=-FED (notallowingDE = 0).

(o1 o oo~ [1 =17[1 117 _Jo o].
- | o resar——nse= [; T[] =[5 6

0 1 0 1 -1 0 .
DE = [1 O} [_1 O} = { 0 1] = —FED. You can find more examples.

A

23 (@) Find a nonzero matriX for which A2 = 0.
(b) Find a matrix that had? # 0 but 43 = 0.
0 1
A= [ 0 0o } hasA4? = 0. Note: Any matrixA = column times row= uvT will
01 0 00 1
haveA? = wvTuv™ = 0if vTu=0. A= | 0 L' {hasA2=1]0 0 0
0 0 O 00 0
but A% = 0; strictly triangular as in Problem 20.
24 By experiment withh = 2 andn = 3 predictA™ for these matrices:

o

Alz[g }} and A2:|:} }} and A3:{8 8]

n 2m 2n—1 n 1|1 1 n a® a" b
Problems 25-31 use column-row multiplication and block muiplication.

25 Multiply A timesI using columns ofd (3 by 3) times rows off.

r b c [1 0 o] [a] (1 0 0] [d][o 1 0] [c][o 0 1]
d e fll0 1 0|=|d +le +1f :
00 1| |g h i

g h i
26 Multiply AB using columns times rows :

2 R R

AB =
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1 0 330 0 0 O
Columns of A
- 2113 3 0]+|4]|[]1 2 1]=1|6 6 0|+|4 8 4| =
times rows of B 2[ ] 1[ ] [6 6 0 1 9 1]
3 30
[10 14 4| =AB
7 8 1

27 Show that the product of two upper triangular matrices isagvupper triangular:

R ) R A T
Oxx][Ox:c]_lO ]
0 0 = 0 0 = 0 0 «

Proof using dot productéRow-times-column (Row 2 of A) - (column1 of B)= 0.
Which other dot products give zeros ?

AB =

Proof using full matricegColumn-times-rojv  Draw z’s and 0’s in (columr2 of A)
times (row2 of B). Also show (columr3 of A) times (row3 of B).

(&) (row 3 ofA) - (column 1 ofB) and (row 3 ofA) - (column 2 of B) are both zero.
x 0 = =z x 0 0 =z
(b) lx] [0 2 x]:[O T w x} [00 x}:[O 0 =«
0 0 0 0 x 0 0 =z

28 If Ais2by3withrowsl, 1, 1and2, 2,2, andB is 3 by 4 with columnsl, 1, 1 and2,
2,2 and3, 3, 3 and4, 4, 4, use each of the four multiplication rules to fidd3 :

and : both upper.

(1) Rows ofA times columns ofB.  Inner products (each entry inAB)
(2) Matrix A times columnsofB.  Columns of AB
(3) Rows ofA times the matrix3. Rows of AB
(4) Columns ofA times rows ofB.  Outer products (3 matrices add tod B)
1 2
1 1 1 3 6 9 12
AB = { ] 1o - { ] |
2

2 2 2 6 12 18 24

w w w
=

(1) Two rows ofA times four columns of3 = eight numbers

3
(2) A times the first column oB gives [ 6 ] . The later columns are multiplied by
2,3,and 4.

(3) The first row ofA is multiplied by B to give 3, 6, 9, 12. The second row dfis
doubled so the second row dfB is doubled.

(4) Column times row multiplication gives three matricasttiis case they are all the
same!)

1 1 2 3 47 . )
[ } [1 2 3 4 ]=[ ] times 3 givesAB.
2 2 4 6 8



116 Chapter 4. Linear Equations and Inverse Matrices

29 Which matricesFs; and Es; produce zeros in the2, 1) and(3, 1) positions ofFE»; A

30

31

32

33

andEglA ?

A:

2 1 0

-2 0 1 ] .
8 5 3

Find the single matri¥y = FE3; E»; that produces both zeros at once. Multify.

1 0 0 1 0 0
Ey = [1 1 O0landE3;=| 0 1 O] produce zeros in thg, 1 and3, 1 entries.
0 0 1 —4 0 1
1 0 0 2 1 0
Multiply E's to getFE = E31Fy; = 1 1 0]. ThenEA = |0 1 1] is the
—4 0 1 0 1 3

result of bothE’s since(F31 Fa1)A = Fs1(Ea A).

Block multiplication produces zeros below the pivot in one big step:
1 0 a b a b .
EA = { —cla T { ¢ D ] = { 0 D—cb/a ]wnhvectorso,b,c.

In Problem 29, what are and D and what is the bloclo — ¢b/a ?

0 1 1 1

In29, ¢= {_2}, D= 5 3], D —cb/a= [1 3} in the lower corner oz A.

8

With i2 = —1, the product of A + iB) and(z + iy) is Az + iBx + iAy — By. Use
blocks to separate the real part witheditom the imaginary part that multiplies

A -B x | | Az — By | realpart
? ? y | ? imaginary part

A —B| |x| |Ax — By| real part Complex matrix times complex vector
B Al |y| | Bx+ Ay | imaginary part. needst real times real multiplications.

(Very importan} Suppose you solvdwv = b for three special right sidds:
1 0 0
Avl_lO] and AvQ_[ll and Avg_[o
0 0 1

If the three solution®, va, v3 are the columns of a matriX, what isA timesX ?
AtimesX = [x1 x2 «3] will be the identity matrix] = [ Ax; Azy Azs].

If the three solutions in Question 32 atg = (1,1,1) andve, = (0,1,1) and
v3 = (0,0, 1), solveAv = bwhenb = (3,5, 8). Challenge problem: What id ?
3 3 1 00
b= |5|givese = 3x; + 522 +8x3 = | 8|; A= |-1 1 0] will have
8 16 0 -1 1

thosex; = (1,1,1),z2 = (0,1,1), 23 = (0,0, 1) as columns of its “inverseA 1.
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34

35

Practical question SupposeA is m by n, B is n by p, andC is p by q. Then
the multiplication count fo AB)C is mnp + mpq. The same answer comes from
A times BC, now with mng + npg separate multiplications. Noticepg for BC.

(@) If Ais2by4, Bis4 by 7,andC is 7 by 10, do you prefe{(AB)C or A(BC)?
(b) With N-component vectors, would you chod@€" v)w™ or u™ (vw™) ?
(c) Divide bymnypq to show tha{ AB)C' is faster whem ™ + ¢~ ' <m~' +p~ L.

Multiplying AB = (m by n)(n by p) needsnnp multiplications. Therf AB)C needs
mpg more. Multiply BC' = (n by p)(p by q) needsipq and thenA(BC') needsnng.

(@) If m,n,p,qare2,4,7,10 we compardg2)(4)(7) + (2)(7)(10) = 196 with the
larger number2)(4)(10) + (4)(7)(10) = 360. So AB first is better, so that we
multiply that7 by 10 matrix by as few rows as possible.

(b) If u,v,w areN by 1, then(uv)wT needs2 N multiplications butuT (vw™)
needsV? to findvwT and N2 more to multiply by the row vectaw™. Apologies
to use the transpose symbol so early.

(c) We are comparingwnp + mpq with mnq + npq. Divide all terms bymnpq:
Now we are comparing~! + n~! with p—! +m~!. This yields a simple im-
portant rule. If matricesl and B are multiplyingv for ABwv, don't multiply the
matrices first.

Unexpected fact A friend in England looked at powers of & x 2 matrix:

(1 2 s [ 7 10 s [ 37 54 . [ A B
A_[?, 4} A _[15 22} 4 _[81 118} A _[C’ D

He noticed that the ratid%/3 and10/15 and54 /81 are all the same. This is true for all

powers. It doesn’t work for an x n matrix, unless4 is tridiagonal. One neat proof is

to look at the equa(l, 1) entries ofA” A and AA™. Can you use that idea to show that

B/C = 2/3in this example ?

1 2
The off-diagonal ratiq% in A= { 5 ] stays the same for all powers df*. Peter

4
Larcombe gave a proof by induction. Ira Gessel comparedlthie entries on the left
and right sides of the true equatiat A = AA™:

A B 1 2 1 2 A B
A"A = = .
o olls o]l i]le 5]
The(1,1) entries gived + 3B = A + 2C and therefore3/C = 2/3. This ratio stays
the same ford 1.

The same idea applies when the matfixs N by NV, provided it is tridiagonal (three
nonzero diagonals):

A B E 1 2
The(1,1) entryofA"A=| C D F 3 4 is still A + 3B.
G H 1 6

)
7
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Problem Set 4.4, page 234

1 Find the inverses ofl, B, C (directly or from the2 by 2 formula):

03 20 34
A:{4 O] and Bz[4 2} and C:{5 7].

1 1
Al_{o Z]andBl_{i O} andCl_{ 7 _4}

1 -1 1 ~-5 3
2 For these “permutation matrices” fifd~! by trial and error (with 1's and 0's) :
00 1 01 0
P=101 0 and P=1|00 1f.
10 0 10 0
0 0 1
A simple row exchange haB?> = I soP~! = P. HereP~! = [1 0 O]. Always
01 0

P~! =*“transpose” ofP, coming in Sectior?.7.
3 Solve for the first columitz, ) and second colum(t, z) of A= :

o sof o] = o] = [on ] [ 1]

[5] = [_g} and[z} = {_ﬂ soA~! = % {_g _ﬂ This question solved

AA~! = I column by column, the main idea of Gauss-Jordan elimination
4 Show that 3 2] is not invertible by trying to solvelA~! = I for column1 of A~ :

[1 2] {I] B {1] (ForadifferentA, could columnl of A1;
?

36|yl |0 be possible to find but not column

The equations are + 2y = 1 and3x + 6y = 0. No solution becausgtimes equation
1 gives3z + 6y = 3.

5 Find an upper trianguldy (not diagonal) with/? = I which givesU = U~ ".

1
0

6 (a) If Aisinvertible andAB = AC, prove quickly thatB = C.
(b) If A= [11], find two different matrices such thatB = AC.

() Multiply AB = AC by A~' to find B = C (sinceA is invertible) (b) As long
asB—Ohastheform{_i y],we haveAB = AC for A = {1 1}

An upper triangulaf/ with U2 = T'isU = { _(i] for anya. And also—U.

1 1
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7 (Important) If A has row 1+ row 2 = row 3, show that4 is not invertible :

(a) Explain whyAv = (1,0, 0) cannot have a solution.
(b) Which right sidegb1, b2, b3) might allow a solution todv = b?
(c) What happens to row 3 in elimination?
(@) InAz = (1,0,0), equation 1+ equation 2— equation 3 i9) = 1 (b) Right
sides must satisfy; + by = b3 (c) Row 3 becomes a row of zeros—no third pivot.
8 If A has column L column 2= column 3, show tha#l is not invertible :

(a) Find a nonzero solutionto Az = 0. The matrix is3 by 3.

(b) Elimination keeps column 4 column 2= column 3. Why is no third pivot ?
(a) The vectoer = (1,1, —1) solvesAxz = 0 (b) After elimination, columns 1
and 2 end in zeros. Then so does colina column1 + 2: no third pivot.

9 Supposeda is invertible and you exchange its first two rows to red¢h Is the new
matrix B invertible and how would you find3—! from A=1?

If you exchange rows and2 of A to reachB, you exchangeolumns1 and2 of A~}
to reachB~. In matrix notationB = PA hasB~! = A='P~! = A~' P for this P.

10 Find the inverses (in any legal way) of

00 02 32 00
00 30 43 00
A=1o4 00 2 B=150 65
50 00 00 76
0 0 0 1/5 3 -2 0 0
_ 0 0 1/4 0 _ —4 3 0 0l ..
1 1 _
A7 =1 13 0 o | adB™ = 0 o 6 _pg| (inverteach
1/2 0 0 0 0 0 -7 6
block of B).

11 (a) Find invertible matricegl andB such thatd + B is not invertible.
(b) Find singular matriced and B such thatd + B is invertible.

(a) If B = —Athen certainlyd+ B = zero matrix is notinvertible. (b4 = [(1) 8]
0 0
0 1
12 If the productC = AB is invertible(A and B are square), thed itself is invertible.

Find a formula forA—! that involvesC~! andB.

Multiply C = AB on the right byC—' and on the left byd~! to getA~! = BC~!.
13 If the productM = ABC of three square matrices is invertible, thBris invertible.

(So ared and(.) Find a formula forB~1 that involvesM ~! and A andC.

M~! = C~'B~tA~! so multiply on the left byC and the right byA : B~! =

CM~tA.

andB = { } are both singular butt + B = I is invertible.
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14

15

16

17

18

19

20

If you add row 1 ofA to row 2 to getB, how do you findB—! from A~1?

10
11

Notice the order. The inverse ofB = [ ] A is

-1
B~l=4"1 E ﬂ =A"! [_i ?] subtract column 2 ofi~! from column 1.

Prove that a matrix with a column of zeros cannot have an smver
If A has a column of zeros, so daBsl. ThenBA = I is impossible. Thereis nd—'.
Multiply [2 5] times[_¢ ~P]. What is the inverse of each matrixal # bc ?
a b d —b| _|ad—bc 0 The inverse of each matrix is
c d||-c a| 0 ad — bc|" the other divided byid — be
(a) What3 by 3 matrix £ has the same effect as these three steps? Subtract row 1
from row 2, subtract row 1 from row 3, then subtract row 2 fraw3.

(b) What single matrix. has the same effect as these three reverse steps? Add row 2
to row 3, add row 1 to row 3, then add row 1 to row 2.

1 1 1 1
Es2E31Foy = l 1 ] l 1 ] [—1 1 ] — [—1 1
-1 1] [1 1 1 0 -1 1

1
verse the order and changd to +1 to get inversesy;' E5;' E3,' = ll 1 ] =
1 11

= F. Re-

L = E—'. Notice thel’s unchanged by multiplying in this order.
If B is the inverse ofi?, show that4A B is the inverse ofd.
A?B = I can also be written ad(AB) = I. ThereforeA=! is AB.

(Recommended) is a4 by 4 matrix with 1's on the diagonal and-a, —b, —c on the
diagonal above. Find~! for this bidiagonal matrix.
-1

1 —a O 0 1 —a ab abc

A1 = 1 =6 O B 1 b be
1 —c 1 c

1 1

Find the numbers andb that give the inverse & « eye(4) — ones(4,4) :

-1

4 -1 -1 -1 a b b b
(5—ones] ! — -1 4 -1 -1 _|ba b
-1 -1 4 -1 bb oab
-1 -1 -1 4 bbb oa

What areq andb in the inverse ob x eye(5) — ones(5,5) ? In MATLAB, | = eye.
The(1,1) entry requireda — 3b = 1; the(1, 2) entry require®b —a = 0. Thenb = %
anda = % For the5 by 5 caseba — 4b = 1 and2b = a giveb = % anda = %.
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21 Sixteen2 by 2 matrices contain only 1's and 0’s. How many of them are inkta?
Six of the sixteer) — 1 matrices are invertible, including all four with three 1's.

Questions 22—-28 are about the Gauss-Jordan method for callating A—?*.

22 Changel into A~ as you reducel to I (by row operations):

1310 141 0

[A”_[2701] and [A”_[?,goJ
1310 [t 3 1 0o [1 o 7 -3]_ .
[2701]‘*{01—2 7o 1 -2 1| = AT
1410 [t 4 10] [t 0 -3 4/3]_ .
[3901]‘*[0 —3 -3 1}%[0 1 1—1/3]—[IA J-

23 Follow the 3 by 3 text example of Gauss-Jordan but with all plus signsAin
Eliminate above and below the pivots to redfige 7|to[I A~!]:

21 01 00

[AI]=]12 10 10

0120 01
2 1 0|1 00 2 10 100
[AI]_[121010]—>l0 3/21-1/210]—>
01 2/0 01 0 1 2 00 1

2 1 0 1 0 0 2 1 0 1 0 0
lo 3/2  1]-1/2 1 0] - [o 3/2  0]-3/4 3/2 —3/41 -
0 0 4/3| 1/3 —2/3 1 0 0 4/3| 1/3 —2/3 1

2 0 0] 3/2 -1 1/2 1 0 0| 3/4 —-1/2 1/4
[0 3/2 0| -3/4 3/2 —3/4] — lo 1 0] —1/2 1 —1/2] -
0 0 4/3| 1/3 -2/3 1 0 0 1| 1/4 —-1/2 3/4
I A7)
24 Use Gauss-Jordan elimination pii 7] to find the upper triangulay — :
1 a b 1 00
U '=1 01 c||@x =z x3|=[0 1 0
0 0 1 0 0 1
1 a b1 0 0 1 a 01 0 =0 1 0 01 —a ac—>b
lo 1 ¢ 01 O]alo 10 01 —c]alo 100 1 —c].
0 01 001 001 00 1 001 0 0 1
25 Find A~! andB~! (if they exist by eliminationon A I]and[B I]:
21 1 2 -1 -1
A=112 1 and B=|-1 2 -1
11 2 -1 -1 2
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2 1 1770 3 -1 -1 2 —1 —177[1 0
l1 2 1] :_[—1 3 —1];[—1 2 —1] H:[O
11 2 410 -1 3] -1 -1 21 0
not exist.

26 What three matrice€,; and F1, and D! reduced = {
matrix? Multiply D' E5 E5; to find A=1.

1 011 2] [1 2 1 —11[ 1 o 10
EﬂA—{—z 1] [2 6]_{0 2}E12E21A—{0 1] [—2 1}A—{0 2}'

so B~! does

1 2

2 6] to the identity

Multiply by D = {(1) 1/3] to reachDFE13E:1 A = I. ThenA™! = DE19Fy =
1 6 —2
21-2 1
27 Invert these matriced by the Gauss-Jordan method starting With 7]:
10 0 111
A=121 3 and A= |12 2
00 1 12 3

1 0 O 2 -1 0
Al = [—2 1 —3] (notice the pattern)d—! = l—l 2 —1].
0 0 1 0 —1 1

28 Exchange rows and continue with Gauss-Jordan toAind:
0 2 1 O}

[ I]_[2 2 0 1
0210_>2201_>20—11_>10—1/21/2
2 2 01 0 2 10 0 2 1 0 01 1/2 0 |
This is [I A1 ] : row exchanges are certainly allowed in Gauss-Jordan.

29 True or false (with a counterexample if false and a reasand)t

(a) A4 by4 matrix with a row of zeros is not invertible.
(b) Every matrix with 1's down the main diagonal is inverébl
(c) If Aisinvertible thend—! and A2 are invertible.
(&) True (If A has a row of zeros, then eveAB has too, andi B = I is impossible)

(b) False (the matrix of all ones is singular even with disgdrs: oneg(3) has 3 equal
rows) (c) True (the inverse of ~! is A and the inverse ofl? is (A71)?).

30 For which three numbetsis this matrix not invertible, and why not?
2 ¢ ¢
A=1|c ¢ ¢

8 7 ¢

This A is not invertible forc = 7 (equal columns)¢ = 2 (equal rows)¢ = 0 (zero
column).



4.5. Symmetric Matrices and Orthogonal Matrices 123

31 Prove thatd is invertible ifa # 0 anda # b (find the pivots ord—1):
a b b
A= {a a b} .
a a a

0-b
o . 1 @
Elimination produces the pivotsanda —banda —b. A~! = [—a a 0].

ala —b) 0—-a a

32 This matrix has a remarkable inverse. Fiad! by elimination onf A I]. Extendto a
5 by 5 “alternating matrix” and guess its inverse; then multipdyconfirm.

1 -1 1 -1 1
o 1 -1 1
InvertA = 00 1 —1 and solvedv = 1
0 O 0 1 1
1100
A7l = 8 (1) } (1) . When the triangulad alternates 1 ane-1 on its diagonal,
0 0 01

A~ is bidiagonalwith 1's on the diagonal and first superdiagonal.

33 (Puzzle) Could a4 by 4 matrix A be invertible if every row contains the numbers
0,1,2,3in some order? What if every row @& containd), 1,2, —3 in some order?

A can be invertible with diagonal zeroB. is singular because each row adds to zero.
34 Find and check the inverses (assuming they exist) of thesx Inhatrices :

cd len 7o)
[_CI ?] and{_DégAl Dol]and{_]'; é]
Problem Set 4.5, Page 245

Questions 1-9 are about transposed™ and symmetric matricesS = ST.
1 Find AT andA~! and(A~—1)T and(AT)~! for

1 0
A:{g 3] and also A:{

o =
[enlie)
[

e e[y =4 o 3]

1 & T 7171 O cl —1\T
L O] hasA* = AandA _C—Q{C ]_(A ).

A
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2 (@) Find2 by 2 symmetric matricesl and B so thatA B is not symmetric.

(b) With AT = A andB™ = B, show thatdB = BA ensures thai B will now
be symmetric. The product is symmetric only whémommutes withB.

0 1 1 0 . 0 0 0 1
(a)A:{1 O] B:{O O] g|veAB:{1 0 andBA:{0 O}'

(b) If AB = BAandA™ = A, BT = Bthen(AB)T = BTA"T = BA = AB. Thus
AB is symmetric whem and B commute.
3 (a) The matrix((AB)~')T comes from A~")T and(B~1)™. In what ordef?
(b) If U is upper triangular the(/ —1)T is triangular.
@ (AB)™H)T = (B71A™HT = (A-HT(B~HT. This is also(A™)~1(BT)1L.
(b) If U is upper triangular, so i§~*: then(U~1)" is lower triangular.
4 Show thatd? = 0 is possible bud™ A = 0 is not possible (unlesd = zero matrix).

A= {8 (1)] hasA? = 0. The diagonal ofA™ A has dot products of columns dfwith

themselves. 1fAT A = 0, zero dot products> zero columns= A = zero matrix.
5 Every square matrid has a symmetric part and an antisymmetric part:

. . . A+ AT A— AT
A = symmetric+ antisymmetric= 5 + > )

Transpose the antisymmetric part to gehusthat part. Split these in two parts:

14 8
A_Hg] A= 026].
00 3

Transposing, (4 — AT) givesi (AT — A): this part is antisymmetric.

7= sl

1 4 8 1 2 4 0 2 4
lo 2 61 = [2 2 3|+(-2 0 3] :
00 3 4 3 3 -4 -3 0
6 The transpose of a block matridd = [AB]is MT = . Test an example

to be sure. Under what conditions @n B, C, D is the block matrix symmetric?

BT DT
7 True or false:

AT CT
MT = [ };MT:MneedsAT:AandBT:CandDTzD.

(a) The block matrix § 4 | is automatically symmetric.

(b) If AandB are symmetric then their produdtB is symmetric.
(c) If Ais not symmetric theml—! is not symmetric.

(d) WhenA, B, C are symmetric, the transpose4BC is C BA.
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(a) False{g1 ‘(ﬂ is symmetric only ifA = AT. (b) False: The transpose dfB

0 AT
AT 0
So(AB)T = AB needsBA = AB. (c) True: Invertible symmetric matrices have

symmetric in verses! Easiest proof is to transpdse! = I. (d) True:(ABC)" is
CTBT AT (= CBA for symmetric matrices!, B, andC).

a) How many entries of can be chosen independentlySit= ST is 5 by 5?
y p Y. y

is BTAT = BA whenA andB are symmetric[g1 ‘é] transposes tc{

(b) How many entries can be chosenliis skew-symmetri2 (AT = —A).

Answers:15and10. If S = ST is 5 by 5, its 5 diagonal entries and 10 entries above
the diagonal are free to choose A = — A, the 5 diagonal entries of must be zero.

Transpose the equatiotr ! A = I. The result shows that the inversef is
If Sis symmetrichow does this show thatS—! is also symmetric?

A~'A = T transposes tAT(A~1)T = [. This shows that the inverse of?! is
(AT)=1 = (A=HYT. If S is symmetric 6T = S) then this statement becomes
St = (S~HT. ThereforeS—! is symmetric.

Questions 10-14 are about permutation matrices.

10

11

12

13

14

Why are theren! permutation matrices of size? They given ! orders ofl, ..., n.
Thel in row 1 hasn choices; then thé in row 2 hasn — 1 choices .. .4! overall).

If P, andP, are permutation matrices, soks P;. This still has the rows of in some
order. Give examples witk, P, # P, P, andPs Py = Py Ps.
0 1 03171 0 O 0 0 1 01 0
PP = |0 0 1[0 0 1] = |0 1 O but RP = |1 0 O0f.
1 0 0][0 1 O 1 00 0 0 1

If P; andP, exchangdifferentpairs of rows,P; P, = P4 P; does both exchanges.

There arel2 “everi permutations of(1, 2, 3, 4), with aneven number of exchanges
Two of them ard1, 2, 3, 4) with no exchanges and, 3, 2, 1) with two exchanges. List
the other ten. Instead of writing eadlpy 4 matrix, just order the numbers.

(3,1,2,4) and(2,3,1,4) keep4 in place;6 more evenP’s keep 1 or 2 or 3 in place;
(2,1,4,3)and(3,4,1,2) exchange 2 pairg1, 2, 3,4), (4, 3,2, 1) makel2 evenP’s.

If P hasl’s on the antidiagonal frorfil, n) to (n, 1), describePAP. Is P even?

The “reverse identity’P takes(1, ..., n) into (n,...,1). When rows and also columns
are reversed,PAP);; is (A)n—i+1,n—j+1. In particular(PAP)11 iS Ap,,.

(a) Find a3 by 3 permutation matrix withP? = I (but notP = I).
(b) Find a4 by 4 permutation withP* # I.

010
AcyclicP= |0 0 1] or its transpose will havé3 =T : (1,2,3) — (2,3,1) —

100
(3,1,2)—>(1,2,3).13_{

1 0

0 P} for the sameP hasP* = P # 1.
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Questions 15-18 are about first differenced and second differencesA™ 4 and AAT.

15 Write down the5 by 4 backward difference matrix.

16

17

18

(@) Compute the symmetric second difference matrites AT A andL = AAT.
(b) Show thatS is invertible by findingS—!. Show thatL is singular.

| 2 -1
K i -1 2 -1
-1 2 -1
0 0 -1 1 2 :
0 0 0 -1
1 -1
-1 2 -1
-1 2 -1
-1 1
L (5by5)issingularLz = 0forxz = (1,1,1,1,1).
4 3 2 1
isi i 113 6 4 2
Q-1 _ =
S (aby4)isinvertible:s™ = = |5 | ¢ 3
1 2 3 4

In Problem15, find the pivots ofS and L (4 by 4 and5 by 5). The pivots ofS in
equation (8) are, 3/2,4/3. The pivots ofL in equation (10) aré, 1, 1, 0 (falil).

The pivots ofS are2, 2,2, 2. Multiply those pivots to find determinant 5. This
explains 1/5inS—1.

The pivots ofL arel,1,1,1,0 (no pivot).

(Computer problem) Create thdyy 10 backward difference matrid. Multiply to find
S =ATAandL = AAT. If you have linear algebra software, ask for the deterntman
detS) and defL).

Challenge: By experiment find détS) whenS = AT A is n by n.

Correction The backward difference matrig will be 10 by 9 ThenS = AT A is
9 by 9 (the—1, 2, —1 matrix) with detS = 10. In general de§ = n when A is n by
n — 1.

L = AATis 10 by 10 (the-1,2 — —1 matrix exceptthal.;; = 1 andL,,,, = 1). Then
L is singular and det = 0.

(Infinite computer problem) Imagine that the second difieeematrixS is infinitely
large. The diagonals &fs and—1’s go from minus infinity to plus infinity:

-1 2 -1

Infinite tridiagonal matrix S = 1 9 1

(a) Multiply S times the infiniteall-onesvectorv = (..., 1,1,1,1,...)

) 3 ) 3 )
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(b) Multiply S times the infinitdinear vectorw = (...,0,1,2,3,...)
(c) Multiply S times the infinitesquaresrectoru = (...,0,1,4,9,...).
(d) Multiply S times the infinitecubesvectore = (...,0,1,8,27,...).

The answers correspond to second derivatives (with mimgug sf 1 andz? andz®.

S timesall-ones  gives the zero vector
S timeslinear w  gives the zero vector
S timessquaresu  gives—2 timesall-ones
S timescubese gives—6 timeslinear w

Those correspond i 0, —2, —6x = minus the second derivatives af =, 22, z3.

Questions 19-28 are about matrices witlQTQ = I. If Q is square, then it is an
orthogonal matrix and QT = Q' and QQT = I.

19 Complete these matrices to be orthogonal matrices:

1 1
~1
@ae=| " ] o Q—%l 2 ] © o=t|! !
2 1 -1
1 1 1 1
[ 12 V32 Y 111 -1 -1
Q_L/?m 1/2] Q—glg % _f =3 1 —1 —% 1

Note: You could complete t@ with different columns than these.
20 (a) Suppos€ is an orthogonal matrix. Why i@~ = QT also an orthogonal matrix ?

(b) FromQTQ = I, the columns ofQ are orthogonal unit vectors (orthonormal
vectors). Why are the rows @j (square matrix) also orthonormal vectors ?

(@) Q! is also orthogonal becaug® )T (Q1) = (QT)TQT = QT = 1.

(b) The rows ofQ are orthonormal vectors becaug€)™ = I. For square matrices,
QT is aright-inverse of) whenever it is a left-inverse @. So rows are orthonormal
when columns are orthonormal.

21 (a) Which vectors can be the first column of an orthogonalimatr

(b) If QTQ1 =T andQT Q. = I, isittrue that Q1 Q2)T(Q1Q2) = I ? Assume that
the matrix shapes allow the multiplicatioy, Q-.

(&) Any unit vector (length 1) can be the first column(af
(b) YES,(Q:1Q2)"(@Q1Q2) = Q3 (QTQ1)Q2 = Q3 Q2 = 1.
22 If w is a unit column vector (length, uTw = 1), show whyH = I — 2uuT is
(a) a symmetric matrix = HT (b) an orthogonal matrix HTH = 1I.

The Householder matri¥l = I — 2uu™ is symmetric (becauseu™ is symmetric)
and also orthogonal (becaugéw = 1):

HTH = (I - 2uuT)2 =TI —4uu” + 4uuTuu® = 1.
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23

24

25

26

27

28

If w = (cost,sind), what are the four entries il = I — 2uu™? Show that
Hu = —uw andHv = v for v = (—sinf,cosd). This H is areflection matrix :
thew-line is a mirror and the:-line is reflected across that mirror.

cosf . 1—2cos?f —2sinfcosh
H_I_2[Sin9} [cos®  sinf] = [—2sin9cost9 1 —2sin%0

| cos20 —sin26
T | —sin20 —cos?6 |

Hu=u - 2uuTu=—-u Hv=v—-2uuTv=v sinceuTv =0.

Suppose the matri® is orthogonal and also upper triangular. What ¢alook like ?
Must it be diagonal ?

If @ is orthogonal and upper triangular, its first column mustbe= (+1,0,...,0).
Then its second columgp, must start with 0 to have the orthogonalityg, = 0. Then
q, = (0,£1,0,...,0). Theng; must start with 0, O to have! g; = 0 andqi g; = 0
(and so onward). Thug is diagonal:Q = diag(+1,. . .,+1).
(a) To construct & by 3 orthogonal matrix whose first column is in the direction
w, what first columng,; = cw would you choose ?

(b) The nextcolumig, can be any unit vector perpendiculagta To findg,, choose
a solutionv = (vy, v, v3) to the two equationgTv = 0 andgi v = 0. Why is
there always a nonzero solutian?

(@) The first column of) will be ¢; = w/||w|| to have length 1.
(b) The next columny, hasqf g, = 0 and||q,|| = 1. Then there will be a vectar

orthogonal tog, andq, because;fv = 0 andqiv = 0 give 2 linear equations in 3
unknownsvy, va, v3.

Why is every solutiory to Av = 0 orthogonal to every row ofl ?
Writing out Av = 0 shows that every row is orthogonal#o

row 1 0

row n 0
Suppos&)TQ = I butQ is not square. The matriR = QQ" is notI. But show that
P is symmetric and?? = P. This is aprojection matrix .

If Q hasn orthogonal columns and < m, then them by m matrix P = QQ7 is not
1. (Some vectow in R™ will solve then equations)Tv = 0. ThenQQTv = 0 and
QQT # I.) But P is symmetric and?? = QQTQQT = QIQT = P. ThusPis a
projection matrix .

A 5 by 4 matrix @ can haveQ™Q = I but it cannot possibly hav&)QT = 1.
Explain in words why the four equatiof@”v = 0 must have a nonzero solutian
Thenw is not the same a@Q™v and! is not the same a@Q™.

The four equation§)™v = 0 have 5 unknowns, vy, v3, vy, vs. With only 4 rows,
QT cannot have more than 4 pivots. There must be a free colu®f iand anonzero
special solution t@)Tv = 0.

Challenge Problems
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29 Can you find a rotation matrig so thatQ DQT is a permutation ?
cosf —sind| |1 cosf sinf equals 0 1
sind  cosf —1]| | —sinf cosf q 1 0"

, s L [1 —1][1 1 [ 1 1] [o 1
o [0 3 ][]
30 Split an orthogonal matrikQTQ = QQ™ = I) into two rectangular submatrices:

_ r,_ [QTQ1 QTQ
Q=[Q:1]Q2] and Q Q—{Q’glf@l Qin]

(a) What are those four blocks @TQ =1 ?
) QT = Q1QT + Q2QY = I is column times row multiplication. Insert

the diagonal matrixD = {é _(}] and do the same multiplication fa? DQ™.

Note: The description of all symmetric orthogonal matric€sin (??) becomes
S =QDQT = Q:QT — Q2Q7. This is exactly the reflection matrik— 2Q,Q7T.

(@) The four blocks iQ™Q arel, 0,0, I because all the columns &, are orthogonal
to all the columns of),. (All together they are the columns of the orthogonal matrix

Q)

(b) Column times row multiplication gives

Qf
[Ql QQ} [QT] = Q] + Q205 =1I.
2

T T
Q" = |1 QD lg;] -[o @] l_g;] = QiQT - Q0%
=1-2Q-Q3.

Then@QDQT is both symmetric and orthogonal.

31 The real reason that the transpose “fligsacross its main diagonal” is to obey
this dot product law:(Av) - w = v - (ATw). That rule(Av)Tw = vT(ATw)
becomes integration by parts in calculuswhere A = d/dx and AT = —d/dx.

(a) For2 by 2 matrices, write out both sideg ferms) and compare::

a b||v wy | . (%1 a c||w
([¢ 2 [a])- [i] wemme 3] ([5 2] [12]).
(b) Therule(AB)™ = BT AT comes slowly but directly from part (a) :

(AB)v - w=A(Bv) - w=Bv - A"w=v - BY(ATw)=v - (BTAT)w

Steps1 and 4 are the law. Steps2 and 3 are the dot product law.
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32

The connection betweez)" y = = (A™y) and integration by parts is developed
in the Chaptef7 Notes. The idea is thal becomes the derivativé/dz and the dot
product becomes an integral :

(Af)Tg:/%g(I)dI:_/f(I);l—idx:fT(ATg).

That last step identified™g as—dg/dz. So the first derivativel = d/dx is like an
antisymmetric matrix. Our functiong and g are zero at the ends of the integration

interval, so the “by parts formula” above has zero from theotusual ternjf g]é.
In 31(b), stepsl and4 are theassociative lam( AB)v = A(Bv).

How is a matrixS = ST decided by its entries on and above the diagonal ?
How is @ with orthonormal columns decided by its entribslow the diagonal ?
Together this matches the number of entries imasy n matrix. So it is reasonable
that every matrix can be factored into= SQ (like re*?).

If S is symmetric, then the entries on and above the diagonaldelthe entries below
the diagonal. IfQ is orthogonal, here is how the entrigslow the diagonatiecide the
matrix. In columni, the top entryQ,; has to complete a unit vector (no choice except
a -+ sign). In columre, the two top entries are decided ky prthogonality to column

1 and @) unit vector. Every column, in order, has no free numberdlava on and
above the diagonal.

So there are a total ef? choices available : on and above the diagonad eihd below
the diagonal ofQ. This n? matches the number of equationsdn= SQ (linear
equations inS = AQT). “polar factorization” of a matrix is possible.



DIFFERENTIAL EQUATIONS
AND
LINEAR ALGEBRA

MANUAL FOR INSTRUCTORS

Gilbert Strang

Massachusetts Institute of Technology

Book Website math.mit.edu/dela
Email address diffegla@gmail.com
Course page web.mit.edu/18.06
OpenCourseWare video lectures: ocw.mit.edu
Home page math.mit.edugs
Publisher www.wellesleycambridge.com
Direct emall gs@math.mit.edu

Wellesley - Cambridge Press
Box 812060

Wellesley, Massachusetts 02482



131

Problem Set 5.1, Page 258

Questions 1-10 are about the “subspace requirements"» + w and cv (and then all
linear combinations cv + dw) stay in the subspace.

1 One requirement can be met while the other fails. Show thinalng

(a) A set of vectors ifR? for whichwv + w stays in the set b@v may be outside.

(b) A set of vectors iR? (other than two quarter-planes) for which everystays in
the set bub + w may be outside.

(@) The set of vectors with integer components (adding w produces integers,
multiplying by 1 may not).

(b) One option for the set is to take two lines throy@h0). Thencv stays on these
lines butv + w may not.

2 Which of the following subsets @3 are actually subspaces ?

(a) The plane of vector@y, b, bs) with by = bs.
(b) The plane of vectors withy = 1.
(c) The vectors witth,b2b3 = 0.
(d) Alllinear combinations ob = (1,4,0) andw = (2,2, 2).
(e) All vectors that satisfy; + by + b3 = 0.
() All vectors withb;, < by < b3.
The only subspaces are (a) the plane with= o (d) the linear combinations af
andw (e) the plane witth; + by + b3 = 0.
3 Describe the smallest subspace of the matrix spddbat contains

o[d o8] o [1d] w[id]e]d 0]

a b a a

0 0 0 0
4 Let P be the plane iR? with equationz + y — 2z = 4. The origin(0,0,0) is not in
P! Find two vectors inP and check that their sum is notIh.

For the plane) + y — 2z = 4, the sum of4, 0, 0) and(0, 4, 0) is not on the plane. (The
key is that this plane does not go throu@ho, 0).)

5 Let P, be the plane througtD, 0,0) parallel to the previous planB. What is the
equation forP, ? Find two vectors iPy and check that their sum is iR.

The parallel plan®, has the equation + y — 2z = 0. Pick two points, for example
(2,0,1) and(0,2,1), and their sun{2,2,2) is in P.

6 The subspaces @2 are planes, lineRR? itself, or Z containing only(0, 0, 0).

(@) Al matrices{ ] (b) All matrices{ } (c) All diagonal matrices.
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(a) Describe the three types of subspace’-of

(b) Describe all subspacesbBX, the space of by 2 diagonal matrices.
(@) The subspaces Bf? areR? itself, lines througtt0, 0), and(0, 0) by itself  (b) The
subspaces dR* areR* itself, three-dimensional planes- v = 0, two-dimensional
subspaceén; - v = 0 andn, - v = 0), one-dimensional lines throudh, 0, 0,0), and
(0,0,0,0) by itself.

7 (a) The intersection of two planes throu@hO0, 0) is probably a but it could
be a . ltcan'tbeZ!

(b) The intersection of a plane throudh,0,0) with a line through(0,0,0) is
probably a but it could be a .

(c) If S and T are subspaces dR®, prove that their intersectio8 N T is a
subspace oR°. HereS N T consists of the vectors that lie in both subspaces.
Check the requirements an+ w andcv.

(a) Two planes througfo, 0,0) probably intersect in a line throudh, 0, 0)
(b) The plane and line probably intersect in the pdiny, 0)
(c) If v andy are in bothS andT’, v + y andcw are in both subspaces.

8 SupposeP is a plane througl0, 0,0) andL is a line through(0,0,0). The smallest
vector spac® + L containing botlP andL is either or .

The smallest subspace containing a plBnand a lineL is either P (when the linel,
is in the planéP) or R3 (whenlL is not inP).

9 (@) Show that the set afivertiblematrices inM is not a subspace.
(b) Show that the set agfingularmatrices inM is not a subspace.
(8) The invertible matrices do not include the zero matrixtrey are not a subspace

0 0], . _
is not singular: not a subspace.

0 1
10 True or false (check addition in each case by an example):

(b) The sum of singular matrice{% 8] + [

(@) The symmetric matrices iMI (with AT = A) form a subspace.
(b) The skew-symmetric matrices M (with AT = — A) form a subspace.
(c) The unsymmetric matrices Ml (with AT # A) form a subspace.

(a) True The symmetric matrices do form a subspace Tb)e The matrices with
AT = —A do form a subspace (dfalse The sum of two unsymmetric matrices
could be symmetric.

Questions 11-19 are about column spac&s(A) and the equationAv = b.

11 Describe the column spaces (lines or planes) of these phatimatrices :

1 2 1 0 1 0
00] B = 02] C = 20].

0 0 0 0 0 0

A:

The column space ofl is thez-axis = all vectors(z,0,0). The column space aB
is thexy plane= all vectors(z,y,0). The column space af is the line of vectors
(z,2z,0).
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12 For which right sides (find a condition @n, b, b3) are these systems solvable ?

1 4 2 U1 b1 1 4 bl
(a) [ 2 8 41 lvrzl — lbzl (b) l 2 9] {Zl] — le]
-1 —4 =2 [us b3 -1 —4 2 b3

(a) Elimination leads td) = by, — 2b; and0 = by + b3 in equations 2 and 3:
Solution only ifby = 2b; andby = —b, (b) Elimination leads t® = b, + 2b3 in
equation 3: Solution only ifis = —b;.

13 Adding row 1 of A to row 2 produced3. Adding column 1 to column 2 producés
Which matrices have the same column space ? Which have thersarspace?

1 3 1 3 1 4
A_[2 6] and B_[?) 9} and C_[2 8}

A combination of the columns af' is also a combination of the columns 4f Then
1 3 1 2
C =

9 ¢|andA = {2 4
different column space.
14 For which vectorgb,, b2, b3) do these systems have a solution ?

1 1 1 I bl 1 1 1 I bl
[0 i 1HHb] and lo | 1]H:H
0 0 1 I3 b3 0 0 0 I3 b3

1 1 1 T b1
and [ 0 0 1 ‘| [ T2 ‘| = [ b2 ‘| .
0 0 1 I3 b3

(a) Solution for everyp (b) Solvable only ifbs =0 (c) Solvable only ifbs = bs.

15 (Recommended) If we add an extra colubnio a matrixA, then the column space gets
larger unless . Give an example where the column space gets larger
and an example where it doesn't. Why isv = b solvable exactly when the
column spaceloesn’tget larger ? Then it is the same fdrand [A b} .

The extra columm enlarges the column space unléss already inthe column space.
(4 b] = 1 0 1] (largercolumnspace) |1 0 1| (bisincolumn space)
~ {0 0 1] (nosolutiontoAv =b) |0 1 1| (Av = b has a solution)

16 The columns ofAB are combinations of the columns of. This means:The
column space ofAB is contained in(possibly equal tohe column space ofl.
Give an example where the column spaced @nd AB are not equal.

The column space ofl B is contained in(possibly equal to) the column space 4f
The exampleB = 0 and A # 0 is a case whenl B = 0 has a smaller column space
thanA.

17 Supposedv = b and Aw = b* are both solvable. TheAz = b + b* is solvable.
What isz? This translates into: 16 andb* are in the column spac€(A), then
b+ b"isalsoinC(A).

The solutiontedz = b+ b" isz = x + y. If bandb” are inC(A4) so isb + b™.

} have the same column spacB. = Ll)) 2] has a
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18 If Ais any 5 by 5 invertible matrix, then its column spaceis . Why?

The column space of any invertible 5 by 5 matrixRS. The equatiordx = b is
always solvable (by = A~'b) so everyb is in the column space of that invertible
matrix.

19 True or false (with a counterexample if false) :

(a) The vector$ that are not in the column spa€& A) form a subspace.

(b) If C(A) contains only the zero vector, thehis the zero matrix.

(c) The column space @A equals the column space df

(d) The column space of — I equals the column space df(test this).
(a) False Vectors that arenot in a column space don’t form a subspace.
(b) True Only the zero matrix ha€®(A) = {0}. (c) True C(A) = C(24).

(d) False C(A — I) # C(A) whenA = [ or A = {1

0 8} (or other examples).

20 Construct a 3 by 3 matrix whose column space contéing, 0) and(1,0,1) but not
(1,1,1). Construct & by 3 matrix whose column space is only a line.

1 1 0 1 1 2 1 2 0
A=1|1 0 0] and [1 0 1] do not havg(1,1,1) in C(A4). A= |2 4 O]

010 01 1 3 6 0
hasC(A) = line.

21 Ifthe9 by 12 systemAwv = b is solvable for every, thenC(A) must be .

WhenAv = b is solvable for allb, everyb is in the column space of. So that space
isRY.

Challenge Problems

22 Supposss andT are two subspaces of a vector spdteThesum S + T contains all
sumss + t of a vectors in S and a vectot in T. ThenS + T is a vector space.

If S andT are lines inR™, what is the difference betweehi+ T andS U T ?
That union contains all vectors frofhand all vectors fronT. Explain this statement:
ThespanoSUT isS + T.

() If w andv are both inS + T, thenu = s; + t; andv = s5 + t2. Sou + v =
(814 82) + (t1 + t2) isalsoinS + T. And so iscu = c¢s; + ct;: a subspace

(b) If S andT are differentlines, thels U T' is just the two linesr{ot a subspageut
S + T is the whole plane that they span.

23 If S is the column space oft andT is C(B), thenS + T is the column space of
what matrix M ? The columns ofA and B and M are all inR™. (I don’t think
A + B is always a correct/.)

If S =C(A)andT = C(B) thenS + T is the column space dff = [A B].
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24 Show that the matricesl and [A AB] (this has extra columns) have the same
column space. But find a square matrix withf A2) smaller tharC'(A).
The columns ofd B are combinations of the columns 4f So all columnsof A AB)|
are already irC(A). ButA = {8 (1)

For square matrices, the column spacRIswhen A is invertible

] has a larger column space thdh = {8 8}

25 An n by n matrix hasC(4) = R™ exactly whenA is an matrix.

(Key question) The column space of arby n matrix A is all of R™ exactly whenA

is invertible. In this invertible case, every vectbris in C(A) because we can solve
Av = b. And if A were not invertible, elimination would lead to a row of zerathien
Av = b could not be solved for some (most!) vectérs

Problem Set 5.2, Page 269

Questions 1-4 and 5-8 are about the matrices in Problems 1 ard

1 Reduce these matrices to their ordinary echelon fdrms

A:

1 2 2 4 6
1 2 3 6 9] B =
001 2 3

2 4 2
044].
0 8 8

Which are the free variables and which are the pivot var&@ble

1 2 2 4 6 . 2 4 2
- Free variabless, v4, v - Freeuvs
(@) U= 8 8 (1) (2) g] Pivot variables) , v3 (b) U= 8 3 é Pivotv, vy

2 For the matrices in Problem 1, find a special solution for daeh variable. (Set the
free variable to 1. Set the other free variables to zero.)

(a) Freevariables,, v4, v5 and solutiong—2, 1,0, 0,0),(0,0,—-2,1,0),(0,0,—3,0,1)
(b) Free variables: solution(1, —1,1). Special solution for each free variable.

3 By combining the special solutions in Problem 2, descrilerggolution toAv = 0
andBwv = 0. The nullspace contains only= 0 when there are no .

The complete solution tdv = 0is (—2vs, v, —2v4 — vy, v4, v5) With v, vy, v5 free.
The complete solution tBv = 0 is (2vs, —vs, v3). The nullspace contains only= 0
when there are no free variables.

4 By further row operations on eadh in Problem 1, find the reduced echelon foin
True or false The nullspace oR equals the nullspace &f.

1 2 0 0 0 1 0 -1
R=|0 0 1 2 3|,R=|0 1 1],Rhasthesame nullspacedsandA.
000 0O 0 0 0
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5 By row operations reduce this nedvand B to triangular echelon forry. Write down
a 2 by 2 lower triangulafl such thatB = LU.

0 0 -3
6 For the samed and B, find the special solutions tdv =0 and Bv = 0. For anm by
n matrix, the number of pivot variables plus the number of fragables is .
(a) Special solution§3,1,0) and(5,0,1) (b) (3,1,0). Total of pivot and free is.

7 In Problem 5, describe the nullspacesbénd B in two ways. Give the equations for
the plane or the line, and give all vectarshat satisfy those equations as combinations
of the special solutions.

(&) The nullspace ofl in Problem 5 is the planev + 3y + 5z = 0; it contains all
the vectorg3y + 5z, y, 2) = y(3,1,0) 4+ 2(5, 0, 1) = combination of special solutions.
(b) Theline through(3, 1, 0) has equationsv+ 3y + 5z = 0 and—2v+ 6y + 7z = 0.
The special solution for the free variahlgis (3,1, 0).

8 Reduce the echelon fornis in Problem 5 toR. For eachR draw a box around the
identity matrix that is in the pivot rows and pivot columns.

1 -3 —5] . o 1 =3 0] ... [1 o0
R:[O 0 O]W'th":[l]’R_[O 0 l]wnhl—[o 1}.

Questions 9—-17 are about free variables and pivot variables

9 True or false (with reason if true or example to show it isdals

(a) A square matrix has no free variables.
(b) An invertible matrix has no free variables.
(c) An'm by n matrix has no more tham pivot variables.
(d) Anm by n matrix has no more tham pivot variables.
(a) False Any singular square matrix would have free variables Toje An in-

vertible square matrix has free variables. (c)True(only n» columns to hold pivots)
(d) True(only m rows to hold pivots)

10 Construct 3 by 3 matriced to satisfy these requirements (if possible) :

(a) A has no zero entries btt = 1.
(b) A has no zero entries b = 1.
(c) A has no zero entries bilit = U.
(d) A=U =2R.

(&) Impossiblerow1 (b)A =invertible (c) A=allones (d)A=2I,R=1.
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11

12

13

14

15

16

17

Put as many'’s as possible in a 4 by 7 echelon mattixwhose pivot columns are

(@ 2,4,5

(b) 1,3,6,7

(c) 4and 6.

0 1111 11 11 1 1 1 11 0 001 1 11
000 1111 0 01 1111 0 00 0 011

0 00 01 11 0 000 0 11 0 0000 0O
000 0O0O0OTO0/[0OOOOOOT1]000O0O0O0TO 0
Put as manyi's as possible in a 4 by 8&ducedechelon matrixR so that the free
columns are

(@ 2,4,5,6

(b) 1,3,6,7,8.

110 1 1 1 0 0 0110 0 1 11

0 0111100 0001 0 1 11 : . .
0 0000010l'"loooo 1111l Notice the identity
0O 00 OO 0 O0 1 0O 0 OO 0O 0 O0O0

matrix in the pivot columns of thegeducedrow echelon formsR.

Suppose column 4 of a 3 by 5 matrix is all zero. Theiis certainly a variable.
The special solution for this variable is the vector

If column 4 of a 3 by 5 matrix is all zero then is afreevariable. Its special solution
isv =(0,0,0,1,0), because 1 will multiply that zero column to giviey = 0.

Suppose the first and last columns of a 3 by 5 matrix are the ¢aateero). Then
is a free variable. Find the special solution for this vaegab

If column 1= column 5 theny; is a free variable. Its special solution(is1,0, 0,0, 1).

Suppose am by n matrix has- pivots. The number of special solutionsis . The
nullspace contains only = 0 whenr = . The column space is all ®" when
T =

If a matrix has» columns and- pivots, there arex — r special solutions. The nullspace
contains onlyv = 0 whenr = n. The column space is all @™ whenr = m. All
important!

The nullspace of a 5 by 5 matrix contains only= 0 when the matrix has
pivots. The column space R® when there are pivots. Explain why.

The nullspace contains onty= 0 whenA has 5 pivots. Also the column spaceRs,
because we can solvev = b and every is in the column space.

The equation: — 3y — z = 0 determines a plane iR®. What is the matrix4 in this
equation ? Which are the free variables ? The special sokitice(3, 1, 0) and .

A=[1 —3 —1]givesthe plane — 3y — z = 0; y andz are free variables. The
special solutions ar¢3,1,0) and(1,0, 1).
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18 (Recommended) The plane— 3y — z = 12 is parallel to the plane — 3y — 2z = 0
in Problem 17. One particular point on this plang1g, 0,0). All points on the plane
have the form (fill in the first components)

0 ] |
1

-1

v
Fill in 12 then4 then1 to get the complete solution to — 3y — z = 12: [y] =
z

+y +z

1
0

12 4 1
8 +y (1) +z (1) = Yparticulart Ynullspace

19 Prove that/ andA = LU have the same nullspace wheris invertible :

If Uv =0 thenLUv=0. If LUv =0, howdo you knowUv =07

If LUv = 0, multiply by L=! to find Uv = 0. ThenU and LU have the same
nullspace.

20 Suppose columt + column3 + column5 = 0 in a4 by 5 matrix with four pivots.
Which column is sure to have no pivot (and which variableeg}? What is the special
solution ? What is the nullspace ?

Column 5 is sure to have no pivot since it is a combination ofiexacolumns. With
4 pivots in the other columns, the special solutios is (1,0,1,0,1). The nullspace
contains all multiples of this vectar(a line inR?).

Questions 21-28 ask for matrices (if possible) with specifgroperties.

21 Construct a matrix whose nullspace consists of all comlinapf(2, 2,1,0) and(3, 1,0, 1).
For special solutiong2,2,1,0) and (3,1,0,1) with free variablesvs,vs: R =
10 -2 -3
01 -2 -1
22 Construct a matrix whose nullspace consists of all mulsipig4, 3,2, 1).
1 0 0 —4
The nullspaceofl = [0 1 0 —3]| isthe line through4, 3,2, 1).
0 01 =2

23 Construct a matrix whose column space contéins, 5) and(0, 3, 1) and whose nullspace
containg(1, 1, 2).

} andA can be any invertible 2 by 2 matrix times tHis

10 —1/2

A=1|1 3 —2] has(1,1,5) and(0,3,1) in C(A) and(1,1,2) in N(A). Which
5 1 -3

other A’'s?

24 Construct a matrix whose column space contéins, 0) and(0, 1, 1) and whose nullspace
containg(1, 0, 1) and(0,0, 1).

This construction is impossible: 2 pivot columns and 2 fragables, only 3 columns.
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25

26

27

28

29

30

31

32

Construct a matrix whose column space contging, 1) and whose nullspace is the
line of multiples of(1, 1,1, 1).

1 -1 0 0

1 0 -1 O] has(1,1,1)in C(A) and only the linc, ¢, ¢, c) in N(A).
10 0 -1

Construct a 2 by 2 matrix whose nullspace equals its coluranespThis is possible.

A:

A= {8(1)} hasN (A4)=C(A) and also (a)(b)(c) are all false. Notigef(A™)= [(1) 8} .

Why does no 3 by 3 matrix have a nullspace that equals its cokpace ?

If nullspace= column space (with pivots) thenn — r = r. If n = 3 then3 = 2r is
impossible.

(Important) If AB = 0 then the column space @ is contained in the of A.
Give an example oft and B.

If AtimeseverycolumnaB is zero, the column space Bfis contained in thaullspace

of A. An exampleisd = U andB = { ! _ﬂ HereC(B) equalsN(A).

11 -1
(ForB = 0,C(B) is smaller.)

The reduced fornR of a 3 by 3 matrix with randomly chosen entries is almost sore t
be . What reduced fornR is virtually certain if the randoml is 4 by 3?

For A = random 3 by 3 matrixR is almost sure to bé. For 4 by 3,R is most likely
to beI with fourth row of zeros. What about a random 3 by 4 matrix?

Show by example that these three statements are genfedably

(a) A andAT have the same nullspace.
(b) A andAT have the same free variables.
(c) If Ris the reduced form oft thenR™ is the reduced form ofi™.
0 1 , T 10
A= {O O] shows that (a)(b)(c) are all false. Noticef(A" ) = [O 0]'

If the nullspace ofA consists of all multiples ob = (2,1,0,1), how many pivots
appear inJ ? What isR ?

If N(A) = line throughv = (2,1,0,1), A hasthree pivotg4 columns and 1 special

1 0 0 -2
solution). Its reduced echelon form canBe= [0 10 —1] (add any zero rows).
001 0

If the special solutions té&?v = 0 are in the columns of thes¥, go backward to find
the nonzero rows of the reduced matri¢es

2 3 0
N:ll O] anszlO] and N =
0 1 1

1 (empty3 by 1).

Any zero rows come after these ron8:=[1 —2 -3], R= [
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33 (a) What are the five 2 by 2 reduced echelon matrig@ghose entries are all 0's and
1's?

(b) What are the eight 1 by 3 matrices containing only 0's aB¢ 1Are all eight of
them reduced echelon matricB$

(a) [(1) (1)},{(1) 8] [(1) (1)] [8 (1)} {8 8} (b) All 8 matrices areR’s!

34 Explain why A and— A always have the same reduced echelon f&m

One reason thak is the same fod and— A: They have the same nullspace. They also
have the same column space, but that is not required for tvwoaasito share the same
R. (R tells us the nullspace and row space.)

Challenge Problems

35 If Ais4 by4 and invertible, describe all vectors in the nullspace of4hy 8 matrix
B=[A A].

The nullspace oB = [ A A] contains all vectors = {_Z] for y in R*.

36 How is the nullspaceéV (C) related to the spacd¥ (A4) andN (B), if C = { g } ?

If Cv =0thenAv = 0andBv = 0. SON(C) = N(A) N N(B) = intersection

37 Kirchhoff’'s Law says thaturrent in = current outat every node. This network has
six currentsys,...,ys (the arrows show the positive direction, eaghcould be
positive or negative). Find the four equatioAg = 0 for Kirchhoff’'s Law at the
four nodes. Reduce @y = 0. Find three special solutions in the nullspacedof

1 " 2
kY o ; Iy

Currents y1 —ys+ys = —y1 + 42 ++ys = —y2 +ya +ys = —ya — Y5 — Y6 = 0.
These equations add o= 0. Free variablegs, y5, ys: watch for flows around loops.
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Problem Set 5.3, Page 280

1 (Recommended) Execute the six steps of Worked Exagple to describe the column
space and nullspace dfand the complete solution tév = b:

2 4 6 4 by 4
A=112 5 7 6] b_[bQ]_ 3]
2 3 5 2 bs 5
2 4 6 4 by 2 4 6 4 by 2 4 6 4 by
2 5 7 6 bg]—>|}) 1 1 2 bg—b1‘|%l0 1 1 2 b2—b1 ‘|
2 3 5 2 bg 0-1-1-2 bs—by 0 0 0 0 bg+by—2by

Awv = b has a solution whebs + b, — 2b; = 0; the column space contains all combi-
nations of(2, 2,2) and(4, 5, 3). This is the planebs + b2 — 2b; = 0 (!). The nullspace
contains all combinations of, = (—1,—-1,1,0) andss = (2,—2,0,1); Vcomplete =

VUp + €181 + C282;

1 01 -2 4
[R d]= [O 1 1 2 —1] gives the particular solution, = (4, —1,0, 0).
0 0O 0 0

2 Carry out the same six steps for this matdxwith rank one. You will findtwo condi-
tions onby, be, b3 for Av = b to be solvable. Together these two conditionsipirto

the space.
3 b1 10
9] b_[@]_[go]
6 bs 20

17 [2 1 3]
TR
2

A:

= O N
Do W =

2 1 3 by 2 1 3 by 1 1/2 3/2 5
6 39 by|—>|0 0 0 by—3by| Then[R d]=1]0 0 0 0
4 2 6 by 0 0 0 by—2by 00 0 0

Av = b has a solution wheh, — 3b; = 0 andbs — 2b; = 0; C(A) = line through
(2,6,4) which is the intersection of the planés — 3b; = 0 andbs — 2b; = 0;
the nullspace contains all combinationssgf= (—1/2,1,0) ands; = (—3/2,0,1);
particular solutiorv,, = d = (5,0,0) and complete solution, + c¢151 + c22.

Questions 3-15 are about the solution aAv = b. Follow the steps in the text tovp
and vy Start from the augmented matrix [ A b].

3 Write the complete solution as, plus any multiple ofs in the nullspace :

r+3y+3z=1
2z 4+6y+92z =5
—x—3y+3z=25.

—2 -3
v = 0| + v | 1|. The matrix is singular but the equations are
complete 1 0

still solvable;b is in the column space. Our particular solution has freeatdey = 0.
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4 Find the complete solution (also called tpeneral solutiohto

1 3 1 2 1
l2648] _lB].
0 0 2 4 1

1 1
vcomplete =V + U, = (5, 0, bL O) + ’UQ(—3, 1,0, O) + 1)4(0, 0, -2, 1).

5 Under what condition oby, b2, bs is this system solvable ? Includes a fourth column
in elimination. Find all solutions when that condition hstd

e R

T+2y—2z2=10
2z + 5y — 4z = by
4z + 9y — 8z = bs.

1 2 -2 b 1 2 -2 b
lQ 5 —4 b2‘| — [O 1 0 b2 — 2b1

4 9 —8 b3 0 0 0 bs—2b; —by
Back-substitution gives the particular solutionA@ = b and the special solution to

solvable ifbs — 2b; — by = 0.

5b1 — 2bs [2
AU—OZU—[bQ—le + v3 O]
0 1
6 What conditions oty , b, b3, by make each system solvable ? Fiméh that case :
1 2 b1 7 1 2 3 _ [ by
2 4 |[wo ] | b 2 4 6 zlibQ
2 5 ve | | b3 2 5 7 v2_b3
39 by | 39 12 ]+-73 | by
(a) Solvable ifbs = 2b; and3b; — 3bs + bs — 0. Thenw — | 901 ~203] _,
2 = 201 1 3 4 = U. by —2b |~ Vr
5b1 — 2b3 —1
(b) Solvable ifbo = 2b; and3b; — 3bs + by = 0. v = l b3 —2b1 | + 3 —1] .
0 1
7 Show by elimination thatb,, b, bs) is in the column space if; — 202 + 4b; = 0.
1 3 1
A=1]3 8 2 ]
2 4 0

What combinationy; (row 1) + y2(row 2) + ys(row 3) gives the zero row ?

1 3 1 b 1 3 1 b One more step givg®d 0 0 0] =
[3 8 2 bgl—{o —1 =1 by—3b;| row3 —2(row2)+ 4(row 1)

2 4 0 b3 0 -2 —2 b3—2b provided bz —2bo+4b,=0.

8 Which vectors(by, bo, b3) are in the column space ¢f? Which combinations of the
rows of A give zero ?
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10

11

12

13

14

15

11 1
(a) A= 124].
2 4

8

1 2 1
263] (b) A=
02 5

(a) Everybisin C(A): independent rownly the zero combination givés

(b) We needr; = 2bs, becausérow 3) — 2(row 2) = 0.

In Worked Example5.3 A, combine the pivot columns ofi with the numbers
—9 and3 in the particular solutiom,. What is that linear combination and why ?

1 0 0711 2 3 5 b 1 2 3 5 b
LU c]:l2 10][0022172—2171 ]:l24812 bQ]
3 =1 1][0 0 0 0 by+by—5b 3 6 7 13 by
= [A b]; particularv, = (—9,0,3,0) means—9(1,2,3) + 3(3,8,7) = (0,6, —6).
Thisis Av, = b.
Construct a 2 by 3 systemv = b with particular solutionv, = (2,4,0) and
null (homogeneous) solutiom, = any multiple of(1,1, 1).
[(1) (1) :ﬂ x = Lﬂ hasz, = (2,4,0) andzp = (¢ ¢, c).
Why can’'ta 1 by 3 system hawg = (2, 4,0) andv,, = any multiple of(1,1,1) ?
A 1 by 3 system has at leatsto free variables. Buk, | in Problem 10 only haene.
(a) If Av = b has two solution®; andwv., find two solutions todv = 0.
(b) Then find another solution tdv = b.
() 1 — x> and0 solveAz = 0 (b) A(2x1 — 2x2) =0,A(2x1 —x2) = b
Explain why these are all false :

(a) The complete solution is any linear combinatiowpandv,,.
(b) A systemAwv = b has at most one particular solution.

(c) The solutiony, with all free variables zero is the shortest solution (mimm
length||v||). Find a2 by 2 counterexample.

(d) If Ais invertible there is no solution,, in the nullspace.

(a) The particular solutiom, is always multiplied by 1  (b) Any solution can bg

(c) [g g} [:yc] = [g} Then[}] is shorter (length/2) than[(ﬂ (length 2)

(d) The only “homogeneous” solution in the nullspace js= 0 whenA is invertible.
Suppose column 5 has no pivot. Thegis a variable. The zero vector (is)
(is not) the only solution todv = 0. If Av = b has a solution, then it has
solutions.

If column 5 has no pivotys is afreevariable. The zero vectas notthe only solution
to Az = 0. If this systemAx = b has a solution, it hasfinitely manysolutions.
Suppose row 3 has no pivot. Then that rowis . The equatiolRv = d is only
solvable provided . The equatiomwv = b (is) (is nod) (might not bé solvable.

If row 3 of U has no pivot, that is aero row Ux = c is only solvable provided
c3 = 0. Az = b might not be solvablédecausé/ may have other zero rows needing
morec; = 0.
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16

17

18

19

20

21

Questions 16-21 are about matrices of “full rank”r = m or r» = n.

The largest possible rank of a 3 by 5 matrix is . Then there is a pivot in
every of U and R. The solution toAv = b (always exists (is uniqus.
The column space o is . An example is4 = .

The largest rank is 3. Then there is a pivot in evieny. The solutionalways exists
The column space R®. An exampleisd = [I F] for any3 by 2 matrix F'.

The largest possible rank of a 6 by 4 matrixis . Then there is a pivot in every
of U and R. The solution toAv = b (always exists (is uniqud.
The nullspace ofl is . An example isA = .

The largest rank of a 6 by 4 matrix is 4. Then there is a pivotviengcolumn The
solution isunique The nullspace contains only the zerector An example isA =
R =[I F]forany 4 by 2 matrixF.

Find by elimination the rank oft and also the rank oA™ :
1 4 0 1 0 1
A=1] 2 11 5 ] and A=|1 1 2 1 (rank depends oq).
-1 2 10 11 ¢

Rank= 2; rank= 3 unless; = 2 (then rank= 2). Transpose has the same rank!
Find the rank ofd and also ofAT A and also ofAA™ :

2 0

1 1 ] .

1 2

Both matrices4 have rank 2. AlwaysiT A and AAT havethe same rankasA.
ReduceA to its echelon fornt/. Then find a triangulal so thatA = LU.

1 1 5
Az{l 0 1} and A=

34 10
A_{6521] and A=

1 01 0
2 2 0 3.
0 6 5 4

1 0 0171 0 1 0
a=w=[L O[3 48 Jiamw|2 1 o] [0 2 > 3].
0 3 1]J]]10 0 11 -5
Find the complete solution in the forty + v,, to these full rank systems:
r+y+z=4
@az+y+z=4 (b) 4
r—y+z=4.
x 4 -1 -1 x 4 -1
€) [y =10l +y| 1| +2z| 0] (b ly]z 0 + = 0].Thesecond
z 0 1 z 0 1

equation in part (b) removed one special solution.
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22

23

24

25

If Av = b has infinitely many solutions, why is it impossible faw = B (new right
side) to have only one solution ? Cowld» = B have no solution ?
If Az, = band alsoAxs = b then we can ada; — x> to any solution ofAx = B:

the solutionx is not unique. But there will bao solutionto Az = B if B is notin
the column space.

Choose the numberso that (if possible) the ranks are (a) 1, (b) 2, (c) 3:

6 4 2
-3 -2 —1] and B_[?’l?’}

A:
9 6 ¢ qg 2 g

For A, ¢ = 3 gives rank 1, every othergives rank 2. FoB, ¢ = 6 gives rank 1, every
otherq gives rank 2. These matrices cannot have rank 3.

Give examples of matrices for which the number of solutions tdv = b is

(@) Oor 1, depending ol
(b) oo, regardless ob
(c) 0oroo, depending o
(d) 1, regardless di.

[1 1] 1| _

o | = [P
has infinitely many solutions for evety (c) There are 0 oo solutions wheM has
rankr < m andr < n: the simplest example is a zero matrix. ~ @jesolution for
all b when A is square and invertible (likd = TI).

Write down all known relations betweerandm andn if Av = b has

(a) [1] [z] = [gj has 0 or 1 solutions, depending bn (b)

(a) no solution for somé

(b) infinitely many solutions for every

(c) exactly one solution for sonig no solution for otheb
(d) exactly one solution for every.

(@) r<m,alwaysr <n (b)) r=m,r<n(c) r<m,r=n(d) r=m=n.

Questions 26—33 are about Gauss-Jordan elimination (upwads as well as downwards)
and the reduced echelon matrixR.

26

Continue elimination front/ to R. Divide rows by pivots so the new pivots are all 1.
Then produce zeraabovethose pivots to reacR :

2 4 4 2 4 4
U= 0361 and U = 0361.
0 0O 0 0 5
2 4 4 1 0 -2 2 4 4
lo 3 6|l =R=1|0 1 2] and[O 3 6| >R=1.
0 0 O 0 0 0 0 0 5
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27

28

29

30

31

SupposdJ is square with pivots (an invertible matrix)Explain whyR = 1.

If U hasn pivots, thenR hasn pivotsequal to 1. Zeros above and below those pivots
makeR = I.

Apply Gauss-Jordan elimination {év = 0 andUv = ¢. ReachRv = 0 andRv = d:

wol=[g 51 0] mwe=|g 5l

Solve Rv = 0 to find v,, (its free variable isv, = 1). Solve Rv = d to find v,
(its free variable imy = 0).
-1
2|

1230 1200}, 7‘?_1235 12
0040/ 70010 1"jo048 7[00
Freev, = 0 giveswv,, = (—1,0, 2) because the pivot columns contdin

Apply Gauss-Jordan elimination to reducefte = 0 andRv = d :

—= O

3 0 6 O 30 6 9
U 0]|=]010 20 and U ec|=]100 2 4].
0 00O 0 00 5
SolveUv = 0 or Rv = 0 to find v,, (free variable= 1). What are the solutions to
Rv=d?
1 0 00 0 1 0 0 -1
[Rd] = |0 0 1 0| leads tox,, = |1|; [Rd] = |0 0 1 2]|:
0 00O 0 0 0O 5

no solution because of the 3rd equation
Reduce td/v = ¢ (Gaussian elimination) and thétw = d (Gauss-Jordan):

U1

10 2 3 v 2
Av = 1320] v2 _[5 =b.
2 0 4 9 3 10

vy

Find a particular solutiom, and all homogeneous (null) solutions.

1023 2 102 3 2 1020 —4 _g _g
1320 53|—-]030-33|—-(0100 3;O;mn:x31.
204910 000 36 0001 2 9 0

Find matricesd and B with the given property or explain why you can't:
1

2 ] isv = [ (1) } .

3

1
(b) The only solution oBv = { (1) } isv = l 2 1
3

(&) The only solution ofdiv =
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32

33

34

35

11 1
ForA=|0 2] , the only solution toAx = l?] isx = [ﬂ B cannot exist since 2
0 3 3

equations in 3 unknowns cannot have a unique solution.

Reducel A b]to[R d] and find the complete solution tbv = b:
1 3 1 1 M1
1 2 3 3 0
A= 9 4 6 and b= 6 and then b = 0
115 5 L 0
1 3 1 1 1 3 17
1 2 3 . 1 1 0 -1 2 .
A= 2 4 6 factors intoLU = 9 2 1 0 0 0 and the rank is
1 1 5 1 2 0 1 0 0 0]
r = 2. The special solution tolx = 0 andUxz = 0iss = (-7,2,1). Since
b = (1,3,6,5) is also the last column ofl, a particular solution todx = b is
(0,0, 1) and the complete solutionis= (0,0, 1) + cs. (Or use the particular solution
x, = (7,—2,0) with free variablers = 0.)

Forb = (1,0,0,0) elimination leads t&/x = (1,—1,0,1) and the fourth equa-
tion is0 = 1. No solution for thish.

The complete solution tdv = [ é } isv = [ (1) } +c[ (1) ] Find A.

. 1] . 1 0 10
If the complete solution tolx = {3} isx = {0} + [c] thenA = [3 0].

Challenge Problems

Suppose you know that tieby 4 matrix A has the vectos = (2,3, 1,0) as the only
special solution tdv = 0.

(&) What is therank of A and the complete solution tdv = 0?

(b) What is the exact row reduced echelon fofhof A ? Good question.

(c) How do you know thatdv = b can be solved for ab ?

(@) If s = (2,3,1,0) is the only special solution tdx = 0, the complete solution is
x = cs (line of solution!). The rank oA must bet — 1 = 3.

1 0 -2 0
(b) The fourth variable:, is not freein s, andR must belo 1 -3 O] .
00 01

(c) Ax = b can be solve for alb, becaused and R havefull row rank r = 3.

If you have this information about the solutionsAe = b for a specifich, what does
that tell you about thehapeof A (m andn) ? And possibly about andb.

1. There is exactly one solution.
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. All solutions to Av = b have the formv = [2] +¢[1].
. There are no solutions.

r = n (no special solutions) artdis in the column space

n — r = 1 (one special solution)

. bis notin the column space (30< m)

. Same conclusion as part

. r < n (there are special solutions) ahds in the column space

. All solutions toAv = b have the formv = [[ﬂ +c {

—HOR

. There are infinitely many solutions.

O A WNE O M WD

36 Supposedv = b andCv = b have the same (complete) solutions for evéry
Isittrue thatd = C'?

If Az = bandCx = b have the same solutiond, andC have the same shape and
the same nullspace (take= 0). If b = columnl of 4, « = (1,0,...,0) solves
Axz=bsoitsolvesx=b. ThenA andC share column. Other columns toad =C!

Problem Set 5.4, page 295

Questions 1-10 are about linear independence and linear depdence.

1 Show thatu;, us, us are independent but; , us, us, uy are dependent:

J e li] (1] 18]

Solveciug + cous + csus + c4uyg = 0 or Ac = 0. Thew's go in the columns ofd.

1 11
lO 1 1]
0 0 1

11 1 2 0
independent. BU{O 11 3] [c] = [0] is solved bye = (1,1,—4,1). Then

u; =

1
02] = 0 givescg = ¢ = ¢; = 0. So those 3 column vectors are
C3

0 01 4 0
u1 + us — 4ugz + uy = 0 (dependent).

2 (Recommended) Find the largest possible number of indepretvectors among

1 1 1 0 0 0
~1 0 0 1 1 0
W= g|¥2= | || og|M= | |W=| o|%=]| 1
0 0 1 0 1 1

u1, ug, uz are independent (thel’s are in different positions). All six vectors are on
the plang(1,1,1, 1) - w = 0 so no four of these six vectors can be independent.
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3 Provethatife = 0ord = 0or f = 0 (3 cases), the columns 6f are dependent:

a b ¢

0 d e 1 .

0 0 f

If @ = 0 then columnl = 0; if d = 0 thend(columnl) — a(column2) = 0;if f =0
then all columns end in zero (they are all in thgplane, they must be dependent).

U =

4 If a,d, f in Question 3 are all nonzero, show that the only solutiofito= 0isv = 0.
Then the upper trianguldrf has independent columns.

a b c T 0

Uv = lO d e] ly] = [O] givesz = 0 theny = 0 thenz = 0. A square
0 0 f]lz 0

triangular matrix has independent columns (invertiblerirptvhen its diagonal has no

zeros

5 Decide the dependence or independence of

(a) the vectorg1,3,2)and(2,1,3) and(3,2,1)
(b) the vectorgl, —3,2)and(2,1, —3) and(-3,2,1).

1 2 3 1 2 3 1 2 3

@ (3 1 2]%[0 -5 —71%[0 -5 —7]:invertible:>independent
12 3 1 0 -1 -5 0 0 —18/5

columns.
T 12 -3 1 2 -3 1 2 -3 1 0

(b) | -3 1 2] — [O 7 —7] =10 7 =T|;A|[1l|= [O],columns
L 2 -3 1 o -7 7 0 0 O 1 0

add to0.

6 Choose three independent columnd/odnd A. Then make two other choices.

and A=

O O
OO W
0o O N b~
N O O

2
0
0
4

SO O N
SO Oo W
S © O

Columns 1, 2, 4 are independent. Also 1, 3, 4 and 2, 3, 4 andsthet not 1, 2, 3).
Same column numbers (not same columns!)4or

7 If wy,wq, w3 are independent vectors, show that the differenges w, — w3 and
vy = wy — w3 andvs = w; — wo aredependentFind a combination of the’s that
gives zero. Which singular matrix givé®; vy vs ] =[w; ws ws] A?

The sumv; —v2 +v3 = 0 becauséwsy — ws) — (w1 — ws) + (w1 —wsy) = 0. So the

0 1 -1
difference aralependenand the difference matrix is singulat: = [1 0 —1] .
1 -1 0
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8 If wy,wo, w3 are independent vectors, show that the swmns- w, + w3 andvy =

wi + ws andvs = w; + we areindependent (Write c;v;, + covs + c3vs = 0in
terms of thew’s. Find and solve equations for this, to show they are zero.)
If Cc1 ('11)2 —|—’LU3) +c2 ('11)1 +'Ll)3) “+c3 ('11)1 +'Ll)2) =0 then(02 +Cg)’l.U1 + (Cl +Cg)’l.U2 +
(c1 + c2)ws = 0. Since thew'’s are independenty + ¢3 = ¢1 +¢3 = ¢1 +¢c2 = 0.
The only solution is:; = ¢co = ¢3 = 0. Only this combination ob, v5, v3 givesO.

9 Supposeau;, us, us, uy are vectors iR3.

(&) These four vectors are dependent because .
(b) The two vectorat; andus will be dependent if .
(c) The vectorai; and(0,0,0) are dependent because .

(a) The four vectors iR? are the columns of a 3 by 4 matrix. There is a nonzero
solution toAxz = 0 because there is at least one free variable (b) Two vecters ar
dependentifu; wuo] hasrank O or 1. (OK to say “they are on the same line” or “one
is a multiple of the other” buhot “u, is a multiple ofu,” —since u; might be0.)
(c) A nontrivial combination ofs; and0 gives0: Ou; + 3(0,0,0) = 0.

10 Find two independent vectors on the plane 2y — 3z — t = 0in R*. Then find three
independent vectors. Why not four? This plane is the nutisfpd what matrix?

The plane is the nullspace of = [1 2 -3 —1]. Three free variables give three
solutions(x, y, z,t) = (2,—1 — 0 — 0) and(3,0,1,0) and(1,0,0,1). Combinations
of those special solutions give more solutions (all sohgjo

Questions 11-14 are about the spagpanned by a set of vectors. Take all linear com-
binations of the vectors, to find the space they span.

11 Describe the subspace Rf (is it a line or plane oR®?) spanned by

(a) the two vector$l, 1, —1) and(—1,—1,1)

(b) the three vector®, 1,1) and(1,1,0) and(0, 0, 0)
(c) all vectors inR? with whole number components
(d) all vectors with positive components.

(a) LineinR? (b) PlaneinR®  (c) Allof R*  (d) All of R®.

12 The vectom is in the subspace spanned by the columnd efhen has a solu-
tion. The vectok is in the row space ofl when has a solution.
True or false If the zero vector is in the row space, the rows are dependent
b is in the column space wheAxz = b has a solutiong is in the row space when
ATy = c has a solutionFalse The zero vector is always in the row space.

13 Find the dimensions of these 4 spaces. Which two of the spaeeshe same?
(a) column space ofi (b) column space of/ (c) row space ofA (d) row space

of U:
1 1 0 1 1 0
A=|1 3 11 and U=| 0 2 1].
3 1 -1 0 0O

The column space and row spacedéndU all have the same dimensior2=The row
spaces ofA and U are the samgbecause the rows @f are combinations of the rows
of A (and vice versal).



5.4. Independence, Basis and Dimension 151

14

v + w andv — w are combinations ob andw. Write v andw as combinations of
v + w andv — w. The two pairs of vectors the same space. When are they a
basis for the same space?

1

v=3(v+w)+ i(v—w)andw = 3(v + w) — 3(v — w). The two pairspanthe

same space. They are a basis wheandw areindependent

Questions 15-25 are about the requirements for a basis.

15

16

17

18

19

If vy,...,v, arelinearlyindependent, the space they span has dimension. These
vectors are a for that space. If the vectors are the columns ofrahy n matrix,
thenm is thann. If m = n, that matrix is .

Then independent vectors span a space of dimensidrhey are dasisfor that space.
If they are the columns ofl thenm is not lesshann (m > n).

Supposea, v, . . ., vg are six vectors iR*.

(a) Those vectors (do) (do not) (might not) sgah
(b) Those vectors (are) (are not) (might be) linearly inchefent.
(c) Any four of those vectors (are) (are not) (might be) a bé&si R*.

(a) The 6 vectorsnight notspanR* (b) The 6 vectorsire notindependent
(c) Any fourmight bea basis.
Find three different bases for the column spacé&/o& { (1) (1) (1) (1) (1) . Then

find two different bases for the row spacelof

1 01 0 1
01 010
and row2) or (row 1 and rowl + row 2) and (rowl and— row 2) are bases for the row
spaces ol/.

Find a basis for each of these subspace?’af

The column space df = is R? so take any bases f&?2; (row 1

(a) All vectors whose components are equal.

(b) All vectors whose components add to zero.

(c) All vectors that are perpendicular o, 1,0,0) and(1,0,1, 1).
(d) The column space and the nullspacd ¢ by 4).

These bases are not unique! @ 1,1,1) for the space of all constant vectors
(¢,c,c,c) (b) (1,-1,0,0),(1,0,-1,0), (1,0,0,—1) for the space of vectors with

sum of components & (¢) (1,-1,-1,0),(1,—1,0,—1) for the space perpendic-

ularto(1,1,0,0) and(1,0,1,1) (d) The columns of are a basis for its column

space, the empty set is a basis (by convention)N@7) = {zero vector}.

The columns ofA aren vectors fromR™. If they are linearly independent, what
is the rank ofA? If they spanR™, what is the rank? If they are a basis ",
what then1.ooking ahead The rankr counts the number of columns.

n-independent columns- rankn. Columns spalR™ =- rankm. Columns are basis
for R™ = rank= m = n. The rank counts the numberiodependentolumns.
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20

21

22

23

24

Find a basis for the plane— 2y +3z = 0in R®. Find a basis for the intersection of that
plane with thery plane. Then find a basis for all vectors perpendicular to theg

One basis i52,1,0), (—3,0,1). A basis for the intersection with they plane is
(2,1,0). The normal vectof1, —2, 3) is a basis for the line perpendicular to the plane.

Suppose the columns of a 5 by 5 matfhare a basis foR®.

(@) The equatiomv = 0 has only the solutiom = 0 because .

(b) If bisin R® thenAv = b is solvable because the basis vectors _R5.

Conclusion :A is invertible. Its rank i$. Its rows are also a basis fR®.

(a) The only solution tcdv = 0 is v = 0 becausdhe columns are independent
(b) Av = b is solvable becausthe columns spalR®. Key point: A basis gives
exactly one solution for everdy.

Suppos&is a5-dimensional subspace Bf. True or false (example if false) :

(a) Every basis fo6 can be extended to a basis 't by adding one more vector.

(b) Every basis foR® can be reduced to a basis ®by removing one vector.

(&) True (b) False because the basis vectorRfomight not be inS.

U comes fromA by subtracting row 1 from row 3:
1 3 2 1 3 2
A=|10 1 1 ] and U=|0 1 1 ] )
1 3 2 0 00

Find bases for the two column spaces. Find bases for the w@paces. Find bases
for the two nullspaces. Which spaces stay fixed in elimimétio

Columnsl and2 are bases for thal{fferent) column spaces oft andU; rows1 and
2 are bases for theequal) row spaces off andU; (1, —1, 1) is a basis for theqqual)
nullspaces.

True or false (give a good reason):

(a) If the columns of a matrix are dependent, so are the rows.

(b) The column space of a 2 by 2 matrix is the same as its ronespac

(c) The column space of a 2 by 2 matrix has the same dimensits @sv space.
(d) The columns of a matrix are a basis for the column space.

(a) FalseA = [1 1] has dependent columns, independentrow  Ralsecolumn

space# row space ford = 8 (1) (c) True Both dimensions= 2 if A is invert-

ible, dimensions= 0 if A = 0, otherwise dimensions 1 (d) False columns may
be dependent, in that case not a basigFgr).
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25 For which numbers andd do these matrices have rapk

A:

1 250 5 .4
0 0 ¢ 2 2 andB_{d }
00 0 d 2 ¢

Ahasrank if c = 0 andd = 2; B

[2 g] has rank2 except where = d or
c= —d.

Questions 26—28 are about spaces where the “vectors” are nmages.

26 Find a basis (and the dimension) for these subspacebpB matrices:

27

28

(a) All diagonal matrices.
(b) All skew-symmetric matrice€A™ = —A).

1007 [0 0 0] [0 0 O
(a)oool,[o10],[ooo
000 000 001
01 0 0 0 17 [0 0 0
(b)l—lOO],[O oo],lo 0 1].
000 [-1 00 0o -10

These are simple bases (among many others) for (a) diagatetes (b) skew-
symmetric matrices. The dimensions aré, 3.

Construct six linearly independehby 3 echelon matrice¥#, . .., Us. What space of
3 by 3 matrices do they span?

1 00 1 0 0 1 10 1 01 1 0 0
I, {0 1 0f,|0 2 0},]0 1 Of,(0 1 Of, [0 1 1
0 0 2 0 0 1 0 0 1 0 01 0 0 1

ces donot form a subspace; thegpan the upper triangular matrices (not everyis
echelon).

; echelon matri-

The echelon matrices span all upper traingular matricesw(ebuld you produce the
matrix with ass = 1 as its only nanzero entry ?)

Find a basis for the space of al by 3 matrices whose columns add to zero.
Find a basis for the subspace whose rows also add to zero.

100010001_1—10and10—1
-1 0 OO -1 0|"|0 O —=-1{"|-1 1 O -1 0 1|

Questions 29-32 are about spaces where the “vectors” are fations.

29

() Find all functions that satisf§ = 0.

(b) Choose a particular function that satisf%s: 3.



154 Chapter 5. Vector Spaces and Subspaces

(c) Find all functions that satisf§% = 3.

(@) y(z) = constanC' (b) y(x) = 3« this is one basis for the by 3 matrices with
(2,1,1) in their nullspace4-dim subspace). (c)y(z) = 3z + C = y, + y, Solves
dy/dx = 3.

30 The cosine spadé; contains all combinationg(x) = A cos z + B cos 2x + C cos 3.
Find a basis for the subspaSewith y(0) = 0. What is the dimension of ?

y(0) = 0 requiresA + B + C' = 0. One basis isos x — cos 2z andcos z — cos 3z.
31 Find a basis for the space of functions that satisfy

@@ -2y=0 (b) F-

8

=0.

(@) y(r) = e** is a basis for, all solutions t9’ = 2y (b) y = z is a basis for all
solutions tody/dx = y/x (First-order linear equatios> 1 basis function in solution
space).

32 Supposey, y2,ys are three different functions of. The space they span could
have dimension, 2, or 3. Give an example aof, y2, y3 to show each possibility.

y1(z),y2(x), y3(x) can ber, 2z, 3z (dim1) or z, 2z, 22 (dim2) or z, 22, 23 (dim 3).

33 Find a basis for the spa&of vectors(a, b, ¢, d) with a + ¢ + d = 0 and also for the
spacerl with a + b = 0 ande = 2d. What is the dimension of the intersectiBim T?

Basis forS: (1,0, -1,0),(0, 1,0,0), (1,0,0,—1); basis forT: (1, —1,0,0) and(0,0, 2, 1);
SNT = multiples of(3, —3,2,1) = nullspace foB equation inR* has dimension 1.

34 Which of the following are bases f®&3?

(a)

(b)

(©)

(d)
(a) No,2 vectors don't spalR? (b) No,4 vectors inR? are dependent (c) Yes, a
basis (d) No, these three vectors are dependent

35 Supposé is 5 by 4 with rank4. Show thatAv = b has no solution when theby 5
matrix[ A b] is invertible. Show thatlv = b is solvable wher A b] is singular.

1,2,0)and(0,1,-1)
1,1,-1),(2,3,4),(4,1,-1),(0,1,-1)
1,2,2),(-1,2,1),(0,8,0)
1,2,2),(-1,2,1),(0,8,6)

~—~ o~~~

If the 5 by 5 matrix[ A b] is invertible,b is not a combination of the columns df
If [A b]is singular, and the columns ofA are independent is a combination of
those columns. In this caskv = b has a solution.

36 (a) Find a basis for all solutions tty/dz* = y(z).
(b) Find a particular solution td*y/dz* = y(x) + 1. Find the complete solution.

(a) The functiong) = sinz, y = cosz, y = €, y = e~ * are a basis for solutions to
d*y/dz* = y(z).
(b) Aparticular solutiontal*y/dx* = y(z)+1isy(z) = —1. The complete solution

isSy(z) = =14 ¢,sinx + cocosz + cze® + c4e™® (0r use another basis for the
nullspace of theith derivative).
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Challenge Problems

37 Write the 3 by 3 identity matrix as a combination of the other five permutatio
matrices! Then show that those five matrices are linearlgpeddent. (Assume a
combination gives; P; + - - - + ¢5 P = zero matrix, and prove that each= 0.)

1 1 1 1 1 .
I_ ll ] _ [ 1 1] B ll ] The sixP’'s
1 1 1 1 1

1 are dependent
Those five are independent: Theh hasP;; = 1 and cannot be a combination of the
others. Then thénd cannot be (fron;; = 1) and alsosth (P32 = 1). Continuing,
a nonzero combination of all five could not be zero. Furthelenge: How many
independent by 4 permutation matrices?

38 Intersections and sums hadm(V) + dim(W) = dim(V N'W) + dim(V + W).
Start with a basisty, . . ., u, for the intersectio N 'W. Extend withv,,...,vstoa
basis forV, and separately with1, . . . , w, to a basis fokV. Prove that the:’s, v’s and
w’s together aréndependent. The dimensions have +s)+ (r+t) = (r)+ (r+s+t)
as desired.

The problem is to show that thes, v’s, w’s together are independent. We know the
u’s andv'’s together are a basis féf, and theu’s andw'’s together are a basis fé¥.
Suppose a combination afs, v's, w’s gives0. To be proved All coefficients= zero.

Key idea In that combination givin@, the partz from thew’s andv’s isin V. So
the part from thew’s is —x. This part is now inV and also inW. Butif —x isin
V N W itis a combination ofu’s only. Now the combination uses onlys andv’s
(independent ird/!) so all coefficients ofu’s andv’s must be zero. Thes = 0 and
the coefficients of thev’s are also zero.

39 InsideR™, suppose dimensioV{ + dimension (V) > n. Why is some nonzero vector
in bothV andW? Start with bases, ..., v, andws,...,w,, p+ ¢ > n.
If the left side ofdim (V) + dim(W) = dim(V N'W) + dim(V + W) is greater than
n, thendim(V N W) must be greater than zero. $oN W contains nonzero vectors.
40 Supposed is 10 by 10 and A2 = 0 (zero matrix) : A times each column ofl is 0.
This means that the column spacefs contained in the . If A has rankr,
those subspaces have dimenstod 10 — r. So the rank ofd isr < 5, if A%2 = 0.

If A% = zero matrix, this says that each columnais in the nullspace ofl. If the
column space has dimensienthe nullspace has dimensiof — r, and we must have
r <10 —r andr < 5.

- -

Problem Set 5.5, page 308

1 (a) Row and column space dimensicas, nullspace dimensios 4, dim(IN (AT))
=2 sum=16=m+n (b) Column space iR3; left nullspace contains on.

2 A: Row space basis row 1 = (1,2,4); nullspace(—2, 1,0) and(—4, 0, 1); column
space basis= columnl = (1,2); left nullspace(—2,1). B: Row space basis=
both rows= (1,2,4) and(2, 5, 8); column space basis two columns= (1,2) and
(2,5); nullspace(—4,0,1); left nullspace basis is empty because the space contains
onlyy = 0.
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3 Row space basis rows ofU = (0, 1, 2, 3,4) and(0, 0,0, 1, 2); column space basis
pivot columns (ofA notU) = (1,1,0) and (3,4,1); nullspace basig1,0,0,0,0),
(0,2,-1,0,0), (0,2,0,—2,1); left nullspaceg(1, —1, 1) = last row of E~1!

10 g _3
4 (a) [1 O] (b) Impossibler+(n—r) mustbe3  (c)[1 1] (d) { 3 1}

(e) ImpossibleRow space=column space requiress = n. Thenm —r = n —
r; nullspaces have the same dimension. Section 4.1 will prgvel) and IV (A™T)
orthogonal to the row and column spaces respectively—hesetare the same space.

1 1

2 1 0
rows spanning its nullspace ai™ = 0.

6 A: dim 2,2,2,1: Rows(0,3,3,3) and(0,1,0,1); columns(3,0,1) and (3,0, 0);
nullspace(1,0,0,0) and(0, —1,0,1); N(A™)(0,1,0). B: dim 1,1, 0,2 Row space
(1), column spacél, 4, 5), nullspace: empty basigy (AT) (—4,1,0) and(-5,0,1).

7 Invertible3 by 3 matrix A: row space basis: column space basis (1,0, 0), (0,1,0),
(0,0,1); nullspace basis and left nullspace basiseanpty Matrix B = [A  A]: row
space basi$l,0,0,1,0,0), (0,1,0,0,1,0) and (0,0, 1,0,0,1); column space basis
(1,0,0), (0,1,0), (0,0, 1); nullspace basié-1,0,0,1,0,0) and(0,—1,0,0,1,0) and
(0,0,—1,0,0,1); left nullspace basis is empty.

8 [/ OJand[I I; 0 0]and[0] = 3 by 2 haverow space dimensions 3,3,0 =
column space dimensionsylispace dimensiorss 3, 2; left nullspace dimensiorts 2, 3.

9 (a) Same row space and nullspace. So rank (dimension of rase}ps the same
(b) Same column space and left nullspace. Same rank (dioreatcolumn space).

10 Forrand (3), almost surely rank 3, nullspace and left nullspace contain oflly0, 0).
Forrand (3, 5) the rank is almost surelyand the dimension of the nullspace2is

11 (a) No solution means that < m. Alwaysr < n. Can’t comparen andn here.
(b) Sincem — r > 0, the left nullspace must contain a nonzero vector.

11 10 1 2 21

12 A neat choice is[() 2] {1 9 O] = l2 4 01;

1 0 1 01
not match2 + 2 = 4. Only v = 0 is in bothIN(A) andC (A™T).

13 (a) False Usually row space“ column space (same dimension!) (bjue A and—A
have the same four subspaces False(choosed andB same size and invertible: then
they have the same four subspaces)

14 Row space basis can be the nonzero row#/of(1, 2, 3,4), (0,1,2,3), (0,0,1,2);
nullspace basi¢0, 1, —2, 1) as forU; column space basid, 0, 0), (0, 1,0), (0,0,1)
(happen to hav€(A) = C(U) = R3); left nullspace has empty basis.

15 After a row exchange, the row space and nullspace stay the;am, 3,4) is in the
new left nullspace after the row exchange.

16 If Av = 0 andwv is arow ofA thenv - v = 0.

17 Row space= yz plane; column space xy plane; nullspace- x axis; left nullspace
= z axis. Forl + A: Row space= column space- R?, both nullspaces contain only
the zero vector.

5 A= { ] has those rows spanning its row sp@te- [I —2 1] hasthe same

r+(n—r)=n = 3does
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18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Row3—2row 2+ row 1 = zero row so the vectokg1, —2, 1) are in the left nullspace.
The same vectors happen to be in the nullspace (an accidehtfonatrix).
(a) Elimination onAxz = 0 leads to0 = b3 — by — by so(—1,—1,1) is in the left
nullspace. (b)4 by 3: Elimination leads tds; — 2b; = 0 andby + by — 4b; = 0, SO
(—=2,0,1,0)and(—4,1,0,1) are in the left nullspacaVhy? Those vectors multiply the
matrix to givezero rows Section 4.1 will show another approachr = b is solvable
(bisin C(A)) whenb is orthogonal to the left nullspace.
(a) Special solutiong—1,2,0,0) and(—i, 0,—3,1) are perpendicular to the rows of
R (and thenER). (b) ATy = 0 hasl independent solutios last row of E—1.
(E~'A = R has a zero row, which is just the transposeidfy = 0).
() wandw (b) vandz (c) rank< 2if u andw are dependent or if andz
are dependent (d) The rankab™ + wzT is 2.

1 2 1 0 3 27 has column space spanned
A=[u w][vT 2] = l2 2] {1 1} = l4 2] by v andw, row space

4 1 5 1] spanned by andz.
As in Problem 22: Row space basi$, 0, 3), (1,1, 2); column space basid, 4, 2),
(2,5,7); the rank of (3 by 2) times (2 by 3) cannot be larger than thé iEreither
factor, so rank< 2 and the 3 by 3 product is not invertible.
ATy = d putsd in therow spaceof A; unique solution if theeft nullspacenullspace
of AT) contains onlyy = 0.
(@) True(A andA™T have the same rank) (WalseA =[1 0]andAT have very
different left nullspaces (c)alse (A can be invertible and unsymmetric even if
C’EA) =C(AT)) (d) True(The subspaces fot and— A are always the same. If
AT = Aor AT = — A they are also the same fdr")
The rows ofC = AB are combinations of the rows é&f. So rankC' < rankB. Also
rankC < rankA, because the columns 6fare combinations of the columns df
Choosed = bc/a to make[2 B] arank-1 matrix. Then the row space has bési$)
and the nullspace has basisb, a). Those two vectors are perpendicular !
B andC (checkers and chess) both have rank2+# 0. Row 1 and 2 are a basis for the
row space of”, BTy = 0 has 6 special solutions with1 and 1 separated by a zero;
N(C7T) has(-1,0,0,0,0,0,0,1) and(0,—1,0,0,0,0, 1,0) and columns3, 4,5, 6 of
I; N(C) is a challenge.
a1 = 1,a12 = 0,a13 = 1,a22 = 0,a32 = 1,a31 = 0,a23 = 1,a33 = 0,a21 = 1.
There are vectors along the floor and along a wall thanateperpendicular In fact
the vectors where the wall meets the floor are in both subsface not perpendicular
to themselves).
Everyy in N(AT) hasATy = 0. Each row ofAT (= each column oft) has azerodot
product withy—those dot products are the zeros on the right hand side gf = 0.
The planeP is exactly the nullspace of the matrik= [1 1 1 1]. ThenP is the row
space of4, and the vectov = (1, 1,1, 1) is a basic forP™.
The vector(1, 4, 5) in the row space off would have to be orthogonal {@, 5, 1) in
the nullspace—and it's not. So no matrix

The subspaces fal = uwv™ are pairs of orthogonal linex(andv*, v andub).
If B has those same four subspaces tBea cA with ¢ # 0.
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35 (@) AX = 0 if each column ofX is a multiple of(1,1,1); dim(nullspace
(b) If AX = B then all columns ofB add to zero; dimension of th&’s
(€) 3+ 6 = dim(M?>*3) = 9 entries in & by 3 matrix.

36 The key is equal row spaces. First row 4f= combination of the rows oB: only
possible combination (noticB is 1 (row 1 of B). Same for each row sb = G.

o w

37 If avectorv is in the subspacé, thenv is perpendicular to every vector fi-. There-
fore v belongs to(S+)+. Those lines show thaf is contained in (S4)1. But if
S has dimensionl, S+ will have dimension: — d and (S+)+ will have dimension
n—(n—d)=d.

If the d-dimensional spac# is contained in thel-dimensional spaceS+)+, the two
spaces must be the same! (Why is that true ?)

38 This problem shows that and AT A have the same nullspace (a very important fact,
proved again on page 391). The proof here starts frohslv = 0, which putsAv
in the nullspace ofA™. But Awv is also in the column space of (Av is always a
combination of the columns, by matrix multiplication). 8@ is in N (AT) andC(A),
perpendicular to itself and therefora = 0.

Conclusion:AT Av = 0 leads todv = 0. And certainlyAv = 0 leads toAT Av = 0
(just multiply by A). SON (AT A) = N(A).

Problem Set 5.6, page 319

—1 1 0 c 1
1A=|-1 0 1]; nullspace contain%o]; [01 is not orthogonal to that nullspace.
0 —1 1 c 0

2 ATy =o0fory = (1,-1,1); currentalong edge 1, edge 3, back on edge 2 (full loop).
3 Elimination leads to

—v1 +ve =by —v; +v2=b
—v9 +v3 = by — by and then —vy +wv3 =>by — by
—vg +v3 = b3 0=0b3 —bz+ by

The two nonzero rows oR arel —1 0 and0 1 —1 (signs were reversed to make the
pivot = +1). Row3 of R is zero. The tree has edges from ndade 2 and node to 3.

4 The equationsin 5.6.3 can be solved whg#r b2 +b; = 0 (this is actually Kirchhoff’s
\oltage Law). These are exactly all the vectbthat are orthogonal tg = (1, —1,1).

(If YTb + 0, then KVL fails and4v = b has no solution.)

5 Kirchhoff's Current LawATy = f is solvable forf = (1, —1,0) and not solvable for
f =(1,0,0); f mustbe orthogonal t6l, 1, 1) in the nullspace;f; + f2 + f3 = 0.

2 -1 -1 3 1 c
6 ATAv = l—l 2 —1|v= [—3] = f producey = |—1| 4+ | c|; potentials
-1 -1 2 0 0 c

v =1,—1,0and currents-Av = 2, 1, —1; f sends 3 units from node 2 into node 1.



5.6. Graphs and Networks 159

7 The triangle graph had™ A = graph Laplacian:

10

11

12

13

14

-1 -1 0 -1 1 0 2 -1
[1 0_1H_1 01]:[_1 )
0 1 1 0 -1 1 -1 -1 2

All vectors(c, ¢, ¢) are in nullspace oft = nullspace ofA™ A.

(|
— =
| I

-1 1 00 1 -1 0
-1 0 1 0 1 1 0
A= 0 -1 1 0] leads tov = 1 andy = |—1| and| 1| solving
0 -1 01 1 0 -1
0 0 -1 1 0 1
ATy = 0.

Elimination onAv = b always leads tayTb = 0 in the zero rows ofU and R:
—by + by — b3 = 0 andbs — by + b5 = 0 (thosey’s are from Problem 8 in the
left nullspace). This is Kirchhoff'$oltageLaw around the twdoops

_(1) _% (1) 8 The nonzero rows df/ keep
o edges 1, 2, 4. Other spanning trees
The echelonformoflisU = 8 8 —(1) (1) from edges, 1, 2, 5; 1, 3, 4: 1, 3, 5
0 0 0 0 1,4,5;2,3,4;2,3,5;2,4,5.

(a) The diagona?, 3, 3,2 counts edges that go in or out of hode2, 3,4 on the
graph. WhenAT multiplies A, those diagonal entries are dot products (iou¥
AT) - (columni of A) = ||columni||? = number of—1's or 1’s in columni =
degree of node.

(b) Columni (from node:) overlays column; (from nodej) only when an edge
connects nodesand;j. Then the row ofA for that edge has-1 and1 in those
columns—those numbers multiply to givel.

The nullspace ofA™ A contains(1,1,1,1) just like N(A). Therankist — 1 = 3. A

vector f is in the column space of T A (= row space by symmetry) exactly whefris

orthogonal to the nullspace—which means tfiat- f2 + f3 + f1 = 0. If you add up
the4 equationsA™ Av = f, you see this again.

Then by n adjacency matrixor the4 node graph is

|
O == O
— = O

0
1 2 _
1 W=
0

[Nl )
—_ N W
— 0 N
DO =N

1
1
0
1

You can check that the j entry of W2 is the number of-step pathdrom to j. When
1 = j those paths go out and back. Only énstep path connects nodeand2, going
through node3.

The number of loops in this connected grapmis-m +1 =7 -7+1 = 1.
What answer if the graph has two separate components (ns edgeeen)?
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15 Start from (4 nodes)- (6 edgesh (3 loops)= 1. If a new node connects toold
node,5 — 7+ 3 = 1. If the new node connects old nodes, a new loop is formed:
5—-8+4=1.

16 (a) 8 independent columns (b must be orthogonal to the nullspace gs add
to zero (c) Each edge goes into 2 nodes, 12 edges make diggdrias sum to 24.

17 A complete grapthas5 + 4 + 3+ 2 + 1 = 15 edges. Withn nodes that count is
14+ (n—1)=n(n—-1)/2. Tree ha$ edges.

18 N(A) contains all multiplies of1, 1, ..., 1) andno other vectorsThe equationglv =
0 tell you thatv; = v; when nodes and j are connected by an edge. Thevery
v; = v; whenever the graph is connected—just go from nottenodej using edges
in the graph.
19 (a) Withn nodes and all edged,™ A will haven — 1 along its diagonal (the degree
of every edge). It will gave-1 in every off-diagonal entry (a complete graph has
an edge between every pair of nodesdj).

(b) If the edge connecting nodésand3 is removed, this reduces lythe degrees
(AT A)1; and (AT A)33 on the diagonal: those degrees are now 2. And
(ATA);3 = (AT A)3; = 0 because that edge is gone.

20 With batteriesh,; to b5 in the5 edges of the square graph, the equatidifAv —b) = 0
gives the voltages; , v, v3,v4 atthe4 nodes. Heré = (1,1,1,1,1).

2-1-1 0] v “1-1 0 0 0 } )
t e | =1 3-1-1||w| | 1 0-1-1 0 -1
Atdv=A"bis| | 1 35 9| |w|=| 0 1 1 0-1 } =1 1
0-1-1 2| |uw 000 0 1 1]/, 2

Notice that adding thé equations give8 = 0: good. The solutiow gives voltages

-2 1 where the particular
_ | =5/4 1 solution
V=UptUn = —3/4 Tl was chosen to
0 1 havev, = 0.

Chapter 5 Notes, page 321

lezt+y#y+xandz+ (y+ 2) # (x +y) + zand(c; + c2)x # c1x + cox.
2 Whene(zq,z2) = (cz1,0), the only broken rule is 1 times equalsz. Rules (1)-(4)
for additionz + y still hold since addition is not changed.

3 (a) cx may not be in our set: not closed under multiplication. Als®rand no—x
(b) c(x + y) is the usualzy)©, while cx + cy is the usualz®)(y°). Those are equal.
With ¢ = 3,2 = 2,y = 1 thisis3(2 + 1) = 8. The zero vector is the number 1.

. . |0 0.1, |1 -1 -2 2
4 The zero vector in matrix spadd is {O 0],§A_[1 ] and—A_[_2 2}.

The smallest subspace ®f containing the matrixd consists of all matricesA.
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5 When f(z) = 22 andg(z) = 5z, the combinatior8f — 4g in function space is
h(z) = 3f(x) — 4g(z) = 32% — 20x.

6 Rule 8isbroken: Itf(z) is defined to be the usugilcz) then(ci +co)f = f((c1 +
c2)z) is not generally the same asf + cof = f(c1x) + f(c22).
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Problem Set 6.1, page 333

1 A has eigenvaluesandy, A% has eigenvaluesand(3)? = 1, A> has eigenvalues
and0 (notice($)> = 0).

(a) Exchange the rows of to getB:
B= [2 g} has eigenvaluesand— 1.

B is still a Markov matrix, so\ = 1 is still an eigenvalue. The sum down the main
diagonal (the “trace”) is now5 so the second eigenvalue must be5. Then
trace=.2+.3=1-.5.

Zero eigenvalues remain zero after elimination becauseattigx remains singular and
its determinant remains zero.

2 Ahas\; = —1 and)\, = 5 with eigenvectors; = (—2,1) andze = (1,1). The
matrix A + I has the same eigenvectors, with eigenvalues increasédd@ and6.
That zero eigenvalue correctly indicates tHat [ is singular.

3 Ahas); = 2and), = —1 (check trace and determinant) with = (1,1) and
x> = (2,—1). A1 has the same eigenvectors, with eigenvalyes= 3 and—

4 Ahash; = —3 and)y = 2 (check trace= —1 and determinant —6) with z; =
(3,—2) andx, = (1,1). A% has thesame eigenvectoas A4, with eigenvalues? = 9
and\3 = 4.

5 A andB have eigenvaluesand3. A + B has\; = 3, A» = 5. Eigenvalues oA + B
are not equato eigenvalues ofl plus eigenvalues aB.

6 AandB have)\; = 1and)\, = 1. AB andBA have\ = 2 + /3. Eigenvalues oAB
are not equato eigenvalues ofl times eigenvalues aB. Eigenvalues oA B and BA
are equal (this is proved in section 6.6, Problems 18-19).

7 U is triangular so its eigenvalues are the diagonal entrigsuss, . . ., un,. (This is
because del/ — AI) will be just the productui; — A)(u22 — A) ... (up, — A) from
the main diagonal.)

11 0 0

8 (a) Multiply Az to seehx which reveals\ (b) Solve(A — \I)x = 0tofind.

9 (a) Multlply byA A(Am) = A(A\x) = MMz givesAQ:c = A2z (b) Multiply by
A7l = A7 TAx = A\ = MA 'z givesA 'z = %:I: (c) Add Iz = x:
(A+ Dz =X+ 1)x.

10 A has); = 1 and)\y = 4 with ; = (1,2) andxs = (1,—1). A* hasA; = 1 and

A2 = 0 (same eigenvectorsii'®® has)\; = 1 and)\; = (.4)1°° which is near zero. So
A0 is very neard>: same eigenvectors and close eigenvalues.

A= {1 1] with A = 2 and0 U= {1 1} has\ = 1 ando.

11 With A\ = 0,1,2 the rank is2. The eigenvalues aB? are0, 1, 4. The eigenvalues of
(B*+I)tare(0+1)t=1,1+1)"t=354+1) =1
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12

13

14

15

16

17

18

19

20

21

22
23

24

The projection matrix hasA = 1, 0, 1 with eigenvector$l, 2, 0), (2,—1,0), (0,0, 1).
Add the first and last vectorsi, 2, 1) also has\ = 1. Note P? = P leads to\? = )
soA=0orl.

(@) Pu = (UUT)’LL = ’u,(uTu) =

soA=1 (b) Pv = (uul)v = u(uTv)
O(C) Tr = (—1,1,0,0 , Lo = (—3,0 1,
0.

), 3 = (—5,0,0,1) all havePz = Oz

Two eigenvectors of this rotation matrix azg = (1,7) andxzes = (1,—i) (more
generallycz, anddx, with cd # 0).

These matrices all havg, = 0 and )\, = 0 (which we can see from trace 0 and
determinant 0):

_ 0 0 _ 0 1 2 _|la —a 2
A_{O O] A= {0 0} hasA® =0 A_[a _a} hasA® = 0.

A =0,0,6 (notice rankl and trace6) with 1 = (0,-2,1), 2 = (1,-2,0), &3 =
(1,2,1).

= Ot

ﬂ [ﬂ = [6} So\; = 6. Then); = 1to make trace= 5+ 2 = 6 + 1.

[ :

[ 3:| {ﬂ = [ZIS] = (a+b) [ﬂ S0 {ﬂ is an eigenvector.

The other eigenvalue is— b to make trace=a +d = (a + b) + (d — b).

Qe

. .14 0 3 2 2 2
These3 matrices have. = 4 and5, trace9, det 20: {O 5] , [_1 6] ; [_3 7}.

(a) w is a basis for the nullspace,andw give a basis for the column space
(b) = = (0, é, 1) is a particular solution. Add amy from the nullspace
(c) fAx =u I5ﬁad a solutionu, would be in the column space: wrong dimension 3.

(@ A= { 22 1;} has tracd 1 and determinarit8, soA = 4 and7.

(b) A= [_/\?)\2 A —1F )\2] has trace\; + A\, and determinant; \; so its eigenval-

ues must bé\; and),. This is a typicatompanion matrix.

(A — \I) has the same determinant@s— A\I)T [1 0 and 1 1| havedifferent
because every square matrix hés M = det MT. |1 0 eigenvectors

X = 1 (for Markov), 0 (for singular)~ 2 (so sum of eigenvalues trace= %).

If you known independent eigenvectors and their eigenvalues, you kinewtrixA.
In Section 6.2, the:’s and\’s go intoV andA, and the matrix must bd = VAV L,
In this section, Problem 23 suggests that = Bwv for every vector (which proves
A = B) because

v=cix1+- --+cpxTy, Av:cl)\lml+"'+ann$n:B’U.

The block matrix has = 1, 2 from B and5, 7 from D. All entries ofC are multiplied
by zeros indet(A — M), soC has no effect on the eigenvalues.
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25 A has rank 1 with eigenvalu€s0, 0, 4 (the 4 comes from the trace df). C has rank
2 (ensuring two zero eigenvalues) afid1, 1, 1) is an eigenvector with = 2. With
trace 4, the other eigenvalue is alse-= 2, and its eigenvector i€l, —1,1, —1).

26 B has\ = —-1,-1,—-1,3andC has\ = 1,1, 1, —3. Both havedet = —3.

27 Triangular matrix: A\(A) = 1,4,6; A(B) = 2, V3, —/3; Rank-1 matrix:\(C) =
0,0,6.

0-Xx 1 0 . .
28 det| O 0—A 1 =X +1=0for\=1,e2"/3 ¢=2mi/3,
1 0 0-A

Those complex eigenvalugs, A3 arecos 120° +isin 120° = 5 + z@
Thetrace ofP is A1 + As + A3 = 0.
00—\ 0 1
det l 0 1—A 0
1 0 0—A
1+ 1—1=1. Three eigenvectors afé, 1, 1) and(1,0, 1) and(1,0, —1). SinceP is
symmetric we could have chosen orthogonal eigenvectorsirgdithe first t@o, 1, 0).
29 Seth=0indet(A—X)= (A —A)...(\, = A) tofinddet A = (A1)(A2) - - (M\n).

30 A = S(a+d++/(a—d)?+4bc) andX; = L(a+d -V ) add toa + d.
If Ahas\; =3and\; =4thendetd — AI) = (A —3)(A —4) =\? — 7\ + 12.

1
2

=-XN4+X+A-1=0forx=1,1,—-1. The trace is

Problem Set 6.2, page 345

Questions 1-7 are about the eigenvalue and eigenvector metesA and V.

1 (a) Factor these two matrices into= VAV ! :
1 2 1 1
A:[O?)} and A=[3 3]
(b) If A=VAV~tthenA3 = (V)(A3) (V- andA~! = (V)(A-H) (V1

BRI A S

2 If Ahas)h; = 2 with eigenvectorz; = [§] and X, = 5 with , = [}],
useVAV~!to find A. No other matrix has the samés andz’s.

Put the eigenvectorsii , 4|1 1|2 o1 -1 (2 3
and eigenvalues in. A=VAS _[O 1} {O 5] [O 1}_[0 5]'

3 Supposed = VAV~ What is the eigenvalue matrix fot + 27 ? What is the
eigenvector matrix ? Check that+ 27 = (V))(A + 21)(V) L.

If A= VAV~!then the eigenvalue matrix fot + 27 is A + 21 and the eigenvector
matrix is still V. VIA+2)V L =VAVL+V(ERI)V = A+ 2].

4 True or false: If the columns df (eigenvectors ofd) are linearly independent, then

~—

ENENE
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(a) Aisinvertible (b) Ais diagonalizable
(c) Visinvertible (d) Visdiagonalizable.
(a) False: don'tknow's (b) True (c) True (d) False: need eigenvector¥of

5 If the eigenvectors ofl are the columns of, thenA is a matrix. If the eigen-
vector matrixV is triangular, ther” —! is triangular. Prove thad is also triangular.

WithV = I,A = VAV~! = A is a diagonal matrix. It/ is triangular, therd/ ! is
triangular, so/ AV ! is also triangular.
6 Describe all matrice¥ that diagonalize this matrix (find all eigenvectors):

1)

Then describe all matrices that diagonalize'.

The columns of/ are nonzero multiples d®,1) and(0,1): in either order. The same
matricesV” will diagonizeA~*

7 Write down the most general matrix that has eigenvedtdisand[_}].

. -1 |1 1 A1 1 1 . A+ A A — .
A= VAV = [1 -1 w1 o2 nIn N 2=
a

b for anya andb.

Questions 8-10 are about Fibonacci and Gibonacci numbers.

8 Diagonalize the Fibonacci matrix by completing :

11 . A A A1 0

1 0| |1 1 0 A )
Do the multiplicationV’ A*V [ 3] to find its second component. This is thth Fi-
bonacci numbef, = (A} — A5) /(A1 — A2).

1 1 1 1 —
R e [ R
1 Ao [AF0 1 —Xo| [1] _ [ 2nd componernis F}
v G I M]H—M-A@/w-w]-
9 Suppose€7.o is theaverageof the two previous numbeis;; andGy, :

G2 = %Gk+l + %Gk is Gry2 _ A Grt1
Gry1 = Gr Gyt Gr |-

(a) FindA and its eigenvalues and eigenvectors.
(b) Find the limit as» — oo of the matricesA™ = VA"V 1L
(c) If Gp = 0 andG, = 1 show that the Gibonacci numbers approé,ch
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(@) A= H (5)] hash; = 1, Ay = — % with @ = (1,1), @5 = (1,~2)

n 2 1 2 1
o[ [ ][ 4] ]

10 Prove that every third Fibonacci numbeiOini, 1,2, 3, ... is even.
The ruleFy. > = Fr+1 + F). produces the pattern: even, odd, odd, even, odd,.odd,

Questions 11-14 are about diagonalizability.

11 True or false: If the eigenvalues dfare2, 2, 5 then the matrix is certainly
(a) invertible (b) diagonalizable (c) notdiagonalizable.
(a) True(no zero eigenvalues) (balse(repeated\ = 2 may have only one line of

eigenvectors) (c)alse(repeated\ may have a full set of eigenvectors)
12 True or false : If the only eigenvectors dfare multiples of 1, 4) then A has

(@) noinverse (b) arepeated eigenvalue (c) no diagon@iZBtAV 1.

(a) False: don't know\ (b) True: an eigenvector is missing (c) True.

13 Complete these matrices so thiat A = 25. Then check thah = 5 is repeated—
the trace isl0 so the determinant afi — A7 is (A — 5)2. Find an eigenvector with
Ax = 5x. These matrices will not be diagonalizable because there $2cond line of
eigenvectors.

A_[s 9

=

2

} and A_{ i

EXEER

A= { 8 3] (or other), A = {_

9 4 10 5], only eigenvectors
-3 2 A=

4 1 |5 0| arex = (c,—c).

14 The matrixA = [3 1] is not diagonalizable because the rank4df- 31 is
Change one entry to makédiagonalizable. Which entries could you change ?

The rank ofA — 37 is r = 1. Changing any entry except, = 1 makesA
diagonalizable 4 will have unequal eigenvalues, so eigenvectors are inakren)

Questions 15-19 are about powers of matrices.

15 A* = VAFV ! approaches the zero matrix As— oo if and only if every\ has
absolute value less than . Which of these matrices ha&® — 0?2

6 9 6 .9
Al:[.zl .1] and A2:[.1 .6]

Ak = VA*V~1 approaches zeiiband only if every |A| < 1; AY — A5, A5 — 0.
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16 (Recommended) Find andV to diagonalized; in Problem 15. What is the limit
of A¥ ask — oo ? What is the limit ofV A*V =1 2 In the columns of this limiting
matrix you see the .

1 (1 0] 3 3| steady
A= andV = (AP — andVAFV =1 — |2 2 .
1 —1 0 0 i1 state
17 Find A andV to diagonalized, in Problem 15. What i$A5)'%u, for theseu, ?
uo_[i} and ug = _i’ and uo_[g].
_ 19 0 _[3 =3]. 410[3] _ 10 |3 ] 3] _ 0] 3
A= .3]'5—{1 1}/12 {1 =T AT | g [ =7 )

A0 {8} =(.9)10 [i’] + (.3)10 {_ﬂ be(_:ause{g} is the sum of{ﬂ + [_ﬂ

18 DiagonalizeA and computd’A*V ~! to prove this formula ford* :

2 - g L[ 1438 1-3F
A_{_l 2} has A_E{l—?,k 143k |-

2 N b L R O S o B o I B O
-1 2| — 2|1 1|]0 3||-1 1 2|1 1]|0 3k
11 ; : 11438 1-3*
[_1 1}. Multiply those last three matrices to gét = 3 L 3k 143k
19 DiagonalizeB and computd’A*V ~! to prove this formula fo3* :

501 k| BF Bk —4F
B_{OZJ has B_{O n .

m_[1 1 5 01°[1 1] _[s" 5F—ak
0 —-1{|0 4 0 -1 0 4k
20 Supposed = VAV L. Take determinants to proviet A = det A = A\ Aa--- \,.
This quick proof only works wher can be .

det A = (det V)(det A)(det V—1) = det A = Ay - - - \,. This proof works whem is
diagonalizable

21 Show that trac& T = traceT'V, by adding the diagonal entries Gl andT'V :

_|la b g r
V_[C d} and T_{S t}

Choos€l’ asAV L. ThenV AV ! has the same trace A% ~'V = A. The trace ofd
equals the trace of, which is certainly the sum of the eigenvalues.

traceVT = (aq + bs) + (cr + dt) is equal to(ga + rc) + (sb + td) = traceT'V.
Diagonalizable trace df AV ~! = trace of(AV 1)V = trace ofA: sum of the\’s.
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22

23

24

25

26

27

AB — BA = I is impossible since the left side has trace . But find an
elimination matrix so thatl = F andB = E™ give
AB — BA = { _(1) (1) } which has trace zero.

AB — BA = I is impossible since tracelB — trace BA = zero # tracel.
AB — BA = C'is possible when tracg”) = 0.

{1 0 T T~ _ |—1 0
E_{l 1]hasEE —F E_{ 0 1].

If A= VAV~ diagonalize the block matri® = [4 ,2]. Find its eigenvalue and
eigenvector (block) matrices.

—1
IfA=VAV—1thenB=[A 0}:[5 OHA OHV 0}.503

0 24 Vi|0 2A 0o vt
has the additional eigenvalugs,, . .., 2\,.
Consider all 4 by 4 matriced that are diagonalized by the same fixed eigenvector

matrix V. Show that thed’s form a subspacécA and A; + A, have this samé&”).
What is this subspace whén= I ? What is its dimension ?

The A’s form a subspace sineed and A; + A, all have the sam&. WhenV =T
the A’s with those eigenvectors give the subspace of diagonaieceat Dimension 4.

Supposed? = A. On the left sided multiplies each column oft. Which of our four
subspaces contains eigenvectors witk= 1? Which subspace contains eigenvectors
with A = 0? From the dimensions of those subspacebas a full set of independent
eigenvectors. So every matrix with? = A can be diagonalized.

If Ahascolumng,...,x, then column by columnd? = A means everyle; = x;.

All vectors in the column space (combinations of those calsim);) are eigenvectors
with A = 1. Always the nullspace has = 0 (A might have dependent columns, so
there could be less thaneigenvectors withh = 1). Dimensions of those spaces add
to n by the Fundamental Theorem, dds diagonalizablén independent eigenvectors
altogether).

(Recommended) Supposge: = Ax. If A = 0 thenz is in the nullspace. A # 0 then

@ is in the column space. Those spaces have dimens$ioasr) + r = n. So why
doesn’t every square matrix handinearly independent eigenvectors ?

Two problems: The nullspace and column space can overlagp,cmld be in both.
There may not be independent eigenvectors in the column space.
The eigenvalues oft are 1 and 9, and the eigenvaluegbare—1 and 9:

5 4 4 5
A:{45] and 32{54].

Find a matrix square root od from R = VAV ~!. Why is there no real matrix
square root oB ?

R=VV/AV-1= {2 1} hasR2= A. v B needs\ = v/9 and/—1, trace is not real.

1 2
10

0 —1

Note that[ 1 0

] can have/—1 = i and—i, trace0, real square roo%_O 1}.
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28 The powersA* approach zero if all\;|] < 1 and they blow up if any\;| > 1.
Peter Lax gives these striking examples in his bbislear Algebra

3 2 3 2 5 7 5 6.9
=[P i) =3 3 e-[3 ] e-[3)
|A1024|| > 10700 pl024 — | Cc1024 — _ o | D1924|| < 1078

Find the eigenvalues = ¢ of B andC to showB* = [ andC?® = —1.

B has)\ = i and—i, soB* has\* = 1 and 1 andB* = I. C has\ = (1 ++/3i)/2.
This isexp(+mi/3) soA* = —1 and—1. ThenC?® = —T andC1%%* = —(C.

29 If A and B have the same'’s with the same full set of independent eigenvectors,
their factorizations into are the same. Sd = B.

The factorizations ofd and B into VAV ! are the same. Sd = B. (This is
the same as Problem 6.1.25, expressed in matrix form.)

30 Suppose the sanié diagonalizes botd and B. They have the same eigenvectors in
A=VAV-landB = VA,V L. Prove thatdB = BA.
A =VAV~1andB = VA,V L. Diagonal matrices always give; Ay = AsA;.
ThenAB = BAfrom VAV IVAV ™ = VA{AQV ™t = VAgA VL Thisis
VAQV_lVAlV_l = BA.

31 (a) If A = [3}] then the determinant ol — Al is (A — a)(\ — d). Check the
“Cayley-Hamilton Theorem” thatA — al)(A — dI) = zero matrix

(b) Test the Cayley-Hamilton Theorem on Fibonaccl's= [} (1,} The theorem
predicts thatd? — A — I = 0, since the polynomialet(A4 — \I) is A2 — X — 1.

(@) A= [g Z] hasA = acand\ = d: (A—al)(A—dI) = [8 dﬁa} {aad 8]

= {8 8] (b) A = E (1)] hasA? = [% ﬂ andA?2 — A — 1 = 0 is true,
matching\? — A — 1 = 0 as the Cayley-Hamilton Theorem predicts.

32 Substituted = VAV ~tintothe productA—\1)(A—X21) - - - (A—\,I) and explain
why this produces the zero matrix. We are substituting thixirma for the number\
in the polynomiap(\) = det(A — AI). TheCayley-Hamilton Theorem says that this
product is alway®(A) = zero matrix even if A is not diagonalizable.

WhenA = VAV ~lisdiagonalizable, the matrit—\,; I = V(A—X; 1)V~ will have
0in thej, j diagonal entry ofA — A, I. In the producp(A) = (A= 1) --- (A=, 1),
eachinsidé’ —! canceld/. This leaved’ times product of diagonal matrices — X, I)
timesV 1. That product is the zero matrix because the factors produego in each
diagonal position. Thep(A) = zero matrix, which is the Cayley-Hamilton Theorem.
(If A is not diagonalizable, one proof is to take a sequence obdiagable matrices
approachingd.)

Comment | have also seen the following reasoning but | am not condnce



170 Chapter 6. Eigenvalues and Eigenvectors

Apply the formulaAC™T = (det A)I from Section 5.3 tod — \I with variable). Its
cofactor matrixC' will be a polynomial in), since cofactors are determinants:

(A=) cof (A= A)T = det(A — XI)T = p(\)I.

“For fixed A, this is an identity between two matrix polynomials.” Set= A to find
the zero matrix on the left, s9(A) = zero matrix on the right—which is the Cayley-
Hamilton Theorem.

| am not certain about the key step of substituting a matrixX¥o If other matrices
B are substituted, does the identity remain true?AB # BA, even the order of
multiplication seems unclear.

Challenge Problems

33 Thenth power of rotation through is rotation through6 :

An — cosf —sinf |" | cosnfd —sinnd
| sin6 cos 6 | sinnd cosnb |-

Prove that neat formula by diagonalizidg= VAV ~!. The eigenvectors (columns of
V) are(1,4) and(4, 1). You need to know Euler’s formulet® = cos 6 + i sin 6.

cosf) —sinf
sin 6 cos

det = 1). Their eigenvectors ard, —i) and(1,):

ind s
A =VA V! = [_1. 1-] [e e_me] [i }] /2i

The eigenvalues ol = are\ = e ande~* (trace2cos# and

(3 (3

B (ein9 + e—inO)/2 «e+| _|cosmf —sinnf
= (einO _ e—int‘))/gi ~ | sinnf cosnb |-
Geometricallyp rotations byd give one rotation by.6.

34 Thetranspose ol = VAV 1lis AT = (V=1)TAVT. The eigenvectorsid®y = \y
are the columns of that matri¥’ —!)T. They are often calletkft eigenvectors.

How do you multiply three matriceg AV ~! to find this formula forA ?

Sum of rank-1 matrices A= VAV ! =\ziyl + -+ Nz yl.

Columns ofV/ times rows ofAV ~! will give r rank-1 matrices(r = rank of A).

35 Theinverse ofd = eygn)+onegn)is A~! = eygn)+C*onegn). Multiply AA~!
to find that numbe€ (depending om).

Note thatones(n) * ones(n) = n x ones(n). This leads ta® = 1/(n + 1).
AA~! = (eye(n) + ones(n)) * (eye(n) + C x ones(n))
=eye(n) + (1 + C + Cn) x ones(n) = eye(n).
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Problem Set 6.3, page 357

1 Find all solutionsy = cie*Mta; + cpe?txy to y' = { g é ] y. Which solution
starts fromy(0) = c1x1 + coxo = (2,2)?
The eigenvalues come frodet(A — A\I) = 0. Thisis

M-8\ +12=(A—-2)(A—6)=0s0\= 2,6

Eigenvectors(A—2I)x; = 0and(A—61)xs = 0givex; = (1,—1) andxzs = (1,3)

Solutions ar(y(t) = Clth |: _i :| +C2€76t |: :1)) :|

Constantg, co comefrom[ _} ;) ] { 2 } =y(0) = { g }Thencl =cy =1.
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2 Find two solutions of the forny = eMz toy’ = { g 12 ] Y.

The eigenvalues come froo¥ — 7\ — 8 = 0. Factor into(A — 8)(\ + 1) to see
A=28, and—1.

(A—8I)cc1_{_g _1(”::;1_0 givesacl_{ %]
4 10 . 5
(A+I)w2={ 9 5}:1:220 g|ves:1:2:{_2]

The two solutions arg(t) = e®x; ande !z,

3 If a #d, find the eigenvalues and eigenvectors and the completémoto y' = Ay.
This equation is stable whenandd are .

; | a b
Y=1o0 a|¥
The eigenvalues are = a and\ = d. The eigenvectors come from

(A_anml_{g dﬁa}ml—o ml—[é]

—d b b

Two solutions are = e**x, andy = e*x,. Stability fornegativea andd.
4 If a # —b, find the solutionse**x; and e*2'x, toy = Ay:

Az[a b] Why is ¢y’ = Ay not stable®

a b
Ais singularso\; = 0. Traceisa +bs0oXs =a+b. (A—0I)x, = 0gives
:131:[_2] (A-(a+b)])$2:|:_2 _2:|£L‘2=0givesw2:|:i:|.

The system is not stable because- 0 is an eigenvalue. lk: = a + b is negative, the
system is “neutral” and the solution approaches a steatly @anultiple ofz,).

5 Find the eigenvalues;, A2, A3 and the eigenvectors;, x», x3 of A. Write
y(0) = (0,1,0) as a combination; x; + cox2 + csxs = Ve and solvey’ = Ay.
What is the limit ofy(t) ast — oo (the steady state)Steady states come fraln= 0.

-1 1 0
1 -2 11.

0 1 -1

A:

Calculation giveslet(A — AI) = —(A + 1)A(X + 3) and eigenvalues = 0, —1, —3.
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1 1 1
A=0 has eigenvector; = ll] A=—1 has:cg_l 0] A=-3 has z3= [—21
1 -1 1

Notice Those eigenvectors are orthogonal (becatise symmetric). Thery(0) is

1
(0,1,0) = %(-’Bl —x3) soy(t) = %eotml - %87315:32 approacheg(co) = % [ 1 ] _
1

6 The simples® by 2 matrix without two independent eigenvectors has 0,0:

’
Y1 o o 0 1 Y1 . . Y1 ot 1
[yz} _Ay_{0 0][%} hasaﬂrstsolutmn{m]_e {O}

Find a second solution to these equatigiis= y, andy>’ = 0. That second solution
starts witht times the first solution to givg; = ¢. What isy, ?

Note A complete discussion @f’ = Ay for all cases of repeatexs would involve
the Jordan formof A : too technical. Section 6.4 shows that a triangular fornuffi-s
cient, as Problems 6 and 8 confirm. We can solve/fcand theny; .

The first solution t(yll =12 andy; =0is (y1(t),y2(t)) = (1,0) = eigenvector.
A second solution ha@y;, y2) = (¢, 1). The factort appears when there is ng.
7 Find two\'s andz’s so thaty = e*x solves

dy [4 3
a |0 1|¥

What combinatiory = creMlzy + o2tz starts fromy(0) = (5,-2)?
1 1 5 1 1
o= 1], e [ 4] a0 = 3], e s ] 2 1]

8 Solve Problem 7 foy = (y, z) by back substitution; beforey :

d d
Solved—j = zfromz(0) = —2. Then solved—?i =4y + 3z fromy(0) = 5.
The solution fory will be a combination o&* andef. A\ = 4 and1. z(t) = —2¢'.

Thendy/dt = 4y — 6et with y(0) = 5 givesy(t) = 3e** + 2¢t as in Problem 7.
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9 (a) If every column ofd adds to zero, why i = 0 an eigenvalue ?

(b) With negative diagonal and positive off-diagonal addio zero,y’ = Ay
will be a “continuous” Markov equation. Find the eigenvawnd eigenvectors,
and thesteady statast — oo

dy _[-2 3 : 4 ,
Solve E_{ 9 _3}y with  y(0) = {1] What isy(c0) ?

(a) If every column ofd adds to zero, this means that the rows add to the zero row. So
the rows are dependent, adds singular, and\ = 0 is an eigenvalue.

9 _g are\; = 0 with eigenvectore; = (3,2) and
A2 = —5 (to give trace= —5) with 3 = (1, —1). Then the usual 3 steps:

1. Writey(0) = {ﬂ asB} + {_ﬂ =x1 + X2

(b) The eigenvalues ol = {_2

2. Follow those eigenvectors k) x; ande 5z,
3. The solutiony(t) = = + e~ %'z, has steady state; = (3,2).

10 A door is opened between rooms that ho[@) = 30 people andv(0) = 10 people.
The movement between rooms is proportional to the diffexene w:

dvi and dwi
dt_w v dt_v w

Show that the totab + w is constant40 people). Find the matrix idy /dt = Ay and
its eigenvalues and eigenvectors. Whataesdw att = 1 andt = co?

-1

A1=0 , |1 [ 1], w()=20+10e7?  w(co0) =20
o = —2 With@ = M T2 = {—1} w(1) =20 —10e=2  w(oo) = 20

11 Reverse the diffusion of people in Problem 1Qlkydt = —Az:

dlv+w)/dt = (w—v)+ (v—w) = 0, so the totab 4+ w is constantA = [_} 1]

has

dv and dw
v —w bt
dt dt
The totalv + w still remains constant. How are thés changed now that is changed
to — A? But show thav(¢) grows to infinity fromv(0) = 30.

=w — .

d v 1 -1
pm {w} = [_1 1] has\ = 0 and+2: v(t) = 20 + 10e?** — oo ast — oco.

12 A has real eigenvalues bithas complex eigenvalues:

A_[(ll Olb] B_[llj _é] (a andb are rea)

Find the stability conditions om and b so that all solutions ofly/dt = Ay
anddz/dt = Bz approach zero as— o.
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A= {a ﬂ has real eigenvaluest 1 anda — 1. These are both negativedf < —1,

and the solutions of’ = Ay approach zeroB = i) _[13 has complex eigenvalues

b+ i andb — i. These have negative real partd ik 0, and all solutions o’ = Bz
approach zero.

13 SupposeP is the projection matrix onto th&s° line y = = in R2. Its eigenvalues ark
and0 with eigenvectorgl, 1) and(1, —1). If dy/dt = — Py (notice minus sign) can
you find the limit ofy(¢) att = oo starting fromy(0) = (3,1)?

A projection matrix has eigenvalues= 1 and\ = 0. EigenvectorsPx = « fill
the subspace thd® projects onto: heree = (1,1). EigenvectorsPx = 0 fill the
perpendicular subspace: hate= (1, —1). For the solution tay’ = — Py,

y(0) = [ﬂ = B} + {_ﬂ yt)=e' B} + el {_ﬂ approaches{_}] .

14 The rabbit population shows fast growth (fran) but loss to wolves (from-2w).
The wolf population always grows in this model4? would control wolves):

dr dw
— =6r—2 d —=2r+w.
M 6r w an M T w

Find the eigenvalues and eigenvectors:(If) = w(0) = 30 what are the populations
at timet? After a long time, what is the ratio of rabbits to wolves?

[g ‘ﬂ has\; = 5, @) — m No =2, @y — H rabbitsr(t) — 20 + 10¢2,

w(t) = 105t +20e2t. The ratio of rabbits to wolves approacl€g10; ¢5* dominates.
15 (a) Write(4,0) as a combinatiom x; + coxo 0f these two eigenvectors dff:

o 1][1] .1 o 1] 1]_ .[1
—1 0f|i| =" —1 0| |=i| = " =il
(b) The solution taly/dt = Ay starting from(4, 0) is cretta+ese My, Substitute
et = cost +isint ande™* = cost — isint to find y(t).

41 4|1 1 ot |1 _a| 1| _ |4cost
(@) [0] =2 M+2 {_J (b) Theny(t) = 2e L.]+2e {_J = [4sint]'
Questions 16—19 reduce second-order equations to first-oed systems for(y, y’).

16 Find A to change the scalar equatigff = 5y’ + 4y into a vector equation foy =

(v, y'): T ,
2] )fr)m

What are the eigenvalues df? Find them also by substituting = ¢ into y” =
5y + 4y.
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dly| (¢ [0 1]y 10 1 12 _
E{y’}_{y”]_[ﬁl 5:| [y/].A—[4 5:| hanet(A—/\I)—/\—5/\—4—O.

Directly substituting = e*! intoy” = 5y’ + 4y also gives\? = 5\ + 4 and the same
two values of\. Those values arg = %(5 + v/41) by the quadratic formula.

17 Substitutey = e into y” = 6y’ — 9y to show that\ = 3 is a repeated root. This is
trouble; we need a second solution aftér. The matrix equation is

diyl_[ 0 1]]y

at |y -9 6] |y |
Show that this matrix has = 3, 3 and only one line of eigenvectorbrouble here too
Show that the second solutiong8 = 6y’ — 9y is y = te>t.

A= {_8 é] has trace &let 9, A = 3 and 3 withoneindependent eigenvect(r, 3).

18 (a) Write down two familiar functions that solve the equatiy/dt?> = —9y. Which
one starts withy(0) = 3 andy’(0) = 0?

(b) This second-order equatigfi = —9y produces a vector equatign = Ay:

_ | dy _[y']_[ 0 1][y]_
Findy(t) by using the eigenvalues and eigenvectordnf;(0) = (3, 0).
(@) y(t) = cos 3t andsin 3t solvey” = —9y. Itis 3 cos 3t that starts withy(0) = 3

andy/(0) = 0. (b) A=|_g | hasdet = 9: A = 3i and—3i with & = (1,3i)
; _ 33| 1 3 36t 1] | 3cos3t
and(1, —3i). Theny(t) = 5e {32] + e {_32.] = [—9sin3t .

19 If ¢ is not an eigenvalue ofl, substitutey = ¢“v and find a particular solution to
dy/dt = Ay — e“tb. How does it break down whenis an eigenvalue oft ?

Substitutingy = e‘v givesce®v = Aev — ebor (A —cl)v = borv =
(A—cI)~1b = particular solution. It is an eigenvalue theA — cI is not invertible.

20 A particular solution taly/dt = Ay —bisy, = A~1b, if Aisinvertible. The usual
solutions tady /dt = Ay givey,,. Find the complete solutiop = y,, + vy,

o
y,=4andy(t) =ce' +4; y,= [3] andy(t) = ciet m + coet m + H

21 Find a matrixA to illustrate each of the unstable regions in the stabilitgype :

@ %=y ® Y-} v-

(@ A\ <0andds >0 (b) A\ >0and), >0 () \=a=+ibwitha > 0.



6.3. Linear Systemg’ = Ay 177

(a) [(1) _ﬂ (b) {(1) (1)] (c) {_1 1] These show the unstable cases

(@ A1 <0andiy >0 (b) Ay >0and)\; >0 (¢c) A=a+ibwitha >0
22 Which of these matrices are stable ? Them\Re 0, trace< 0, and det> 0.

-2 -3 -1 -2 -1 2
Al—[—4 —5] AQ—{—?) —6} A3—[—3 —6]'
Aj is unstable (trace- —7 but determinant —2; Ay < 0 but A > 0).
A, is unstable (singular s®;, = 0).

As is stable (trace= —7 and determinant2; \; < 0 andAs < 0).

23 For ann by n matrix with trace(A) = T'and def A) = D, find the trace and determi-
nant of—A. Why isz’ = — Az unstable whenevey’ = Ay is stable ?

If trace(A) = T thentracd —A) = —T
If determinant 4) = D then determinant—A4) = (—1)"D
The eigenvalues of A are—(eigenvalues ofl).

24 (a) ForareaB by 3 matrix with stable eigenvalues (Re< 0), show that trace< 0
and det< 0. Either three real negativeor else\, = A\; and\; is real.

(b) The trace and determinant oBdy 3 matrix do not determine all three eigenval-
ues! Show thatl is unstable even with trace 0 and determinant 0:

1 2 3
0 1 4].

0 0 -5

A:

(a) If all three real parts are negative (stability), traegum of real parts< 0.

Also det = \; A A3 < 0 from 3 negative\'s or from (a+ib)(a—ib) A3 = (a®+b?) A3 <0.
If a real matrix has a complex eigenvalde= a + ib, then\ = a — ib is also an
eigenvalue. The third eigenvalue must be real to make tke teal.

(b) The triangular matrix4 hasA = 1,1, —5 even with trace= —3 anddet = —5.
There must be a third test f8rby 3 matrices and that test must fail for this matrix.

25 You might think thaty’ = — A%y would always be stable because you are squaring the

eigenvalues ofl. But why is that equation unstable fdr= { _(1) (1) ] ?

This real matrixA has)\ = i and—i. ThenA\?> = —1 and—1. Soy’ = —A2%y has
eigenvalueg and1 (unstable).

26 Find the three eigenvalues dfand the three roots &f — s? + s — 1 = 0 (including
s = 1). The equationy”” — y” +y’' — y = 0 becomes

Y 0 1 0 Y
y’ =0 01 y’ or z/ = Az.
y// 1 -1 1 y//

Each eigenvalug has an eigenvectar = (1, \, \?).
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s3 — 52 + 5 — 1 = 0 comes from substituting = et intoy"” —y” +y’ —y = 0.

A3 — A2 4+ X — 1 = 0 comes from computindet(A — \I) for the3 by 3 matrix.

One rootiss = 1 (andX = 1). The full cubic polynomial is

s3—s?+s—1=(s—1)(s*>+ 1) with roots1, ¢, —i.

Eigenvectorgl, A\, A\?) = (1,1,1), (1,4, —1), (1, —i, —1) for this companion matrix.
27 Find the two eigenvalues of and the double root of? + 6s +9 =0:

’
y" + 6y’ +9y=0 becomes{z,} _[8 é} {Z,] or 2/ = Az.

The repeated eigenvalue gives only one solutioa ez. Find a second solutioa
from the second solution = te*t.

The matrix hasdet(4 — A\I) = A% + 6\ + 9. This is (A + 3)2 so eigenvalues

A = rootss = —3,—3. The two solutions arg = ¢3¢ andy = te~3'. Those
_| ¥ _ -3t 1 _ 1Y _ -3t t
translate taz = [ " ] =e { -3 ] andz = { Y/ } =e [ 1—3t}
28 Explain why a3 by 3 companion matrix has eigenvectoss = (1,,A2).

First Way: If the first component isc; = 1, the first row of Ax = Ax gives the
second component, = . Then the second row oz = Az gives the third
components = \2.

Second Way y’ = Ay starts withy] = yo andys = y3. y = ez solves
those equations. At= 0 the equations becomer; = x5 and .

0 1 0 1 1
Ax = 0 0 1 A =X| A because row$ and?2 are true and
-D -C -B A2 A2

row3is —D — CA — BA? = \3. Thatis\® + BA? + C\ + D = 0 corresponding to
y///+By//+Oy/+Dy — O

29 Find A to change the scalar equatigfi = 5y’ — 4y into a vector equation fot =

(¥, 9): . /
alvl-l ]

What are the eigenvalues of the companion maf?x Find them also by substituting
y = eMintoy” = 5y — 4y.

dz _ [y | _ |y 01|y |_
(- [u]- 22][5)m

The eigenvalues come fron? — 5\ +4 = 0. Then\ = 1 and4. Unstable because
y" — 5y’ + 4y has negative damping.

30 (a) Write down two familiar functions that solve the equatiBy /dt> = —9y. Which
one starts withy(0) = 3 andy’(0) = 07?
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(b) This second-order equatigfi = —9y produces a vector equatier = Az :

_|v dz _ [y | _[ 0 1]y |_
A MR E R R
Find z(t) by using the eigenvalues and eigenvectord ok (0) = (3,0).
(@) y1 = cos3t andy, = sin 3t and their combinations solvg’ = —9y. The initial
conditionsy(0) = 3,y’(0) = 0 are satisfied by = 3 cos 3t.

A 1

(b) The matrixA hasdet [ 9 )

(1,34), (1, —34).

} = A2 +9=0and) = 3i, —3i. Eigenvectors

z(t) = clegit |:3%L:| + CgeigiiE |:_3£:| give5c1 + c9 = 3 and3ic; — 3icog = 0 att = 0.

Thenc; = ¢y = ggives[ Z, } = 263“ { zl)ﬂ }4—36‘3“ [ _311. } = [ —?53(:1)1’513: ]
31 (a) Change the third order equatigfl — 23" — ¢’ + 2y = 0 to a first order system
2z’ = Az for the unknownz = (y,y’,y"”). The companion matrid is 3 by 3.
(b) Substitutey = e** and also find dgt4 — AI). Those lead to the samks.
(c) One rootis\ = 1. Find the other roots and these complete solutions::

y = creM 4 cpe?! 4 czetat z = CreMixy + Coe™lay + Cyetslas.
/
Y 01 0 Y
@z'= |y’ = 0 0 1 y' | = Az
yl/ ) 1 2 yl/

(b) The characteristic equationdst(A — AI) = —(A\3 —2)\2 — A +2) = 0.

(c) A =1lis aroot so we can factor ogk — 1):

A =2X2 - A4+2=A-1)(N2=21-2)=(A—-1)(A—2)(A\+1) hasrootd, 2, —1.
The complete solution ig = ¢ e? + coe® + cze?.

1 1 1
This vectorizesintez = Ciet | 1 | +Ce?* | 2 | +Cse™t | —1 ]
1 4 1

32 These companion matrices have= 2,1 and\ = 4, 1. Find their eigenvectors:

A= { _(2) :1)) } and B = [ _2 é ] Notice trace and determinant!

AhasA\? —3A+2=0=(A—2)(A—1). A = 2,1 with eigenvectors{ ; ] and{

|
|

1
1
Bhas)? -5 A+4=0=(A—4)(A—1). A = 4,1 with eigenvectors{ }1 } and{ }
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Problem Set 6.4, page 369

1 If Az = Az, find an eigenvalue and an eigenvectoeéf and also of-e—4t,
If Ax = Az thene?tx = e*z and—e 4tz = —e~*z. Use the infinite series :
ee = (I+ At + 5(At)> + -z
=T+ X+ i(N)?*+-- )z =eMa.
2 (a) From the infinite seriest = I + At + - - - show that its derivative igle/?.

(b) The series foelt ends quickly ifA = { 8 (1) ] becausel? = [ 8 8 } .
Find e1 and take its derivative (which should agree wita1?t).

(a) The time derivative of the matrix'* is Ae?:

LI+ At+ F(A)? + LA+ ) = A+ A%+ LA3 2 + ) = Aet
0 1

(b)IfA_[O 0

]thenAQ_OandeAt—I+At— [(1) f]

The derivative ob4* = [ 1t } is [ 01 ] which agrees withde4?.

0 1 0 0
This derivative also agrees with itself but that is an accident.
3 ForAd = [ (1) ; } with eigenvectors i = { (1) 1 ] computeeAt = VeAty -1,

At At |11 et 1 1] [et e?—et
e = VeV —[01 o 1|70 e |

Checke?t =T att = 0.
4 Why ise (413Dt equal toeA? multiplied bye3! ?
If AB = BA thene(A+B)t = eAteBt (This usually fails ifAB # BA.)
Here B = 31 always givesAB = BA soe(A+30t = ¢Atedlt — oAte3t jstrye,
5 Whyise4 ' notthe inverse o4 ? What is the correct inverse eft ?
The correctinverse af! ise~4. In generak?*eA” = A(+T) Choose=1,T = —1.
The matrixe ' is a series of powers of ~! and(e4)(e” ') = eA*4 ' : not wanted.

1

0

6 Computed” = [ 1

n . .
0 } . Add the series to find** = [ i c(e’ = 1) }

Start by assumin% (1) 8 } = { (1) %c ] (certainly true for ¢ = 1).

n+1
. 11 e |1 e 1 ne| |1 (n+1)c
Thenbymductlon[O O} _{O O][O 0 ]_{O 0 }

The first equation is true for = 1. Then the second equation says that every matrix
multiplication adds: to the off-diagonal entry. So the first equation is true ok
2,3.4,...
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10

11

Now add up the series fer'’ :
T+t+ 32+ O+ct+ 32+
0 14+0+0+---

Find e” ande®? by using Problem 6 for = 4 andc = —4. Multiply to show that the
matricese“e? andePe? ande4+Bare all different.

w[3a] ] wee[28]

[+At+1(At)* 4 =

_ [eot c(etl— 1)]

R 14 A_| e 4le—-1)
With ¢ = 1 in Problem 6, A = { 0 0 } hase” = [ 0 1 ]
1 -4 B_ | e —4e-1)
B= [ 0 0 ] hase” = [ 0 1 ]
Thene?e? = { ¢ (~detd)(e—1) } andefe” = [ ¢ (de—4)(e—1) ] and
0 1 0 1
2
eATB = 60 (1) } Those three off-diagonal entries are different becatiBeand

B A have off-diagonals-4 and4.
Multiply the first termsl + A + 1 A2 of e by the firsttermd + B + 1 B? of ¢5. Do

you get the correct first three termseft? 2 Conclusion e4* 2 is not always equal
to (e4)(e?). The exponent rule only applies wheii3 = BA.

(I+A+34)(I+B+4B?) = I + A+ B+ 34 + AB + {B> + ---
The correct three terms @f'*? arel + A + B + 1A% + 1AB + 1BA + 1B%
ThenAB agrees withf AB + ; BA only if AB = BA.

Write A = [§ &] in the formVAV ~1. FindeA! from VeAty =1,

This is Problem 6 using diagonalizatioh= VAV ~! by the eigenvector matrik :

SRR THIEN
Rt (NI RN )

Starting fromy(0) the solution at timet is e“'y(0). Go an additional timet
to reached eAty(0). Conclusione? timese4? equals .

The conclusion is that!? timese“? equals:?4?. No problem withAB # B A because
hereB is the same ad.

Diagonalize4 by V and confirm this formula foet by usingVeAty—1:

2t 3t _ 2t
A:{g g] eAt:{S iigte e*) At t =0 this matrixis .
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01 —47 1
3“0 1}_VAV

At 1 4 €2t O
€ =10 1 0 et

12 (a) FindA? andA3 andA™ for A =

2t 3t _ 2t
[e Ae 3t8)]_Iatt:0.
e

1 ] with repeated eigenvalues= 1, 1.

(b) Add the infinite series to fineit. (The VetV —1 method won’t work.)

(a)A?:[(l) %}andA?’:[(l) HandAnz[(l) H (b) At =
T4+t+ 512+ t+ 3202+ 3363+ - -

0 T+t+ 22+ 0 et

let t(l—l—t—i—%tQ—i—---)]

Notice the factor appearing as usual when there are equal roots (or equalaiges).
13 (a) Solvey’ = Ay as a combination of eigenvectors of this matdix

y’—[_? Hy with y(O)—[g}

(b) Write the equations ag = y» andy), = y;. Find an equation foy] with y
eliminated. Solve fog; () and compare with part (a).

1 -1

(b) If y{ = yo andy, = y1 theny!" = y; = 1.
The second order equatigfl = y; hasy; = cie! + coe™.
The initial conditions produce the solution of part (a).
14 Similar matricesA and B = V1AV have thesame eigenvalue$ V is invertible.

Second proof  det(V"'AV — XI) = (detV ') (det(A — AI)) (detV).

Theny(0) = 4z, — x2 andy(t) = 4e [ ! ] —et { ! ]

Why is this equation true ? Then both sides are zero wheflet \T) = 0.
We use the ruldet ABC = (det A)(det B)(det C).

HereA = V—! andC = V have(det A)(det C) = 1.

This only leaveslet B which isdet(A — AI).

Conclusion V~1 AV has the same eigenvalues ad. Similar matrices!
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15

16

17

18

19

20 Solvey’ = Ay = [

If B is similar to A, the growth rates foe’ = Bz are the same as fay/ = Ay.
That equation converts to the equation fovhenB = V1AV andz =

If y/ = Ay just sety = VztogetVz' = AVz whichisz’ = V- 1AVz.
Similar matrices come from a change of variable in the défféial equation.

If Az = \x # 0, whatis an eigenvalue and eigenvecto(@?t -NA"1?

The samex is an eigenvector, with eigenvalue in

1 M
(M —DA 'z = S (e ~ D = c —
The matrix B = [J~4] hasB? = 0. Find eB! from a (short) infinite series.
Check that the derivative ef®! is BeB.
Bt __ - 1 -4t . . . 0 —4
e _I+Bt+0_[0 1 ].Thedenvanvels{O O]'

The derivative is alway8e??; here it also equalB.

Starting fromy(0) = 0, solvey’ = Ay + g as a combination of the eigenvectors.
Suppose the sourceis= q1x1 + - - - + qnx,. Solve for one eigenvector at a time,
using the solutiony(t) = (e — 1)q/a to the scalar equatiofl = ay + q.
Theny(t) = (eAt — I)A~1q is a combination of eigenvectors when &l 0.
At
eMt —1

For each eigenvectar, a solutiontay’ = Ay +xisy(t) = x by Problem 16.

Ait
it —1 . .
g;x; is the solution whew = ¢1 1 + - - - + g,

Then by linearityy(t) = X

This is the same ag,, (1) = (e — I)A™'q.
Solve fory(t) as a combination of the eigenvectars = (1,0) andxzy = (1,1):
;L yvi | 11 Y1 4 o oy1(0)=0
v =4dyta [ylz]_[o 2 Y2 + 3 with y2(0) =0
Write g = [

g ] as a combinatiofx; + x- of the eigenvectors ofl. By Problem 18,

et —1 et — 1

yp(t) = 1 3x1 +

ro.

[\)

9 i1’> } y in three steps. First find thes andx’s.

(1) Write y(0) = (3,1) as a combination; x; + coxo
(2) Multiply ¢; andc, by e** ande?2?.
(3) Add the solutiong;;e*ta; + coet2tas.
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21

3
1-A

o[ 1]
1)

Step (2) Two solution%e‘“ { g } andge—t { 1 ]

Th eigenvalues come frodet [ 2 ; A
Then\ =4 and—1.

} = M2-3 4= (A—4)(A+1) = 0.

The eigenvectors are found to Ipg = [
3 3
sep 0 0[] =4[ 4]+

-1

Step (3) y(t) = %e‘“ [ g ] + %e*t { _% ]

Write five terms of the infinite series fer}!. Take thet derivative of each term. Show
that you have four terms ofe4?. Conclusion:eAty(O) solvesdy /dt =

=TI+ At+ < (At) %(At)3 + 2—14(At)4 +
d

1
At _ 2 _32 2A443 . At
_dt(e A+ A t+2At +4At + Ae”t.

Problems 22-25 are about time-varying systemg’ = A(t)y. Success then failure.

22

23

24

Suppose the constant matriX hasCx = Az, andp(t) is the integral ofa(t).

Substitutey = ez to show thatdy/dt = a(t)Cy. Eigenvectors still solve
this special time-varying system: constant mattixmultiplied by the scalau(t).

Here the time-varying coefficient matrix has the speciatfart)C, with the matrixC
constant in time. Its eigenvalues and eigenvectora@ne. anda (main point: A and
x are constant). Then we can solyé= a(t)Cy starting with an eigenvector:

d
y(t) = e/ * g solves TV —a(t)hy = a(t)Cy.

A combination of these solutions is also a solution—and catchy(0).

Continuing Problem 22, show from the seriesfé(tt) = eP()C thatdM /dt = a(t)CM.
Then M is the fundamental matrix for the special systgin= a(t)Cy. If a(t) = 1
then its integral ig(t) = t and we recovei = *.

This question puts together the “fundamental matdi£(¢) from Problem 22. Write
p(t) = /a(t) dt.

M = ePWC =T 4 p(t)C + %pQ(t)CQ +--- and% = a(t) give

L~ )+ a()O%p() + - = a(t)OM.

2t

O =

The |ntegral ofA = [ 0 0

2
} is P = [t t } The exponential ofP is

et = t(e' ~1) ] From the chain rule we might hope that the derivative of
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eP®) js P'eP®) = AeP(®). Compute the derivative of”(*) and compare with the
wrong answerde” (), (One reason this feels wrong: Writing the chain rule as
(d/dt)e” = ePdP/dt would givee® A instead ofd e”. That is wrong too.)

Now the matrixA(t) does not have the special forhh= a(t)C' of problems 22-23.
The problem shows that the simple formula doesn't sgie= A(t)y. We can't just
integrateA(t) and use the matrix/ At

2 2 3 n n+1
P_/A(t)dt_{tt] hasPQ_{t t} and P"_[t t ]

0 0 0 O 0 0
P [1 2t] P 1, et tet =t
Thenﬁ_[O 0}_Aande _I+P+§P =1 1 .

But the derivative of e’ is not e’ 2€. This matrixe”*) is not solvingy " = A(t)y.
25 Find the solutiontay’ = A(t)y in Problem 24 by solving fog, and thery; :

Solve {Zg;ﬁi] = {(1) 20t] [Zj starting from[gy/;ggg].

Certainly y2(t) stays aty2(0). Find y;(¢) by “undetermined coefficientsA, B, C':
y{ = y1 + 2ty2(0) is solved by y; =y, + y,, = At + B + Cet.
ChooseA, B, C to satisfy the equation and match the initial conditig0).

The wrong answer in Problem 24 included the incorrect faetoin e”®).
To solvey’ = A(t)y in Problem 24 we can start with its second equation :
dy,/dt =y1 + 2t
y' = Aty is 1/ Y1 Y2

dys/dt =0

Thenyz(t) = y2(0) = constant and the first equation beconigs/dt = y1 + 2ty2(0).
A particular solution has the forgym = At + B. Substitute thig); to find A andB:

% = y1 + 2ty2(0) givesA = At + B + 2ty,(0) and thend = —2y,(0) = B.

Now add a null solutiore’ to start fromy; (0):
y1(t) = (y1(0) + 2y2(0))e" — 2y2(0)t — 2y2(0).
This correct solution has no factor?.

Problem Set 6.5, page 379

Problems 1-14 are about eigenvalues. Then come differentiequations.
1 Which of A, B, C have two real\’s ? Which have two independent eigenvectors ?

7 —11 7 —11 7 —11
A:[—ll 7] 32[11 7] C:[o 7}
Ais symmetric: Real’s with a full set of two eigenvectors.
B = 71+ antisymmetric: Complex = 7 + 114, full set of (complex) eigenvectors.

Cc=171-11 [ 8 (1) ]: Eigenvalueg, 7 but only one eigenvector.
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2 Show thatA has real eigenvaluesif> 0 and nonreal eigenvaluestif< 0:

0 b 10
A_[l 0} and A_[l 1}

The eigenvalues oﬁ (1) 8 ] haveA? — b= 0. Then\ = +vb if b>0.

[} f}has/\zli\/g.

3 Find the eigenvalues and the unit eigenvectors of the synomeatrices

2 2 2 1 0 2
(a)S_l2 0 O] and (b) S—[O -1 —2].
2 00 2 =2 0

1 = (2= M)A+ 4N +4X = =23 +2)2 + 8\
0

I-X 0 2
(b)det[ 0 —1-Xx -2 ] =AML= A2) 4+ 4(14+A) —4(1—A) =9xA — A3
2 —2 -

=-XA=3)(A+3).
. . [ 27 1] 27 1]
A = 0,3, —3 with orthonormal eigenvectors 2, = —-11], = 2 |.
SL-1] 3] 2] 3] 2

4 Find an orthogonal matrig that diagonalize$ = ] What isA?

6
The eigenvalues from? — 5\ — 50 = 0 = (A — 10)(A + 5)
The unit eigenvectors are @ :
[ 1/ —2/V5 , 10 o0
Q_[2/\/5 YN with A= 0 —5 |-

5 Show that thisd (symmetric but complex) has only one line of eigenvectors:

rex; = 10 and\; = 5.

A= { ! _i } is not even diagonalizable. Its eigenvaluestaamdo.

AT = Ais not so special for complex matricéEhe good property isl = A.

det(A — A\I) = \? givesA = 0, 0. But A — \] = A hasrank 1: Only one line of
eigenvectors in its nullspace.
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6

7

10

11

Find all orthogonal matrices from alt;, x5 to diagonalizeS = {13 %g]

A2 — 25X\ = 0 gives eigenvalueB and25. The (real) eigenvectors i) can be

o L[ 4 3) g L[4 3] L[ 4 8] 1[4 -3
5| -3 4 5| 3 4 5| -3 —4 5| 3 -4

10

(a) Find a symmetric matrig = { b1 ] that has a negative eigenvalue.

(b) How do you know thaf must have a negative pivot?

(c) How do you know thab' can’t have two negative eigenvalues?
The determinant of is negative ifb?> > 1. This determinant is (pivot)(pivot 2).
Also det S = \; times)\,. So exactly one eigenvalue is negativéif> 1.

If A2 = 0then the eigenvalues of must be . Give an example withl # 0. But
if A is symmetric, diagonalize it to prove that the matrixlis= 0.

If Az = Az thenA?z = \2x. Here A2 = 0 so\ must be zero.

Nonsymmetric exampled = [ 8 (1) } is not diagonalizable.

0 0

The only symmetric example ¥ = { 0 0

] becausel = QAQT andA = [ 8 8 }

If A = a+ibis an eigenvalue of a real matri, then its conjugate = a — ibis also
an eigenvalue. (Ifdz = \x then alsoAT = \x.) Prove that every red by 3 matrix
has at least one real eigenvalue.

A real 3 by 3 matrix hasdet(A — M) = —A3 + 20?2 + ¢1\ + ¢co = 0. If \; satisfies
this equation so does, = \; (take the conjugate of every term). But the sim+
Ao + A3 = trace ofA = real number. SA3; must be real.

Here is a quick “proof” that the eigenvaluesalf real matrices are real:

T

. A .
False proof Ax = x gives zTAx =X z'x so )= % is real.

Find the flaw in this reasoning—a hidden assumption that igustified. You could
test those steps on t#6° rotation matrix(0 —1; 1 0]with A =¢andx = (i, 1).

The flaw is to expect that™ Az andx™x are real ande™x > 0. When complex
numbers are involved, it 8"« that is real and positive for every vecter# 0.

Write A and B in the form Az 2T + X\axozd of the spectral theorenAQT :

3 1 9 12
A= [ 1 3 } b= [ 12 16 ] (keep||z1 || = [|z2|| = 1).

A has) = 4, 2 with unit eigenvectors iri). Multiply columns times rows:
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][] el
—a| e ve —yva ez R [T yve ave )

B has\ = 0, 25 with these unit eigenvectors @

o 12] [ 4/5 3/5][0 4/5 —3/5] 3/5
[12 16} = [—3/5 4/5] { 25] [3/5 45| =025 | g5 | [3/4 4/5].
12 What numbet in [2 5] makes4 = QAQT possible? What number makels =
VAV ~!impossible? What number makds ! impossible?

b = 1 makes4 symmetric and thedl = QAQT. b = —1 makes\ = 1, 1 with only
one eigenvectoh = 0 makes the matrix singular.

13 This A is nearly symmetric. But its eigenvectors are far from ogihzal:

A= 1 107 has eigenvectors 1 and [ 7]
10 141077 9 0 '

What is the dot product of the two unit eigenvectors ? A smadila!

. 1
The unit eigenvector fok = 1 + 10715 is — [ 1 ] :
V21
The two eigenvectors are atld ° angle, far from orthogonal (even if is nearly sym-
metric).

14 (Recommended) This matri¥/ is skew-symmetric and also orthogonal. Then all its
eigenvalues are pure imaginary and they also have- 1. They can only bé or —i.
Find all four eigenvalues from the trace bf:

0 1 1 1

1 -1 0 -1 1 . ) .

M = ﬁ 1 1 0 -1 can only have eigenvaluésr — i.
-1 -1 1 0

The four eigenvalues must be= i, 4, —i, —i to produce trace- zero.
15 The complete solution to equation (8) for two oscillatingisgs (Figure 6.3) is

y(t) = (A, cost + B sint) { } ] + (Ay cosV/3t 4 By sinv/3t) { _11 ] _

Find the numbersl,, A2, By, Bs if y(0) = (3,5) andy’(0) = (2,0).
The numbersi;, A, come fromy(0) = (3, 5) sincecos0 = 1:

o[t )]

g } gives A; =4 and Ay = —
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The numbersB;, Bo come fromy’(0) = (2,0) since(sint)’ = 1 att = 0 and
(sin/3t)! =v/3att =0:

1 1 2 . 1

Blz|:1:|+\/§B2|:_1:|:|:O:| gives Bl:BQ:%.

16 If the springs in Figure 6.3 have different constakhitsks, k3 theny” + Sy = 0 is

Upper mass y{ + k1y1 — ka(y2 —41) =0 g_ | itk —k
Lower mass y4 + ka(y2 — y1) + k3y2 = 0 B —ko kot k3

Fork, = 1,ks = 4,ks = 1 find the eigenvalues = w? of S and the complete
sine/cosine solutiog(¢) in equation (7).

1+4 —4
-4 441
The complete solutiontg” + Sy =0 is

The matrixS = { has eigenvalues; = 1 = w? and\; = 9 = w3.

y(t) = (Aj cost + By sint) { ! } + (Ag cos 3t + B sin 3t) [ _1 ] .

1 1

17 Suppose the third spring is removed (= 0 and nothing is below magy. With k; =
3, ke = 2in Problemi6, find S and its real eigenvalues and orthogonal eigenvectors.
What is the sine/cosine solutig(t) if y(0) = (1,2) gives the cosines angl (0) =
(2,—1) gives the sines ?

5 =2

Whenk; = 3,ks = 2,ks = 0, the matrixS becomesS = [ 9 9

} with
AN —TA+6=A-1)(A—6)=0.
The eigenvector fon; = w? = 1isx; = (1,2). The orthogonal eigenvector for
Xy = ws = 6isxy = (2,—-1). Thend; = 1 and4; = 0,B; = 0 andBy =
1/4/6 come fromy(0) = x; andy’(0) = x,. The solution toy” + Sy = 0 is
y(t) = (cost)z1 + (sin V6t)z2/V/6.

18 Suppose the top spring is also removéd & 0 and alsoks = 0
Find its eigenvalues and eigenvectorsy(f) = (1, —1) andy’ = (
y(0) changes fronfl, —1) to (1, 1) what isy(¢) ?

). S is singular!
0,0) find y(t). If

5= [ _Zz "Z } has\; = 0 with 21 — (1,1) ands — 2k, with @ — (1, 1),

y(0) = (1,—1) and y'(0) = (0,0) give y(t) = (cos /2kat) 5.
y(0) = (1, 1)and y’(0) = (0,0) give y(t) =x; = (1,1) : no movement!
There is no force from springsand3 and no initial velocityy’(0).

19 The matrix in this question is skew-symmetrid{ = —A). Energy is conserved.
d 0 ¢ —b yi = cy2 — bys
v _|_. o ' —
dt = (& aly or 1]2/ = ays CY1
b —a 0 Y3 = by1 — aye.
The derivative of ly(t)|? = v + y3 + v3 is 2u1y] + 2y205 + 2y3v5.

Substitutey], y4, y4 to getzera The energyfjy(¢)||? stays equal tgy(0)]|>.
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20

21

22

23

Y1yl + y2y5 + ysys = y1(cya — bys) + y2(ays — cyr) + y3(bys — ays) = 0.
Then||y(t)||? stays constant, equal figy(0)]|2.

WhenA = —AT is skew-symmetrice? is orthogonal. Prove (e4!)T = ¢—At
from the serieg’ = I + At + 1 A%2 + ...
A=|_o L] hasdet = 0: A = 3i and—3i with @ = (1,3) and(1,~3i). Then

_3.3a| 1 3 _3it 1 | 3cos3t
y(t) = 3¢ {32] + 3¢ {—31] = [—9sin3t :
The mass matrid/ can have masses; = 1 andmsy = 2. Show that the eigenvalues
for Kz = AMx are\ = 2 + /2, starting from deti’ — \M) = 0:

10
0 2

2

- :

] and K = {_ _Z] are positive definite.

Find the two eigenvectors; andx,. Show thateT x5 # 0 butzl Mz = 0.
Kz = Mzis (K — AM)x = 0 and we need the determinantf— \M to be0:

2—-A -2

4+/16 -8
ISR =5 —=2%V2

det[ ]:2(/\2—4)\+2)=0 A

The eigenvectors; = (1/2, —1) andz, = (1/2, 1) come from

_g _2\_/5] x1=0and(K — o M)xy = [\_/g 2\_/5} xy = 0.

Notice thatz; is not orthogonal tar,—it is “ M -orthogonal”:
1 0
mirM:cQ—[\/i—l}[()?}[\/?]—O.

What difference equation would you use to soyé = —Sy ?

y" = —Sy is well approximated by, 11 — 2y, + yn_1 = —(At)2Sy,. The initial

conditions come in ag, = y(0) andy; = y(0) + Aty’(0) (but that is only a first order
accurate approximation to the tryéAt)).

The second order equatigr’ + Sy = 0 reduces to a first order systeyn’ = y, and
y2' = —Sy,. If Sz = w2z show that the companion matrik = [0 I ; —S 0] has
eigenvaluesw and—iw with eigenvector$x, iwz) and(x, —iwx).

The first-order equation withlockcompanion matrix foy” = —Sy is

Y1 ' |y ' . 0 I Y . 0 I Y1
v2| |y | | -5 0 y' || -5 0 Y2
For the eigenvalues: Bz = w?x then
0 I T | fiwz | L T
-S 0 || tiwe | 7| —w?x | T Y| tiwe |

So the block companion matrit has eigenvaluesy and—iw. Then we can compute
and use the exponential® (if we want to).

(K =\ M)z, = [
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24 Find the eigenvalues\ and eigenfunctionsy(z) for the differential equation
y" = Ay with y(0) = y(r) = 0. There are infinitely many !

This is an important problem in function space—instead gémvectors irR™ we look
for functions ofz betweenr = 0 andx = = :

2
% = A\y(z) with boundary conditiong(0) = y(7) = 0.
This equation is satisfied by(z) = a cos (\/X x) + bsin (\/X x)
The boundary conditiop(0) = 0 makesz = 0.
The conditiony () = sin (\/X w) =0 makesyA=1or2or3or... Then

A =12 or 22 orany n? y(z) =sin(VAx).
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Problem Set 7.1, page 393

1 Suppose your pulse is measurethat= 70 beats per minute, thety = 120, then
bs = 80. The least squares solution to three equations by,v = by, v = b3 with
AT =111 1]ist = (ATA)"1ATb = . Use calculus and projections:

(@) Minimize E = (v — 70)% + (v — 120)2 + (v — 80)? by solvingdE /dv = 0.
Solution(a) 2£ = 2(v — 70) + 2(v — 120) + 2(v — 80) = 0 at the minimizingp.
Cancel th&'’s: 3v = 70 4+ 120 + 80 = 270 SOV = Vaverage = 90

(b) Projectb = (70,120, 80) ontoa = (1,1,1) to findo = a™b/aTa.
Solution(b) The projection ob onto the line througla is p = av':

70 1 T
b=| 120 a=|1 5= b _210_g
80 1 a a 3

2 Supposedv = b hasm equationsi;v = b; in one unknown. For the sum of squares
E = (a1v —b1)> + -+ + (amv — by )?, find the minimizingv by calculus. Then form
AT Ay = ATb with one column in4, and reach the same
Solution To minimize E we solvedE'/dv = 0. Form = 3 equationsi;v = b;,
dE .

d_ =2aq (alv — bl) + 2&2(@2’0 — bg) + 20,3(@31) — bg) = 0is zero when
v
a1b1 + CLQbQ + a3b3 - aTb
a?+ai+a2  aTa’
When A has one columnA™ A7 = ATb is the same a&aTa)v = (aTh).

3 With b = (4,1,0,1) at the pointst = (0, 1, 2, 3) set up and solve the normal equation
for the coefficient® = (C, D) in the nearest lin€' + Dx. Start with the four equations
Awv = b that would be solvable if the points fell on a line.

V=70 =

Solution The unsolvable equation has= 4 points on a line: only: = 2 unknowns.
4

10
Av="> is 1 92 {D}_ leadingto A“ Av = A"b :
1 3

— o

4 6 @76“/6567114—6671 60] [ 3
6 14||p| =4 9 Dl T 2001-6 4||4| T 24]-20 -1
The closest line to the four pointsbs= 3 — .

4 In Problem 3, find the projectiop = Av. Check that those four values lie on the line
C + Dz. Compute the errae = b — p and verify thatd™e = 0.

Solution The projectiornp = Av is
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1 0 3 1
p= i ; {_?}: % with errore=b—p = j
1 3 0 1

The best lineC + Dz = 3 — z does produce = (3,2,1,0) at the four points
z=0,1,2,3.

Multiply this e by AT to getATe = [ 8 ] as expected.

5 (Problem 3 by calculus) Write dowhl = ||b— Awv||? as a sum of four squares : the last
one is(1 — C — 3D)2. Find the derivative equatiod= /0C = 0E /0D = 0. Divide
by 2 to obtainAT Av = ATb.

Solution Minimize E = (4—C)?+(1—C —D)?+ (-C —2D)?+ (1—-C —3D)2.
The partial derivatives a@E /0C = 0 andOE /0D = 0 at the minimum:
—24-C)-21-C-D)—-2(-C-2D)—-2(1-C-3D) =0
—2(1—C —D)—4(-C—=2D)—6(1—C —3D) =0
Factoring out-2 and collecting terms this is the same equatithds = ATbh!
6—4C — 6D =0 4 61[C 6
4-6C-14D=0 [6 14“5]—{4}
6 Forthe closest parabofa+ Dt + Et? to the same four points, write dowinunsolvable
equationsdv = b for v = (C, D, E). Set up the normal equations for If you fit the

best cubia” + Dt + Et? + Ft to those four points (thought experiment), what is the
error vectore ?

Solution The parabol&@ + Dt + Et? fits the4 points exactly ifAv =

t=0 C+0D+0FE =4 1 00
t=1 C+1D+1E =1 4o |11 1]
t=2 C+2D+4E =0 11 2 4|
t=3 C+3D+9E =1 1 39
4 6 14 44+14+0+1 6
ATA=| 6 14 36 GATb=| 0+14+0+3 _l 4].
14 36 98 0+14+0+9 10

The cubicC + Dt + Et? + F't3 can fit4 points exactly, witrerror = zero vector.
7 Write down three equations for the line = C + Dt to go throughb = 7 at

t = —-1,b = 7att = 1, andb = 21 att = 2. Find the least squares solution
v = (C, D) and draw the closest line.
1 -1 7
. C PN 9 3 2||C 35
Solutlonh % [D}_ 21].Thesolutlom’_[4]comesfrorr[2 GMD}_[M}

8 Find the projectiorp = Av in Problem?7. This gives the three heights of the closest
line. Show that the error vectorés= (2, —6,4).

Solution p = Az = (5,13,17) gives the heights of the closest line. The error is
b—p=(2,—6,4). This errore hasPe = Pb— Pp=p—p = 0.
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9 Suppose the measurements at —1, 1,2 are the errorg, —6,4 in Problem8. Com-
putev and the closest line to these new measurements. Explainngwea: b =
(2,—6,4) is perpendicular ta so the projection ip = 0.

Solution If b = previous erroe thenb is perpendicular to the column space Af
Projection ofbis p = 0.

10 Suppose the measurementg at —1,1,2 areb = (5,13,17). Computev and the
closest linee. The error ise = 0 because thid is

Solution If b = Az = (5,13,17) thenz = (9,4) ande = 0 sinceb is in the column
space ofA.

11 Find the best lin€' + Dttofitb = 4,2, —1,0,0 attimest = —2,—1,0, 1, 2.

Solution The least squares equation{ig 18] {g} = [_1(5)}

Solution:C = 1, D = —1. Line 1 — t. Symmetrict’s = diagonal4™ A

12 Find theplanethat gives the best fit to thé valuesb = (0,1, 3,4) at the corners
(1,0) and(0,1) and(—1,0) and(0, —1) of a square. At thosé points, the equations
C + Dz + Ey = bareAv = b with 3 unknownsv = (C, D, E).

R e | ‘o0 ;
Solution D| = hasATA= [0 2 0| and ATb=|-2].

1 -1 0 3

Lo | LB | 00 2 -3

The solution(C, D, E) = (2,1, 3) gives the best plan2— = — 3.

13 With b = 0,8,8,20 att = 0, 1, 3,4 set up and solve the normal equatioh§4v =
ATb. For the best straight lin€ + Dt, find its four heightg; and four errors;. What
is the minimum valueZ = e? + €3 + €3 + e3 ?

1 0 Mo
ion A= |+ ! 8 qiveaT g [4 8 o [36
Solution A = 1 3 andb = 3 giveA A = [8 26] andA'b = {112]_
1 4 1 20
1 —1
ATAz = ATb gives . [1] andp — Az — | 3 3
E=e|?=44 *7 [4|FPTA* T 113 ande=b-p=|_5

17 3

14 (By calculus) Write downE = ||b — Aw||? as a sum of four squares—the last one is
(C + 4D — 20)2. Find the derivative equatiod /0C = 0 anddE /9D = 0. Divide
by 2 to obtain the normal equations” Av = ATb.

Solution E = (C +0D)? + (C + 1D —8)? + (C + 3D —8)? + (C + 4D — 20)2.
ThendE/dC = 20 4+ 2(C + D — 8) + 2(C + 3D — 8) + 2(C +4D — 20) = 0
anddE/0D = 1-2(C + D —8) +3-2(C +3D — 8) +4-2(C + 4D — 20) = 0.

. 14 8| |C 36
These normal equatiodd /0C = 0anddE /0D = 0 are agaw{8 26] {D} = [112].

15 Which of the four subspaces contains the error veetdrWhich containg ? Which
containsv ?
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Solution The errore is contained in the nullspac® (AT), sinceATe = 0. The
projectionp is contained in the column spa€& A). The vector of coefficients can
be any vector iR™.

16 Find the heightC' of the besthorizontal lineto fit b = (0,8,8,20). An exact fit
would solve the four unsolvable equatiofs= 0,C = 8,C = 8,C = 20. Find
the4 by 1 matrix A in these equations and solve A5 = ATb.

Solution E = (C —0)?+(C —8)2+(C —8)2+ (C —20)2andAT =1 1 1 1].
ATA = [4]. ATb=[36]and(ATA)"1ATh = 9 = bestC. e = (-9, —1,—1,11).
17 Write down three equations for the line = C + Dt to go throughb = 7 at

t =—-1,b = 7att = 1,andb = 21 att = 2. Find the least squares solution
v = (C, D) and draw the closest line.
1 -1 7
. C |9 3 2||1C 35
Solutlonh ; {D}_ 2{].Thesolutlom’_[4]comesfrorr[2 GHD}_[M}

18 Find the projectiorpp = Aw in Problem17. This gives the three heights of the closest
line. Show that the error vector és= (2, —6,4). WhyisPe = 07

Solution p = Az = (5,13,17) gives the heights of the closest line. The error is
b—p=(2,—6,4). This errore hasPe = Pb— Pp=p—p = 0.

19 Suppose the measurements at —1, 1, 2 are the error, —6, 4 in Problem18. Com-
putev and the closest line to these new measurements. Explainnéwea: b =
(2,—6,4) is perpendicular to so the projection ip = 0.

Solution If b = errore thenb is perpendicular to the column spaceAf Projection
p=0.

20 Suppose the measurementgat —1,1,2 areb = (5,13,17). Computev and the
closest line an@. The errorise = 0 because thig is ?

Solution If b = Az = (5,13,17) thenz = (9,4) ande = 0 sinceb is in the column
space ofA.

Questions 21-26 ask for projections onto lines. Also errors = b — p and matricesP.
21 Project the vectob onto the line througla. Check thak is perpendicular te :
1 1 1 —1
€) b=[2]and a:ll} (b) bzl?’]and a=[—3].
3 1 1 -1
Solution(a) The projectiomp is

Tb 1 2
p_aaT—l1‘|§—[2] e=b-p=
2

-1 1
0 ] perpendicularto[ 1 ] .
1 1

Solution(b) In this case the projection is

T [ L]-u T 0
p:a%:[_glﬁzlg ande=b-p=1| 0 |.
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22

23

24

25

26

27

28

Draw the projection ob ontoa and also compute it fromp = va :

(@b = { coss ] anda = [ H (b) b = [ . ] anda = { B ]

Solution (a) The projection ob = (cos 6, sind) ontoa = (1,0) isp = (cos b, 0)
Solution (b) The projection ob = (1,1) ontoa = (1, —1)isp = (0,0) sincea™d = 0.

In Problem22 find the projection matrix° = aa™ /a™a onto each vectoa. Verify
in both cases tha®? = P. Multiply Pb in each case to find the projectipn

10 cosf 1( 1-1 0

0 0] andp = Pib= { 0 ]P2:§ [_1 1] andp = P,b = [0]
Construct the projection matricdy and P, onto the lines through the’s in Problem
22. Is it true that(P; + P»)? = P, + P, ? Thiswouldbe true if P, P, = 0.

Solution The projection matrice®; and P, (note correctior, not P — 2) are

aaT 1 0 aaT 1 1 -1
_— = PQ = 7 = = .
aTa 0 0 T -1 1

Solution P, = [

P:
! aa 2

Itis not truethat(P; + P,)? = P, + P,. The sum of projection matricesn®t usually
a projection matrix.

Compute the projection matricesz™ /a™a onto the lines througla; = (—1,2,2)
andas = (2,2, —1). Multiply those two matrice$; P, and explain the answer.

L1 -2 =2 L4 42
Solution P, = - | -2 4 4, Pb,=~-1| 4 4 —21.
912 4 4 912 —2 1

P, P, = zero matrix because; is perpendicular ta.

Continuing Problen25, find the projection matrix’; ontoas = (2, —1, 2). Verify that
P, + P, + P; = I. The basisiy, as, as is orthogonal!

(1 -2 =2 4 4 -2 4 —2 4
Solution Pi+Py+Ps=—-|—2 4 4|+=-| 4 4 -2|+=|-2 1 =2|=1.
Y12 4 4 2 2 1 4 —2 4

We canadd projections ontorthogonal vectorsThis is important.

Project the vectob = (1, 1) onto the lines through; = (1,0) andas = (1,2). Draw
the projectiong, andp, and addp, + p,. The projections do not add tobecause
thea’s are not orthogonal.

Solution The projections of1, 1) onto the lines througfi,0) and(1,2) arep, =
(1,0) andp, = (3/5,6/5) = (0.6,1.2). Thenp, + p, # b.

(Quick and recommended) Supposés the 4 by 4 identity matrix with its last column
removed.A is 4 by 3. Projecb = (1,2, 3, 4) onto the column space of. What shape
is the projection matri’ and what isP?

100 1000 1 1

. 01 0 . 01 0 O 2 2
Solution A= 00 1 , P =square matrix 00 1 0 ,p=P 3l = |3
0 00 0 00O 4 0
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29 If A is doubled, then? = 2A(4ATA)~12AT. This is the same ad(ATA)~1AT.
The column space &4 is the same as . Isv the same fod and2A?

Solution 24 has the same column spacedasSamep. But Z for 2 A is half of Z for A.
30 What linear combination ofl, 2, —1) and(1,0, 1) is closest t = (2,1,1)?
Solution £(1,2,—1) + 2(1,0,1) = (2,1,1). Sob is in the plane: no erroe.
Projection shows’b = b.
31 (Importan) If P? = P show that/ — P)? = I — P. WhenP projects onto the column
space ofAd, I — P projects onto which fundamental subspace ?
Solution If P2 = Pthen(I — P)2 = (I-P)(I-P)=I1-PI-IP+P?>=1 — P.
When P projects onto the column spade;- P projects onto théeft nullspace

32 If P is the 3 by 3 projection matrix onto the line through 1, 1), thenI — P is the
projection matrix onto .

Solution I — P is the projection onto the plang + =2 + x3 = 0, perpendicular to
the direction(1,1,1):
1 1 1 2 -1 -1
—1[111]:1[—1 2—1].
31111 3l-1 -1 2

33 Multiply the matrix P = A(ATA)~'AT by itself. Cancel to prove thaP? = P.
Explain why P(Pb) always equalg’b: The vectorPb is in the column space so its
projection is .

Solution (A(ATA)‘lAT)2 = A(ATA) "1 (ATA)(ATA)7LAT = A(ATA)~1AT,
So P?2 = P. Geometric reasonPb is in the column space (whet® projects).
Then its projection”(Pb) is Pb for everyb. SoP? = P.

34 If A is square and invertible, the warning against splittisgf A)~* does not apply.
ThenAA~Y(AT)=1AT = I'is true.WhenA is invertible, why isP = I ande = 0 ?
Solution If A is invertible then its column space is allBf*. SoP = I ande = 0.

35 An important fact aboutd™ A is this: If ATAxz = 0 then Az = 0. New proof:

The vectorA« is in the nullspace of . Az is always in the column space of
. To be in both of those perpendicular spacés,must be zero.

Solution If ATAx = 0 then Az is in thenullspace ofAT. But Az is always in the
column space ofd. To be in both of those perpendicular spacés,must be zero. So
A andA™ A have thesame nullspace

1 00
I-P=|0 1 0
0 0 1

Notes on mean and variance and test grades
If all grades on a test a®, the mean isn = 90 and the variance i82 = 0. Suppose
the expected grades ajg, . . ., gv. Theno? comes fronmsquaring distances to the mean

_ 2 ... _ 2
_ g1t tgN Variance 02:(91 m)° +---+ (gy —m)

Mean
m N N

After every test my class wants to knewandos. My expectations are usually way off.
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36 Show thatr? also equalsg; (g7 + - - - + g% ) — m?.
Solution Each term(g; — m)? equalsg? — 2g;m + m?, so

,  (sumofg?) — 2m(sumofg;) + Nm?  (sum ofg?) — 2mNm + Nm?

g~ = = N
sum of g2
:(U gz)_mQ

N

37 If you flip a fair coin N times (L for heads for tails) what is the expected number
of heads ? What is the varianeé ?

Solution For a fair coin you expedN/2 heads inN flips. The variance? turns out
to be N /4.

Problem Set 7.4, page 422

1 What solution to Laplace’s equation completes “dedgyeia the table of pairs of solu-
tions ? We have one solutian= 2> — 3zy2, and we need another solution.

Solution Start withs = —y3. Thens,, = —6y, and therefore we need,, = 6y.
Integrating twice with respect te gives 3y2x. Therefore the second function is
s(z,y) = —y° + 3a%y.

2 What are the two solutions of degreethe real and imaginary parts 6f + iy)* ?
Checkugy + uyy = 0 for both solutions.

Solution Expandingx + iy)* gives
(z +iy)* = 2* — 62%y? + y* + 43y — 4xy®)i
Therefore the two solutions would be :
u(r,y) = x* — 62%y? + y* and s(z,y) = 423y — 4xy?
Checking the first solution :
0?(x* — 62°%y% + y*) +82(:c4 — 622y + y*)
ox? Oy?

Checking the second solution :

0?(4x3y — dazy®) 02 (4ady — day?)

ox? oy?

3 What is the secong-derivative of(x + iy)™ ? What is the secongtderivative ? Those
cancel imu;, + u,, because® = —1.

Solution The second:-derivative of(z + iy)™ is:

= (122°—12y%)+(—122°+12y%) = 0

= (242y — 0) + (0 —242y) =0

82 10\
% =n(n—1)(@+iy)"
The second-derivative of(z + iy)™ cancels that because

0?(x + iy)"

82 i-i-n(n—1)(z+iy)" > = —n(n—1)(z +iy)" >
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4 For the solve® x 2 example inside & x 4 square grid, write the four equations (9)
at the four interior nodes. Move the known boundary valuesd4 to the right hand
sides of the equations. You should s&€&D on the left side multiplying the correct
solutionU = (U117 Uiz,Us1, Ugg) = (1, 2,2, 3)

Solution The equations at the interior node would be :
4U11 — U1 —Up1 —Uip—Uip =0
AUy o — Uz —Upo—Ui3—Ui1 =0
4Uz1 — U311 — Ui — Uz —Uzp =0
4Uz 0 — Uz — Ui o —Uz3—Uz1 =0
Substituting the known boundary values leaves:
4Urn — Uz —Urp =4
AUy o — Uz —Ur1 =8
AUz 1 — U — Uz =0
4Uz0 — Ui —Uzq =4

Writing this in matrix form gives:

4 -1 0 —177] Uws 1 Ua 2
1 4 -1 0||UbL]|_ |3 Us | | 3
0 -1 4 —1 ||, |[=]o| @, |=]1
1 0 -1 4] | Uy 1 Us» 2

5 Suppose the boundary values on the 4 grid change td/ = 0 on three sides and
U = 8 on the fourth side. Find the four inside values so that eaehiothe average of
its neighbors.

Solution The values at thé6 nodes will be

0 0 0 0
1 1

0 3 3

0 3 3

0/4 4 4 0/4

Notice that the corner boundary valuds not enter the 5-point equations around
interior points. Every interior value must be the averagéofour neighbors. By
symmetry the two middle columns must be the same.

6 (MATLAB) Find the inversek2D)~! of the4 by 4 matrix displayed for the square grid.
Solution The circulant matrix{ 2D on page 422 has a circulant inverse:

72 1 2
L 127 21
1_ -

(K2D)" =211 2 7 2

2 1 2 7
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7 Solve this Poisson finite difference equation (right sjéde0) for the inside values
Ui1,Uia,Us1, Use. All boundary values likd/;y and U3 are zero. The boundary
hasi or j equal to0 or 3, the interior hag andj equal tol or2:

AU;; — Uiy j — Uipr,; — U; j—1 — Ui j4+1 = 1 atfour inside points

Solution The interior solution to the Poisson equation (on this sigadl) is

00 0 0
0 3 30
1 1
0+ 10
00 0 0

On a larger gridJ;; will not be constant in the interior.

8 A 5 x 5grid has & by 3 interior grid : 9 unknown valueg¢/;; to Uss. Create thé x 9
difference matrixk'2D.

Solution Order the points by rows to gét1, Uiz, Uiz, Usa1, Usg, Uss, Usy, Usa, Uss.
ThenK2D is symmetric with3 by 3 blocks:

A —I 0 4 -1 0
K2D=| -1 A -1 A= -1 4 -1 ]
0o -I A 0 -1 4

9 Use eid K2D) to find the nine eigenvalues @& 2D in Problem 8. Those eigenvalues
will be positive! The matrixi 2D is symmetric positive definite.

Solution eig(K2D) in Problem 8 produces 9 eigenvalues betweand4 :

The eigenvalues come from €ig2D) and explicitly from equation (11). Notice that
pairs of eigenvalues add & The eigenvalue distribution is symmetric aroune- 4:

1.1716 2.5828 2.5828 4.0 4.0 4.0 5.4142 54142 6.8284

10 If u(z) solvesu,, = 0 andv(y) solvesv,, = 0, verify thatu(z)v(y) solves Laplace’s
equation. Why is this only &-dimensional space of solutions ? Separation of variables
does not give all solutions—only the solutions with seplr@loundary conditions.

Solution 9%u 9%
If 2 =0 and @_Othen
Pu(z)v(y) | Pulz)v(y) &u(z) 9*v(y)
0x? + Oy? =vly) ox? +ulz) oy?
=v-04+u-0=0

Thereforeu(x)v(y) solves Laplace’s equation. But the only solutions found thay
areu(z)v(y) = (A+ Bz)(C + Dy).
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Problem Set 7.5, page 428

Problems1 — 5 are about complete graphs. Every pair of nodes has an edge.

1 With n = 5 nodes and all edges, find the diagonal entriesA6fA (the degrees of
the nodes). All the off-diagonal entries df' A are —1. Show the reduced matrii
without row5 and columrb. Node5 is “grounded” ancs = 0.

Solution The complete graph (all edges included) has no zeras'iA :
4 -1 -1 -1 -1
-1 4 -1 -1 -1
ATA=|-1 -1 4 -1 -1 Singular!
-1 -1 -1 4 -1
-1 -1 -1 -1 4
The grounded matrix would be
4 -1 -1 -1
(ATA)rcduccd = :% _11 _i :1 Invetible!
-1 -1 -1 4
2 Show that thetrace of ATA (sum down the diagonak sum of eigenvalues)
isn? — n. What is the trace of the reduced (and invertible) maktiaf sizen — 1 ?

Solution AT A is n by n and each diagonal entry is — 1. Therefore the trace is
n(n—1) = n? — n. The reduced matri hasn — 1 diagonal entries, each still equal
ton — 1. Therefore the trace ig1 — 1)(n — 1) = n? — 2n + 1.

3 Forn = 4, write the3 by 3 matrix R = (Areduced” (Areduced: Show that
RR~! = IwhenR~! has all entrie% off the diagonal am% on the diagonal.

Solution 3 -1 -1
Reduced matrixR = | —1 3 -1
-1 -1 3

R by its proposed inverse gives

3 -1 -1
l -1 3 -1 ]
-1 -1 3

4 For everyn, the reduced matri® of sizen — 1 is invertible Show thatRR~! = I
whenR~! has all entried /n off the diagonal and/n on the diagonal.

Solution
2 1 1
lll 2 1123
411 1 2 4

5 Write the6 by 3 matrix M = AyequcegWhenn = 4. The equatiom/v = b is to be
solved by least squares. The vedids like scores ir6 games betweeth teams (team
4 always scores zero; it is grounded). Knowing the inversB ef M T M, what is the
least squares ranking for team1 from solvingM T Mv = MTb?

Solution Remove column of A when nodel is grounded{, = 0).

6-1—-1 3-2-1 3-1-2
—2+43-1 —1+46-1 —1+3-2
—2-143 —1-2+43 —1-1+6

=1.
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-1 1 0
-1 0 1
0 -1 1 .
M=| _1 3 | hasindependentcolumns
0 -1 0
0 0 -1

The least squares soluti@nto Mv = b comes fromM ™ M» = MTb. Thisv gives
the predicted point spreads when all teams play all othengedhe first compone
would come from the first row ofd/ ™ M)~ multiplying by M *b. Note that

3 -1 -1 2 1 1
MTM_[—l 3 1 and(MTM)l_—ll 2 1].
-1 -1 3 4111 2

6 For the tree graph witlh nodes,AT A is in equation (1). What is thg by 3 matrix
R = (AT A)reduced How do we know it is positive definite?

Solution The reduced form oAT A removes rowt and columnt :
1 -1 0 0
-1 2 -1 0
0 -1 2 -1
0 0 -1 1

The first is positive semidefinited(has dependent columns). the second is positive
definite (the reduced has 3 independent columns).

7 () If you are given the matrid, how could you reconstruct the graph?
Solution Each row ofA tells you an edge in the graph.
(b) If you are givenL, = AT A, how could you reconstruct the graph (no arrows) ?
Solution Each nonzero off the main diagonal 4f A tells you an edge.
(c) If you are givenkk = ATC A, how could you reconstruct the weighted graph?
Solution Each nonzero off the main diagonal tells you the weight of duye.

8 Find K = ATC A for a line of3 resistors with conductances = 1, ¢, = 4, ¢5 = 9.
Write Krequceg@nd show that this matrix is positive definite.

Solution A circle of three resistors haksedges and nodes::

1 -1 0
Singular ATA = reduces to invertiblel -1 2 -1 ]

0 -1 2

r—1 1 0 1 -1 0 1
ATCA = 0 -1 1][ 4 ]l 1 -1 O]
L 1 0 0 1 -1
5 —4
=| -4 13 ] is only semidefinite
| -1 -9
0 1

(ATCA)seduced = - (1’ ] [ : ] [ 1 ] _ [ 5 ]
)

The determinant tests> 0 and(5)(13) > 42 are passed.
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9

10

11

A 3 by 3 square grid has = 9 nodes andn = 12 edges. Number nodes by rows.
(@) How many nonzeros among tReentries ofL = AT A?

Solution The 9 nodes ordered by rows ha2e3, 2, 3, 4, 3,2, 3,2 neighbors around
them. Those add t@4 nonzeros off the diagonal. THediagonal entries maka3
nonzeros out 092 = 81 entries inL = AT A.

(b) Write down the) diagonal entries in the degree matfix they are not allt.
Solution Thosed numbers are the degrees of theodes & diagonal entries it ™ A).
(c) Why does the middle row df = D — W have four—1's ? NoticeL = K2D!
Solution The middle node in the grid hasneighbors.

Suppose all conductances in equation (5) are equal tBolve equation (6) for the
voltagesv, andwvs and find the current flowing out of nodel (and into the ground at
node4). What is the “system conductancg’V’ from nodel to node4 ?

This overall conductancE/V should be larger than the individual conductanees
Solution The reduced equation (6) with conductaneesis

3c —c va | | cV and | 2 | = 0.6V

—c 2c vy | | ¢V vy | | 0.8V |~
Then the flows on the five edges in Figure 7.6 dsi equation (2). Remember the
minus sign :

-1 1 00 v 0.4

-1 01 0 0.6V 0.2

—cAv = —c¢ 0 -1 1 0 0.8V =cV | —0.2
-1 0 0 1 ) 0 1.0

0 -1 0 1 0.6

The total flow (on edges+2+4 out of nodel, or on edge8+4 into the grounded node
4,isI = 1.6¢V. The overall system conductanceli$c, greater than the individual
conductance on each edge.

The multiplicationAT A can be columns ofiT times rows of4. For the tree with
m = 3 edges andh = 4 nodes, each (column times row)(i$ x 1)(1 x 4) = 4 x 4.
Write down those three column-times-row matrices and adgtd, = AT A.

Solution Suppose the 3 tree edges go out of ndde nodes2, 3,4. (The problem
allows to choose other trees, including a linelafodes.) Then

3 -1 -1 -1
-1 1 0 0 1 1 0 0
A=| -1 0 1 0 ATA = 1 0 1 ol= sum of (columns o ™)( rows of A)

-1 0 0 1 1 0 0 1

~1 ~1 ~1

1 0 0

=| ol[=1 1 0 0]+| {[[-1 0 1 0]+| |[-1 0 0 1].
0 0 1



204 Chapter 7. Applied Mathematics anti® A

12

13

14

A graph with two separatg-node trees isiot connected Write its 6 by 4 incidence
matrix A. Findtwo solutions toAv = 0, not just one solutiom = (1,1,1,1,1,1). To

) 3 ) 3 )

reduceAT A we must groundwo nodes and remove two rows and columns.
Solution The incidence matrix for tw8-node trees is

_ Atree 0 . . 1 1 0
A= |: 0 Atrcc :| Wlth Atree = |: -1 0 1 :| (fOI‘ example)

The columns of4;,.. add to zero so we haindependent solutions tdv = 0:
0

and come from A ee

OO O ==
— -0 O

“Element matrices” from column times row appear in tirdte element method
Include the numbers,, cs, c3 in the element matrice&’;, K, K3.

K; = (rowi of A)T (¢;) (rowi of A) K=ATCA =K+ K> + Ks.
Write the element matrices that add4d A in (1) for the4-node line graph.

assembly of the nonzero

= entries ofK; + Ko + K3
[K ] from edged, 2, and3
3

g & |

Solution The three “element matrices” for the three edges come froftipiwing the
three columns ofA™ by the three rows afl. ThenAT A equals

-1 0 0
1 -1 0

=| ofl=1 1t 0 0]+ | [0 =1 1 0]+ | j[[0 0 -1 1].
0 0 1

When the diagonal matrik' is included, those are multiplied lay, c2, andcs. Those
products produce by 2 blocks of nonzeros id x 4 matrices:

1 -1

-1 1 1 -1

Ki=c¢ Ky =co Kz =c3

1 -1
-1 1
Then ATCA = K; + K, + Ks. This ‘assembly” of the element stiffness matrices
just requires placing the nonzeros correctly into the finalrin ATC A.
An n by n grid hasn? nodes. How many edges in this graph? How many interior
nodes ? How many nonzerosinhand inL = A" A ? There are no zeros i ! !

Solution Ann by n grid hasn horizontal rows{ — 1 edges on each row) amdvertical
columns ¢ — 1 edges down each column). Altogett#si(n — 1) edges. There are
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15

16

(n — 2)? interior nodes—a square grid with the boundary nodes rechtaveeduce:
ton — 2.

Every edge producesnonzeros{1 and+1) in A. ThenA has4n(n — 1) nonzeros.
The matrixAT A has sizex? with n? diagonal nonzeros—and off the diagonal4f A
there are two-1's for each edge: altogethe? + 4n(n — 1) = 5n2 — 4n nonzeros
out ofn* entries. Fom = 2, this meand 2 nonzeros in a by 4 matrix.

When onlye = C~ 1w is eliminated from th&-step framework, equatior??) shows

Saddle-point matrix ct A w]| [b
Not positive definite AT 0 v || f |-

Multiply the first block row byAT C' and subtract from the second block row :

o c! A w b
After block elimination [ 0 _ATCA } [ » ] = [ F— ATCb ]

After m positive pivots fromC—!, why does this matrix have negative pivots?
The two-field problem fokw andw is finding a saddle point, not a minimum.

Solution The three equations= b — Av andw = Ce andA™w = f reduce to two
equations whea is replaced byC' ~'w :

C~lw=b-Av become c! A v | _|b
ATw = f AT o ||w | T F |
Multiply the first equation byA™C to getATw = ATCb — ATC Av. Subtract from
the second equatioA™w = f, to eliminatew :

ATCb — ATCAv = f.
This gives the second row of the block matrix after elimioati

c! A v | | b
0 -ATcA w | | f-ATCOb |-

The pivots of that matrix on the left side start witfici, 1/¢s, ..., 1/¢,,. Then we get
then pivots of — AT C' A which arenegative because this matrix is negative definite.

Altogether we are finding a saddle poifi, w) of the energy (quadratic function).
The derivative of that quadratic gives our linear equatiofse block matrix in those
equations has: positive eigenvalues andnegative eigenvalues.

The least squares equatioh’ Av = ATb comes from the projection equation
ATe = 0 for the errore = b — Av. Write those two equations in the symmetric
saddle point form of Problem 7 (witfi = 0).

In this casew = e because the weighting matrixds = I.

Solution Ordinary least squares farv = b separates the data vectoin two perpen-
dicular parts:

b = (Av) + (b — Av) = (projection ofb) + (error inbd).

The errore = b— Av satisfiesATe = ATb — AT Av = 0 (which means thatt™ Av =
ATb, the key equation). That equatidfie = 0 is Kirchhoff’s Current Law for flows in
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a network. Itis a candidate for the “mostimportant equaiticappplied mathematics™—
the conservation equation or continuity equation “flowsirilow out.”

In the form of Problem 15 (witl®” = I) the equations are

I A el _|b]| o e+ Av=>

AT 0 v| |0 ATe =0.
Find the three eigenvalues and three pivots and the detantnaf this saddle point
matrix with C' = I. One eigenvalue is negative becausbas one column:

-1 1 0 -1
m=2n=1 {CAT jg]—l 0 1 1].
-1 1 0

Solution The eigenvalues come frodet(M — AI) = 0:
1-A 0 -1
l 0 1-2) 1]:—/\(1—/\)2—2(1—/\):0.
-1 1 -2

Then(1—A)(A2 =X —2) =0and(1 — X)(A—2)(A+ 1) = 0 and the eigenvalues are
A =1,2, —1. Check the sum + 2 — 1 = 2 equal to the trace (sum down the main
diagonall + 1+ 0 = 2).

The determinant is the produkt A2\ = (1)(2)(—1) = —2. Noticem = 2 positive
A's andn = 1 negative eigenvalue.

Elimination finds the three pivots (which also multiply tovgdet M = —2):
(») o -1 @D o -1 D o -1
01 1|=lo (O 1|—|0 L 1
-1 1 0 0 1 -1 0 0 @
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Problem Set 8.1, page 443

1 (a) To prove that cosz is orthogonal to cosx whenk # n, use(cosnz) (coskz) =
1 cos(n+k)z+ 3 cos(n—k)z. Integrate fromx = 0tox = 7. Whatis [ cos kx da ?

(b) Correction FromO0 to 7, cos x is not orthogonal to sin 2z (the book wrongly
proposedfo7T cosz sinz dz, but this is zero). For orthogonality afl sines and cosines,
the period has to br.

Solution (a)
/(cos nx)(cos kx)dr = 3 /cos(n + k)axde + 3 /cos(n —k)rdx
0 0 0
_ [sin(n+k)z  sin(n—k)z]"
‘{ St k) T 2=k ), OO

Solution (b) /(cos x)(sin2z)dz = /(cos x)(2sinxz cosz)dr = [—g cos® x}
0

f4750
=3 .

Non-orthogonality comes frory/ cosmaz sinnx dx whenm — n is an odd number.

™

0
2 SupposeF(z) = x for 0 < = < w. Draw graphs for—27 < z < 27 to show
three extensions af': a 27-periodic even function and&r-periodic odd function and
am-periodic function.

Solution
D or  —om V) m bt 0 o

3 Find the Fourier series oar < z < 7 for
(a) f1(x) = sin® 2, an odd function (sine series, only two terms)

Solution (a) The fast way is to know the identitjn® z = 3 sinz — 2 sin3z. This
must be the Fourier sine series! It has only two terms.

More slowly, use Euler’s great formula to produce compleamentials:

3
= :—Zsin?)x—i—zsinx.

i e—iLE 3 e3i1} _ 3ei13 + 3e—i1) _ e—3i1}
813

Or slowly compute the usual formulgdssin® z sin z dz and [ sin® z sin 3z dz.
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(b) f2(x) = | sinz|, an even function (cosine series)
Solution (b)

1 2
aoz—/|sin:c|dx:—
™ 7r

0

17 1 Teos(k — 1 s(k+ D))"
ap = %/|sinx| cos kx dx = i {Cosl(ﬂ_l s COb/(f ++1 )I]
0

i =0

=0 (oddk) or

—2 —2 ] = K (even k)

1
s {k—1+k+1 (k2 —1)
(¢) f3(z) = z for —r < z < 7 (sine series with jump at = )

. 1] 1 "
Solution (c) by, = — /:1: sin kzdz = | —— sin kx — — cos kz
T k2 mk o

= —%(cos km + cos(—km)) = —%(—1)’“.

4 Find the complex Fourier serie€ = Y c,e’* on the interval-7 < = < 7.
The even part of a function is(f(z) + f(—x)), so thatfevez) = fevel—). Find the
cosine series fofevenand the sine series fgqq. Notice the jump at = .

Solution 1 7 . 1 n ‘
cp = — ewe—zkw de = — /em(l—zk) dr
21w 21w

1 61(171'1@) 7"' _ err(lfik) _efﬂ(lfik)
on(1 — ik) _ o (1 — ik)

o1 . -
The even part of the function lsé:(e” + e~ 7). The cosine coefficients are

1 / z —x 1 i -
ao—ﬂ/(e +e )dx—%(e —e M)

2k cosh[r] sin[kn] + 2 cos[kn] sinh[n]
7w+ k2w

1/ .
ak:%/(e”—i—e ) coskx dx =

o1 . oo
The odd part of the function |52+ (e — e~®). The sine series is:

_ 1 ﬂ(ew — =) sin ka do = 2 cosh[r] sin[kn] — 2k cos[kn] sinh[n]
27 T+ k27

5 From the energy formula (21), the square wave sine coeffegatisfy

W+ = [ sw@Pds = [ 1d-on

—T —T

b

™
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Substitute the numbets from equation (8) to find that? = 8(1 + % + 2—10 +ooo)

Solution The sine coefficients for the odd square wave are
4 (1—(=1)F 4 (1 1 1
%= (T RIS

o S (1= (—)F? 11
Energy identity givesr? = 8 Z ) =8ty tE
k=1

6 If a square pulse is centeredat= 0 to give

™
o

f(x)y=1 for |:z:|<2

f(z)=0 for g< |z <,

draw its graph and find its Fourier coefficiemisandby,.

Solution

/2

1 1
ao—%/dI—E

—m/2
/2

L[ et 2T (2
(lk—ﬂ_ Cos:v:v—kﬂ_sm2—smc B

—m/2
/2

1
b, = — / sinkxdxr =0
T

—7/2

7 Plot the first three partial sums and the functigmr — z) :

( ) 8 (sinx sindx sindzx
z(m—x)= —
1 27 125

+m)ﬁ<x<m
™

Why is 1/k3 the decay rate for this function? What is its second dexie&ti

Solution The parabolyy = z(r — z) = am — 22 starts aty(0) = 0 with slope
y'(0) = w and second derivativg” (0) = —2. Its sine series makes it an odd function
xm + 22 from —7 to 0. This odd extension hasecond derivative= +2. That jump

in ¥y means that the Fourier coefficiemtswill decay like 1/k3. (Remembei /k for
jumps iny(x) and1/k? for jumps iny’(z)—no jumps iny, y’ for this example.)

8 Sketch the2r-periodic half wave withf (z) = sinz for0 < z < 7w and f(z) = 0 for
—7 < x < 0. Find its Fourier series.

Solution The function is not odd or even, so integrals must go fremto =. The
function is zero from-r to 0 leaving only these integrals fag, a, by, :
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1 |
ao = o bmxda::—w[—cosx]o =
ar = l/Sirm:cosk::z:d:z::—L costl —kjz | cos(l +k)a =
™ 2m 1-k 1+k 0
0
1 1 1 2
k ever) — = and 0 fork od
[ r}7r<1—/€+1-l-k> (1 — k2) | d

™

1 . 1
b = — /sin:z:sin kx dx givesb, = 3 and othen,, = 0.
0

9 SupposeG(z) has perio®L instead of2r. ThenG(z + 2L) = G(z). Integrals
go from—L to L or fromO0 to 2L. The Fourier formulas change by a factotL :
L

- . > . 1 )
The coefficients inG(z) = 3. Cre*™*/L are C} = 5T / G(z)e~*me/L g,
= J

Derive this formula forCj: Multiply the first equation forG(z) by and
integrate both sides. Why is the integral on the right sideaétp 2LC}, ?
Solution Multiply G(z) = 3 Cyre*™=/L py e=72/L |ntegrate.
p 7 N
/G(x)e—ikﬂ'w/L dr = /e—ikﬂm/L cheikﬂ'w/L dx
—L —L e
L L
/ G(z)e *me/L dy = O, / dx = 2LC}, (orthogonality)
L —L
1 L
- —ikmx /L
Ck 5T /G(x)e dx
—L

10 ForGeven use Problem 9 to find the cosine coefficightfrom (Cy, + C_x)/2:
k i k
Gever(z) =Y Ax cos % has A = l/Gever(gc) cos 2 dz.
5 L L L
0
Gevenis %(G(x) + G(—x)). Exception forAy = Cj : Divide by 2L instead ofL.

Solution The result comes directly fror§1(C;C +C_g).

1
11 Problem 10 tells us thatiy, = —(cx + c—g) on the usual interval fronf to .

Find a similar formula forb, from ¢;, andc_. In the reverse direction, find the
complex coefficient;, in F(z) = 3" cre*® from the real coefficients,, andby,.
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Solution Solution and correction We are comparing two ways to write a Fourier
series:

oo

o0 o0
Z cpe™® = ag + Z ag coskx + Z by sin kx
1 1

Pick out the terms fok and—k :

Ckezkm + kaeilk

¥ = aycoskx + by sinkx

Use Euler’s formula to reach cosines/sines on both sides:
(ck + c—g) coskx +i(ck — c—p) sinkx = ay, cos kx + b sin kx

This shows thati, = ¢ + c—_y, (correction from text) andbg, = i(cx — c—).
Reverse Euler’s formula to reach complex exponentials din &ides :

lbk (eikm _ e—ikm)

. . 1 . .
Ckezkz +c_pe ikx _ _ak(ezkm te zkw) + o
(3

2

. 1 1 1 1
This shows thaty, = —ar + —br and c_p = —ar — —bys.
2 21 2 21

Real functions with reat’s andb’s lead toc_;, = ¢ (complex conjugates)

12 Find the solution to Laplace’s equation witly = 6 on the boundary. Why is this the
imaginary part o2(z — 2%/2 + 2%/3...) = 2log(1 + z)? Confirm that on the unit
circle z = €%, the imaginary part of log(1 + z) agrees witlo.

Solution The sine series of the odd functigit@) = 6 has coefficients,, =

-, — R

0 n 1

)

2/t?s,in nd db = g {isin nf — gcos nb
T T n

T 2cos nmw 1 11 1
n2

- - 2’31
The solution to Laplace’s equation inside the circle hatofae™ :

2 2
u(r,0) = > bpr™sin nf = 2rsinf — 51"2 sin 26 + §r3 sin 36. ..

2 2
=1Im [22 - 522 + 523 . } = Im[2log(1 + 2)].

13 If the boundary condition for Laplace’s equationigs = 1 for 0 < § < = andug = 0
for —m < 6 < 0, find the Fourier series solutiar(r, §) inside the unit circle. What is
u at the originr =07

Solution This 0-1 step functiom(6) equals% + % (square wave). Equation (8) of the
text gives the Fourier sine series for the square wave :

1 2 {sin@ sin 30  sin 50 }
_|_...

0-1 Step Functionug(6) = 5 + — | + 2 + .

Then the solution to Laplace’s equation includes factérs

1 2 rsinf r3sin30 r° sin 560
u(r,@):§+—
™

1 + 3 + 5
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14 With boundary valuesio(6) = 1 + e + 1e?? + ..., what is the Fourier series
solution to Laplace’s equation in the circle? Sum this geoimseries.
Solution Inside the circle we see factors (andl +z + 22 +--- =1/(1 —x)):
1 0 1 2 2i0 1 10
u(r,@)zl—i—y‘e +ZT e+ =1/ 1—§rel .

15 (@) Verify that the fraction in Poisson’s formula (30) sfiis Laplace’s equation.

Solution(a) We could verify Laplace’s equation iné coordinates or recognize that
every term in the sum (29) solves that equation:

ou 10w 10t
or2  ror 12002
(b) Find the response(r, §) to an impulse at = 0,y = 1 (wheref = 7).

Solution(b) When the source is at the potht= , this replaces cos 6 by —r cos 6
in equation (30). Then the response to a point source istefatir = 1,0 = 7 :

1 1—r2
u(r,9)22— 3
w 14+ 724+ 2rcosf

=0.

16 With complex exponentials i’ (z) = > cxe?**, the energy identity (21) changes to
[ |F(z)*dz = 27" |ex|?. Derive this by integrating " c,e™**) (> e ).

Solution All productse?*e~** integrate to zero except when= k& :

/(ckeikm)(@e_””) dx = 2mecg = 2nlex |
The total energy is the sum over &ll
17 A centered square wave h&%z) = 1 for |x| < 7/2.
(a) Find its energyf' | F'(z)|? dz by direct integration
/2
Solution(a) /|F(x)|2da: = / dr = .
—7/2

(b) Compute its Fourier coefficients as specific numbers
w/2

Solution (b 1 / ko gy = [ L ]
Cr, = — e xr = |—
olution(b) ¢k =52 2n —ik |

—7/2
1 1 km

— tkw/2 _ —ikm/2) — _ T &3 -
o © %) wksm<2)

(c) Find the sum in the energy identity (Problem 8).

. 2/1 1 1
Solution(c) sin — =1,0, —1, 0 (repeated) s@ == ctgtop ) =1
() sin - =1,0, 1,0 (repeated) o 3 |cy| W(1+9+25+ )
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18 F(z) =1+ (cosx)/2+ -+ (cosnx)/2™ + -- - is analytic : infinitely smooth.
(a) If you takel0 derivatives, what is the Fourier seriesdf F'/dx10?
(b) Does that series still converge quickly ? Compat®with 2" for n = 210,
Solution(a) 10 derivatives okos nx gives—n'? cos nx:
leF 1 210 310 nlO
70 = —§cosx—?cos 2@ — ﬁcos 3x--— 2—ncos ne—---
Solution(b) Yes,2" gets large much faster than® so the series easily converges.
At n =29 =1024 we have2" = 2'°%* much larger tham'® = 219,

19 If f(z) = 1for|z| < w/2andf(z) = 0forw/2 < |z| < =, find its cosine coefficients.
Can you graph and compute the Gibbs overshoot at the jumps ?

. 1
Solution ;| — average value = >

/2
1 1 /2 2 k
ar = — / coskxdac:[—sink:v} = ——sin —
™ p mk —npp Tk 2

20 Find all the coefficienta; andby, for F, I, andD on the interval-nm < x < 7:

F(x):d(:c—g) I(x)—/omd(:zr—g)d:c D(a:):%(;(:c—g).

Solution(a) Integratecos kx andsin kz against(z — %) to get
1 1 kn 1 | krm

ap = — cos — and by = — sin —
k 2 F 2

apg = —
27 T T

Solution(b) The integrall (x) is the unit step functioi! (z — 7 ) with jump atz = 7 :

2
1 f 1

ag =

w/2

1] 1 /. ok 1k
ak—;/coskxd:v—ﬁ(smkw—sm7>——ﬁmn?

w/2
bk:l/sinlgggdgc:—L coskw—cosk—ﬂ

T Tk 2

w/2

Solution(c) D(z) is the “doublet’= derivative of the delta functiod (z — Z). You
must integrate by parts (add(—m) = D(x) = 0 fortunately).

17 1 [ ™,
;/D(,T)COS /mdx—;/é(x—i) (ksin kx) dx

—T

Soay, for D(x) is kby, in part (b), andby, for D(x) is —kay in part (b).
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21

22

23

For the one-sided tall box function in Example 4, with= 1/h for 0 < = < h, what
is its odd part} (F(z) — F(—=))? | am surprised that the Fourier coefficients of this
odd part disappear dsapproaches zero arfd(z) approaches(z).

Solution Every function has an even part and an odd part:

FCVCH(I) = %(F(ZC) + F(—ZC)) FOdd(I) = %(F(:C) - F(—ZC)) F= chcn + Fodd

For the one-sided box function, those even and odd parts are
1 1 1
Foven(z) = o for |z] <h Foaqa(x) = -7 for —h<ax < O’+ﬁ for 0 <z <h.

The Fourier coefficients af,4q don’t really “disappear” ag — 0, because the energy
J |Foaal? dz is growing. But it is growing in the high frequencies and amytjgular
coefficientcy, (at a fixed frequenck) approaches zero @s— 0.

Find the serieg"(z) = Y cxe’*® for F(z) = e on—7 < x < 7. That functione®
looks smooth, but there must be a hidden jump to get coeffiignproportional to
1/k. Where is the jump ?

Solution Whene® is made into a periodic function there is a jump (or a drop) at .
The drop frome™ to e~ ™ starts the nex2r-interval. That drop shows up as a factor
multiplying thel/k decay that all jump functions show in their Fourier expansio

1 ik 1 e(l-ik)z ™
I x tkx d e
BT A {% T
_ 1 e —e™ ™
T o 1—ik

(a) (Old particular solution) Solvdy” + By’ + Cy = e**=,
(b) (New particular solution) Solvdy” + By’ + Cy = Y_ cpe*®,

Solution This problem shows directly the powerlofearity to deal with complicated
forcing functions as combinations of simple forcing funase?** :

1
(ik)2A+ikB+C ©
Ay" + By + Cy =Y cre’*® hasy, = ¢ Yiee.

Ay// + By/ + Cy — eikz has Yp = ik _ Ykeikm

Problem Set 8.2, page 453

1

2

Multiply the three matrices in equation (11) and compard it In which six entries
do you need to know that = —1? This is(w4)? = ws. If M = N/2, why is
(wN)M = —1?

Solution

Why is rowi of F the same as rowV — i of F' (numbered fron®) to N — 1)?
Solution
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3 From Problem 8, find the by 4 permutation matrix” so thatF" = PF. Check that
P? = ] sothatP = P~!. Then fromF F = 41 show thatF'’? = 4P.

It is amazing thatF"* = 16 P2 = 161. Four transforms of any: bring back16 c.
Forall N, F2/N is a permutation matri¥’ andF* = N21T.

Solution

4 Invert the three factors in equation (11) to find a fast fazéion of £/~ *.

5 Fis symmetric. Transpose equation (11) to find a new Fast €otlransform.
Solution

6 All entries in the factorization of involve powers ofw = sixth root of 1:

w1 8] Al 7 )

Write down these factors with, w, w? in D and powers ofv? in F3. Multiply!
Solution

7 Put the vectoe = (1,0, 1,0) through the three steps of the FFT to fipd= Fc. Do
the same foe = (0,1,0,1).

Solution

8 Computey = Fzc by the three FFT steps fer = (1,0,1,0,1,0,1,0). Repeat the
computation fore = (0,1,0,1,0,1,0,1).

Solution
9 If w = e?™¥/%* thenw? and/w are amongthe _ and_____ roots of 1.
Solution
10 F'is a symmetric matrix. Its eigenvalues aren’t real. How is fossible ?
Solution

The three great symmetric tridiagonal matrices of applied mathematics areK, B, C.
The eigenvectors ok, B, andC are discretaines cosines andexponentials The eigen-
vector matrices give thBST, DCT, andDFT — discrete transforms for signal processing.
Notice that diagonals of the circulant matrikloop around to the far corners.

[ 2 -1 1 -1
K - |1 2 -1 g_| 1 2 -1
I -1 2 -1 1
[ 2 -1 — K1 =Knyy=2
c =| ! 2 _1. _ By =Byn=1
| —1 - -1 2 Ciyn=Cn1=-1
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11 The eigenvectors oy and By are the discrete sines, ..., sy and the discrete
cosinescy, - .., cy—1. Notice the eigenvectaty, = (1,1,...,1). Here ares; and
c—these vectors are samplessaof kx andcos kx from 0 to 7.

.k . 27k s' N7k and [ cos wk co*37rk COS(2N—1)7T]<:
me—i—l’me—i—l"”’mN—i—l b2N’ 52N,..., 5N

For2 by 2 matricesK> and B,, verify thats;, s; andey, ¢; are eigenvectors.
Solution

12 Show thatCs has eigenvaluess = 0,3,3 with eigenvectorse, = (1,1,1),
er = (L,w,w?), es = (1,w?, w*). You may prefer the real eigenvectdrs 1, 1)
and(1,0,—1)and(1, -2,1).

Solution

13 Multiply to see the eigenvectors, and eigenvalues, of Cy. Simplify to \;, =
2 — 2 cos(27k/N). Explain whyC'y is only semidefinite. It is not positive definite.

2 —1 -1 1 . 1 .
—1 2 -1 w _ w
Cer = —1 2 -1 w2k =(2- w' —w k) w2k
-1 -1 2| | w®™-Dk w1k
Solution

14 The eigenvectorg;, of C' are automatically perpendicular becauseis a
matrix. (To tell the truth,C' has repeated eigenvalues as in Problem 12. There was
a plane of eigenvectors for= 3 and we chose orthogone] andes in that plane.)

Solution

15 Write the2 eigenvalues fol(; and the3 eigenvalues foB3. Always Ky and By 1
have the samév eigenvalues, with the extra eigenvalue for Byy1. (Thisis
becausdl = ATAandB = AAT))

Solution

Problem Set 8.5, page 477

1 When the driving function isf(¢t) = (), the solution starting from rest is the-
pulse response The impulse is(¢), the response ig(¢). Transform this equation
to find thetransfer function Y (s). Invert to find the impulse respongé).

y" +y = §(t) with y(0) = 0 andy’(0) =0
Solution Take the Laplace Transform ¢f + y = 4(t) with y(0) = ¢'(0) = 0:
s?Y (s) — sy(0) —y'(0) + Y (s) = 1
Y(s)(s2+1)=1

Y(s) = o1 is the transform ofy(¢) = sin .
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2 (Important) Find the first derivative and second derivat¥e (t) = sint for ¢t > 0.
Watch for a jump at = 0 which produces a spike (delta function) in the derivative.
Solution The first derivative ofin(t) is cos(t), and the second derivative-issin(t) + ().

3 Find the Laplace transform of the unit box functibft) = {1 for 0 < ¢ < 1} =
H(t) — H(t — 1). The unit step function i#/ (¢) in honor of Oliver Heaviside.

Solution The unit box function isf(¢t) = H(t) — H(t — 1)

: 1 e* 1
The transformisF(s) = — — c - —(1—e79)
S S S

00 1

The same result comes fromi(s) = /f(t) e Stdt = /e*“ dt.
0 0

4 If the Fourier transform of (¢) is defined byf(k) = [ f(t)e~***dt and f(t) = 0 for
t < 0, what is the connection betwegik) and the Laplace transfor#i(s) ?

Solution The Fourier Transform s the Laplace Transform with ik : f(k) = F(ik).
5 What is the Laplace transform®(s) of the standardamp function r(t) = ¢?

For ¢t < 0 all functions are zero. The derivative oft) is the unit stepH ().
Then multiplyingR(s) by s gives .
Solution The Laplace Transformk(s) of the Ramp Function(t) =t is
R(s) :/tefstdt: _te*St _/_6 st dt= 0_ et ¥ _ %
] S 0 ; S 52 0 S
Multiplying R(s) by s gives the Laplace transforiry s of the step function.
6 Find the Laplace transfordi(s) of eachf(t), and the poles of'(s):

@ f=1+t (b) f=tcoswt (c) f = cos(wt—0)
(d) f=cos?t e f=eZcost (f) f=tetsinwt
Solution(a) The transform of (¢) = 1 + ¢ has adouble poleats = 0:
_ —st _ —st —st _ _
F(S)—/(1+t)€ dt—/e dt-i-/te dt_g+8_2_s—2
0 0 0
Solution(b . . _ .
( ) ezwt + efzwt tezwt tefu.ot
f(t) =tcos(wt) =t 5 = + 5 transforms to
Oote(iwfs)t x tef(iwfs)t
F(s)= [ ———dt ——dt
() = [ s [
0 ) 0 0o . [e'S)
o —em ) (st —jtw + 1) n —e ) (st 4 jtw 4 1)
B 2(s — iw)? 0 2(s + iw)? 0
1 1 (s —iw)? + (s + iw)? 52 — w?

- 2(s —iw)? + 2(s +iw)?2  2(s —iw)2(s +iw)? (52 +w?)?

Poles occur at = iw ands = —iw, the two exponents of(t).



218 Chapter 8. Fourier and Laplace Transforms

Solution(c) f(t) = cos(wt — ) = coswtcosf +sinwtsing transforms to
s

w .
F(S) = mCOSH + msm@
Poles occur at = +iw.
Solution(d) ) )
F(t) = cos?(t) = Z(eit +emit)2 = 1(621'15 + 24 e2it)
T .
F(s) = / Z(em +e %t 4 2)e " dt
0
7 Lt 1 2 +1752+2
C A(s—2i)  4(s+2i) 25  4(s2+4) 25  s(s2+4)
. . 1 2t
Poles occur at = 0 ands = +2i. Another way is to writeos? t = H%
Solution(e) ) )
f(t) =e Pcost = —eli=2t 4 ——(42)t
2 2
L 2yt —st L _(i42)t —st
F(s) = ¢ e % dt + ¢ e~ dt
0 0
B 1 N 1 542
S 2(—i+24s)  206+2+s) (s+2)2+1
Poles occur at the exponents= —2 4 i in f(¢).
Solution(f) ; ;
— o=t i —  Sw=1)t _ © —(iw+1)t
ft) tfo sin wt 5;¢ 5;¢
Fs) = / b Gyt _ b Gty ) st gy
21 2
OOO oo
t t .
_ Y (iw—1—s)t dt — v —(iw+1+s)t dt
/ 2% / 2 ¢
0 ) 0 ) -
_ e Tt 4 (s —iw+ 1) de T 4 1 (s +iw + 1))
2(s —iw + 1) 2(s +iw+ 1) 0
Poles ofF'(s) occur ats = —1 =+ iw, the exponents of ().
7 Find the Laplace transformof f(t) = next integer aboveandf(t) = ¢ 6(¢).
A staircasef (t) = [t] = H(t) + H(t — 1) + H(t — 2) + - - - = next integer above
is a sum of step functions. The transform is
1 e % 1 e o 1 1
~ 4+ + +...:_(1+e +e _|_...):_ —
S S S S s\1—es
The differentiation ruleC(tf(t)) = —F'(s) with f(¢) = §(t) andF'(s) = 1 gives

L(t6(t)) = —%(1) = 0 (this is correct becaus&(t) is the zero functioh
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8

10

Inverse Laplace Transfomfrind the functionf (¢) from its transform&'(s) :
1 s+1 1
@ s — 2mi (b) s24+1 © (s=1)(s —2)
(d) 1/(s*+2s+10) (e) e */(s—a) (f) 2s
Solution(a) F(s) =
S

- is the transform off (t) = e2™t.
— 2Tl

S

Solution(b) F(s) = ——— + 7 is the transform of (¢) = cos ¢ + sint.
; 1 1 1 .
Solution(c) F(s) = GG Y sz 51 is the transform off () =
et — et,
Solution(d)
1 1
F - =
) 52425410  (s+1+3i)(s+1—3i)
_ i 3 i
T 6(s+ (1+3i)  6(s+ (1—30))
— o= (439t _ 2 —(1-34)t
f(t) G¢ 5e
e *sin(3t)
a 3
Solution(e) F(s) = e’
s—a
f(t)=e"=VH({t—1) = shiftof e
Solution(f) F(s) = 2s

2
£(t) = 2ds/dt

Solvey” +y = 0fromy(0) andy’(0) by expressind’ (s) as a combination of/ (s*+1)
and1/(s* + 1). Find the inverse transforg(t) from the table.

Solution v +y=0
s?Y () = sy(0) —y'(0) + Y (s) = 0
Y (s)(s* + 1) = sy(0) +y'(0)

Y(s) = y(0) (0)

The inverse transform ig(t) = y(0) cos(t) + y’(0) sin(t).

Solvey” + 3y’ + 2y = § starting fromy(0) = 0 andy’(0) = 1 by Laplace transform.
Find the poles and partial fractions fBi(s) and invert to findy(¢).

82—|—1+y s2+1

2 d
Solution The transform o% +3 d—z + 2y = 6(¢) with y(0) = 0 andy’(0) = 1is
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s2Y (s) — sy(0) — y'(0) + 3sY (s) — 3y(0) + 2Y (s) =
Y(s)(s>+3s+2)—1=1

2
Sl P § TP
Y(s) = 2 — 2

s+1 s+42

y(t) = 2e~t — 22t
11 Solve these initial-value problems by Laplace transform:
@ y' +y=e“"y(0)=8 (b) y" —y=e', y(0)=0, y (0) 0
©) y' +y=e",y(0)=2 @) y” +y=6t, y(0)=0, y'(0)=0
(€) y' —iwy=0(t),y(0)=0 (1) my"+ cy'+ky=0, y(O):Ly’(O):O
Solution(a)
y' +y=e“t with y(0) =8
sY(s) —8+4+Y(s) =

s — 1w

Y(s)(s+1) =

+ 8

1 8
— +

(s+1)(s—iw) s+1

1 1 1 8
Y(s) = —
(5) 1+iw<s—iw s—|—1>+s+1

Particular + null y(t) =

s — 1w

Y(s) =

(eiwt _ e—t) + 8e—t

1+ iw
Solution(b) y" —y =e' with y(0) =0 and y’(0) =0
s2Y(s) =Y (s) = . i 1 1
RS P T y
I S U
Ad(s+1) 4(s—1) 2(s—1)2
(t) = et et 4 tet
W= T T
Solution(c) y'+y=e"t with y(0) =2
1
sY(s) —2+Y(s) = Py
Y = ! 2

(s+1)2 + s+1
y(t) =tet + 2e¢

Solution(d)
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y" +y =6t with y(0) =y'(0) =0

6
Y (s)+Y(s) = 2
Y 241) = 0
(241D =5
6 3 3
Y(s) = — —
(s) s2 s+1i s—1i

y(t) = 6t — 3ie™ " + 3ie" = 6t — 6sint

Solution(e) y' —iwy = §(t) with y(0) =0
sY(s) —iwY(s) =1 )
Yis) = 5 — 1w
y(t) = et

Solution(f) my” + ey’ + ky = 0 with y(0) = 1 andy’(0) = 0
ms?Y (s) — msy(0) + csY (s) — cy(0) + kY (s) =0

Y (s)(ms? +cs+ k) =ms+c

;71574-0 has the form—_— +
ms?+cs+k S—81 S— 8o
We used thidvlathematicacommand to find; (¢)

Simplify[InverseLaplaceTransform[(m x s + ¢)/(m*$"2 + cx s + k), s, t]]

c+v/e2—akm )t Vo payy— V2 —akmt
e_( Zm ) (c (—1+e 2m4k ) + (1—|—e2m4k) \/02—4km>

t =
y(t) 2v/c2 — 4km
12 The transform ofet is (sI — A)~'. Compute that matrix (the transfer function)
whenA4 =[1 1; 1 1]. Compare the poles of the transform to the eigenvalued.of

Solution WhenA =[1 1;1 1] we have:

-1
-1 _|s—=1 -1 . 1 s—1 1
(sT—4) —[ -1 s—l} _32—23[ 1 s—1]'

The poles of the system ase= 2 ands = 0, the eigenvalues of.
13 If dy/dt decays exponentially, show th&lt'(s) — y(0) ass — co.
Solution oo
sY(s) = /se*“y(t) dt (integrate by parts)
0

—s dy —s ©
= /6 ta dt — [8 ty(t)]o

Y(s) =

[
:/eiSt—ydt+y(O)—>y(O) as s — oo
0 1
s+a

—0 as s —>
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14 Transform Bessel's time-varying equatigi’ +y'+ty = 0 using.Z[ty] = —dY/dsto
find a first-order equation fo®. By separating variables or by substituting
Y (s) = C/v/1 + s?, find the Laplace transform of the Bessel functjos: J,.
Solution The transform ofy " applies the,%( ) rule toy” instead ofy :
Z(t,y") = —-(ransform 0§ ") = ——(s*Y (s) - sy(0) ~ y'(0).

dy
Apply this to the transform oft— +—+ty=0

dtz  dt
dY dY
— — 2_ - —_—_— =
25Y(s) — s o +9(0) + sY (s) — y(0) 7 0
dY dY
—sY(s) — g2 — —
sY(s) = s ds ds
dY
Y(s) = —(s2+1)—
Y (s) = (52 + 1)
dY sds
Y (s) s2+1
1
logY(s) =1lo
e¥(s) =os ()

1
The transform of the Bessel solutign= Jy is Y(S)=————
15 Find the Laplace transform of a single archfdf) = sin 7.

Solution A single arch okin 7t extends fromt =0tot =1:

1

I t— t —imt— t
= /f t)e Stdt = /sm Ye Stdt = / e / e
0

0

0
1mt—st —imt—st t=1
{21 (im — s) 21(Z7T+S)L_O
17r s _1 e—iﬂ'—s -1

2i(im — s) + 2i(im + s)

B —e % -1 1 1 B e 41 S
o 2 it—s ir+s/) i w2 + 82

A faster and more direct approach: One arch of the sine cugreea withsin 7t +
unit shift of sin ¢, because those cancel after one arch.

sinmt +sin7(t — 1) = sinnwt + sinwt cosm = sinwt — sinat = 0.

16 Your acceleration’ = ¢(v* — v) depends on the velocity* of the car ahead:
(a) Find the ratio of Laplace transforms (s)/V (s).
(b) If that car has* = ¢ find your velocityv(t) starting fromw(0) = 0.

Solution(a) Take the Laplace Transform %}é = c(v* —v) assuming(0) = 0;
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V(s)(s+c¢) =cV*(s)
V*(s) s+c
Vis) ¢
Solution(b) If v*(t) = ¢t thenV*(s) = iz Therefore
s
c
Vst = 5
c
Vis) = s3 + cs?
R
Cc(s+c) cs o s2
—ct 1
o) =S — 24y
c c

17 Aline of cars has), = clvn,—1(t = T) — v, (t — T')] with vo(t) = coswt in front.
(a) Find the growth factod = 1/(1 + iwe™ /c) in oscillationv,, = A"e?.
(b) Show thatA| < 1 and the amplitudes are safely decreasingif< %
(c) If ¢T' > % show thaf A| > 1 (dangerous) for smadb. (Usesin 6 < 6.)
Human reaction time i¥' > 1 sec and human aggressivenessis 0.4/sec.

Danger is pretty close. Probably drivers adjust to be barafy.

Solution(a) ddit" = c(vp_1(t = T) —v,(t — T)) with v,, = Ae™?

iwAnewt — CAn—leiw(t—T) _ CAneiw(t—T)

Z'weu.oT

A

c
- iwT
A<1+zwe >_1

Solution(b)
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For |A] <1 we need ‘1 + Zewr) 5
C

1-% sin(wT') + s cos(wT)‘ >1
c c

w 2 w2
1— i T) Y cos?(wT) > 1
( Cbln(w )) + = cos?(wT)

2 2 2
-2 sin(wT) + w_2 sin?(wT) + — cos?(w
c c

2
- sm(wT)
c

T)>
2
w
= >1
2

2
62—2 > TW sin(wT)

w? 2w 1
Since sinwT < wT, we are safe |f— > —wT whichis T < 3

C
Solution(c) sinwT ~ wT when this number is small Then the same steps show
|A| > 1whencT > 1.
18 For f(t) = 4(¢t), the transformF'(s) = 1 is the limit of transforms of tall thin box
functionsb(t). The boxes have width— 0 and heightl /e and ared.

Inside integrals,b(t) = { (1)/6 Lc;Lgrvgvii: ¢ }approacheé(t).

Find the transfornB(s), depending o. Compute the limit ofB(s) ase — 0.
Solution We begin by finding the transform of the box:
= [ Leretane ] L1

€ S€E S€E

0
- 0 .
We take the limit ag — 0—the box approaches a delta function!

1 — eS¢
B.(s) = 111%76
— s€
. (1—SE—|—182€2—-'-)
zhm =1

19 The transform /s of the unit step functiot (7§ comes from the limit of the transforms
of short steep ramp functions(t). These ramps have slopge :

re = 1 € )
t
Tef ComputeRe(s) = / ~ e stdt + /efStdt. Lete — 0.
€
; > 1 0 €
0 €
. < t o0 —st(__ t—1 t=€ _gtt=0c0
Solution R.(s) :/—e’“ dt+/e*5t dt = {Lﬁ)} + {e ]
€ €s =0 =5 Ji=c

0 €

e (=se—1)+1 e 1—e7"¢

€s? s €s?

1—(1—se+1s2e2— ... 1
lim R(s) = lim (1 se ) =—.

€s?
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20 In Problems 18 and 19, show that the derivative of the rampction re(t)
is the box functiorb(¢). The “generalized derivative” of a step is the _ function.

Solution The generalized derivative of the short ramf) is the thin box(t)/e. We
say “generalized” because this is not a true derivative-at : the ramp has zero slope
left of ¢ = 0 and nonzero slope right ef= 0. But the transforms of. andb. follow
the rule for derivatives.
The generalized derivative of a step function wedta function.

21 What is the Laplace transform of/”’(t) when you are givenY(s) and
y(0),(0),y"(0)?
Solution The Laplace Transform af”(t) is s3Y (s) — s?y(0) — sy’(0) — y"(0)

22 The Pontryagin maximum principlsays that the optimal control is “bang-bang"—
it only takes on the extreme values permitted by the comdtaiTo go from rest at
x = 0 torest atz = 1 in minimum time, use maximum acceleratioh and

deceleration-B. At what timet do you change from the accelerator to the brake ?
(This is the fastest driving between two red lights.)

Solution The maximum principle requires full acceleratidrto an unknown time,
and then full deceleration B to reachr = 1 with zero velocity. The velocities are

v=At for t <tg
v = Aty — B(t —ty) for t > tg
Integrating the velocity = dx/dt gives the distance(t) :
x = At for t <tg
z=3At} at t =t
@ = LA 4 Ato(t — to) — LB(t — )% for t >t

At the final timeT" we reachz = 1 with velocityv = 0. This gives two equations for

to andT :
v ZAto—B(T—to)ZO

x = AtgT — At — 1B(T —t9)* =1

SubstituteI’ = +Lto(A + B) from the first equation into the second equation. This
leaves an ordinary quadratic equation to solveifor

Problem Set 8.6, page 453

1 Find the convolutiony x w and also the cyclic convolution ® w :
@wv = (1,2)andw = (2,1)

Solution(a)
Convolution:(1,2) * (2,1) l

O N =
N = O
N
| I
Il
| — |
[\ i\
-

Cyclic Convolution: {

Do =
N
—_
L —
=N
—_
I
| —
(SIS
—_
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(b)v =(1,2,3) andw = (4,5,6).

Solution(b) 1 3 07 4
2 1 0 4 13

(1,2,3) % (4,5,6) 3 21 [5]_ 28

0 3 2 6 27

|0 0 3 18

1 3 27174 31
Cyclic Convolution: 2 1 3 5 | = l 31 ]

3 2 1 6 28

2 Compute the convolutiofi, 3,1) * (2, 2_, 3) = (a,b—, ¢,d,e). To check your answer,
adda + b+ ¢+ d + e. That total should b85 sincel+3+1=5and2+2+3=7
and5 x 7= 35.

Solution 1 0 0 2
310 2 8
1 3 1 2 ] = 11
01 3 3 11
0 0 1 3

1+3+1times2+2+3is2+8+ 1141143 :(5)(7) = (35).
3 Multiply 1 + 3z + 22 times2 + 2x + 322 to find a + bz + c2? + dz® + ex*. Your
multiplication was the same as the convolutian3, 1) = (2, 2, 3) in Problem 8. When
x = 1, your multiplication shows whyl +3+ 1 =5 times2+ 2+ 3 = 7 agrees with
a+b+c+d+e=35.
Solution
(1+ 32+ 22) x (2+ 22 + 322) = 2+ 22 + 322 + 62 + 622 + 923 + 222 + 22 + 3*
=2+ 8z + 11z% + 11z + 3z*
At z = 1 thisis again(5) x (7) = (35).

4 (Deconvolution) Which vectow would you convolve withw = (1,2,3) to get
vxw = (0,1,2,3,0)? Whichv givesv ® w = (3,1,2)?

Solution v9 0 0 0
V1 Vo 0 1 1
V2 V1 o [ 2 ‘| = 2
0 Vo V1 3 3
0 0 wv 0

The first and last equation givg = v, = 0. Substituting into the second, third, fourth
equation gives; = 1. Thereforev = (0,1, 0).

1 3 2
For cyclic convolution | 2 1 3
3 2 1
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5 (@) For the periodic functionf(x) = 4 andg(z) = 2 cos z, show thatf * g is zero (the
zero function)!

Solution(a) From equation (4) we have

2m 2m
(fxg)(x) :/g(y)f(x—y)dy:4/2cosydy:4~O:O forall .
0 0
(b) In frequency spacek{space) you are multiplying the Fourier coefficients of
4 and 2cosz. Those coefficients areepy, = 4 andd;y = d_; = 1.

Therefore every produet.dy, is

Solution(b) In frequency space:{space) you are multiplying the Fourier coefficients
of 4 and2 cos z. Those coefficients ar@ = 4 andd; = d_; = 1. Therefore every
product cidy is zero These are the coefficients of the zero function.

6 For periodic functionsf = Y cxe’** andg = Y dye’**, the Fourier coefficients of
f*g are2mwegdy. Test this factoRr whenf(x) = 1 andg(z) = 1 by computingf = g
from its definition (6.4).

Solution From equation (4):
2m

2w
(F+9)@) = [ f)ata—)dy= [1-1dy =2
0 0
The same convolution ik-space hagy, = 1 anddy = 1 (all otherc,, = d;, = 0). Then
2megdy, gives the correct coefficient8f and0) of the convolutionf x g (which equals
2m).
27
7 Show by integration that the periodic convolutigrcos x cos(t — z)dx is 7 cost. In k-
0

space you are squaring Fourier coefficients = ¢, = 3 to get; and };
these are the coefficients éfcos t. The2x in Problem 8 makes cost correct.
Solution

27 2w

/cosxcos(t —z)dx = /cos:c(costcosa: +sintsinz) de = wcost + 0.

0 0

8 Explain why f * g is the same ag * f (periodic or infinite convolution).

Solution In Fourier space convolutiofi x g or f ® ¢ leads to multiplicatior d,
which is certainly the same @sc,. Sof ® g = g ® f in z-space.

9 What 3 by 3 circulant matrix C produces cyclic convolution with the vector
c = (1,2,3)? ThenCd equalsc ® d for every vectord. Computec ® d for
d=(0,1,0).

Solution The circulant matribxC =

1 3 2
21 3 ] gives cyclic convolution witl{1, 2, 3).
3 2 1

1 3 2 0 3
213H1]:M.
3 21 0 2

Whend = (0,1,0) we havec ® d = Cd =
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10 What 2 by 2 circulant matrix C' produces cyclic convolution witle = (1,1)?

11

12

Show in four ways that thi€’ is not invertible. Deconvolution is impossible.
(1) Find the determinant af. (2) Find the eigenvalues @f.
(3) Findd sothatCd = c® dis zero. (4) Fc has a zero component.

Solution The2 by 2 circulant matrixC' = { } } ] gives(1,1)®d = Cd.

(1) The determinant of this matrix is zero.
1—-A 1

1 1-A
Then(1 — )\)? = 1 and)\ = 0,2. That zero eigenvalue means that the maffiss
singular.

(2) The eigenvalues af' come fromdet =(1-XN?-1=0.

(38) Cd= { ! % ] { _i ] = { 0 } soCisnotinvertibIe:{

—1 )
1 0 ] in nullspace.

1

(4) The Fourier matri¥" givesFc = [ i _} } { } } = [ (2) ] This again shows
A =2 and0.
(a) Changé(z) xd(z —1)toa multiplication@(k:) E(k) :

The boxb(z) = {1 for 0 < z < 1} transforms tob(k) = [ e~***dz.

Ot =

The shifted delta transforms td(k) = Jo(z — 1)e ke gy,

(b) Show that your resultd is the transform of a shifted box function. This shows how
convolution withd(z — 1) shifts the box.

Solution This question shows that continuous convolution witlh — 1) produces a
shift in the box functiorb(x), just like discrete convolution with the shifted delta varct
(...,0,0,1,...) produces a one-step shift.

We computei(z — 1) = b(x) in z-space to find(x — 1), or in k-space to see the effect
on the coefficients:

b(k) =

s =1 s
e zkm:| 1—e ik
-tk |, ik

—

efikmdx _ |:

=2

2
_ —ik ) —ikx
Shifted box e~ ¢ agrees With/e*“”da: e .
ik -tk |4
1

= o

Take the Laplace transform of these equations to find thefeeafunctionG(s) :
(@) Ay" + By’ + Cy = 4(t) (b)y' =5y =4(t)  (©)2y(t) —y(t —1) =4(t)
1
. 9 o .
Solution(a) As*Y (s)+BsY (s)+CY (s) = 1gives thetransferfunctlom
1

Solution(b) sY(s) — 5Y (s) = 1 gives the transfer functiok (s) = g
5 —
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1
— e 5
13 Take the Laplace transform gf”’ = §(¢) to find Y'(s). From the Transform Table
in Section 8.5 findy(¢). You will seey” = 1 andy”” = 0. Buty(t) = 0 for
negativel, so youry”’ is actually a unit step function and yout” is actuallyd(t).
Solution y”” = § transforms ta:*Y (s) — s%y(0) — s%y’(0) — sy”(0) — y""(0) =1

- 1 t3
Assume zero initial values to getY (s) = 1 andY (s) = — andy® = G
S

Solution(c) 2Y(s) — Y (s)e™* = 1 gives the transfer functiok (s) = 5

This is also the solution t9”" = 0 with initial valuesy,y’,y"”,y" = 0,0,0, 1.

14 Solve these equations by Laplace transform to fing). Invert that transform
with the Table in Section 8.5 to recognigé).

@y’ —6y=e" y(0) =2 (b)y" + 9y =1,y(0) = y'(0) = 0.
Solution(a) The transform of’ — 6y = e~* with y(0) = 2 is
sY(s) —2—-6Y(s) = ——

s+1
2 1
Y =
) = 6t G606
2 1 1
= + —
s—6  T(s—6) T(s+1)
151
CT(s—6) T(s+1)
15 1
The inverse transform ig/(t) = 7e6t — ;e_t

Solution(b) The transform ofy” + 9y = 1 with y(0) = ’(0) = 0is
s?Y (s) + 9Y (s) = !
S

1
Y =
() s(s?2+9)
_ i _ 1 _ 1
95 18(—3i+s) 18(3i+s)
1 1 .. 1 .
The inverse transform ig(t) = — — — 3 — —¢ =3 = )
inv 9(t) = 5~ 75~ 156 = Yp + U

15 Find the Laplace transform of the shifted stét — 3) that jumps fronD to 1 at¢ = 3.
Solvey’ — ay = H(t — 3) with y(0) = 0 by finding the Laplace transforii(s) and
then its inverse transformi(t) : one part fort < 3, second part fot > 3.

Solution The transform off (¢t — 3) multipliese 3¢ by the transformt of H (¢).
y'—ay=H(=3) y(0)=0

6—33

sY(s) —aY(s) =

Yis) = 5(2—353) - ejm <s i 3 %) '

The inverse transform(t) is the shift of} (e=3* — 1) : zero untilt = 3.
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16 Solvey’ = 1 with y(0) = 4—a trivial question. Then solve this problem the slow way
by findingY (s) and inverting that transform.

Solution The trivial solution is :y = ¢ + 4. The transform method gives

1
sY(s)—4=-
s
1 4
Y(s) = = + =
(5) ==+
y(t) =t+4

17 The solutiony(t) is the convolution of the inpuf(¢) with what functiong(¢) ?
@y’ —ay = f(t) withy(0) =3

Solution(a) y' —ay = f(t) with y(0) =3
sY(s) =3 —aY(s) = F(s)

y(t) =3e~t + f(t) x e 2t
(b)y’ — (integral ofy) = f(t).
Solution(b) The transform of;’— (integral ofy) = f(t) is sY (s) — Yis) = F(s),
if y(0) =0.

. 1 .
The inverse transform of— = 28 T iS cos(it).
s — = 5% —
S

ThenY (s) = F(Sz is the transform of the convolutiof(t) = cos(it).

18 Fory’ —ay = f(t) with y(0) = 3, we could replace that initial value by addiBg(t)
to the forcing functionf(¢). Explain that sentence.

Solution For a first order equation, an initial conditi@i0) is equivalent to adding
y(0)4(t) to the equation and starting that new equation at zero.

19 Whatisd(¢t) = 6(t) ? Whatisé(t — 1) x6(t —2) ? Whatisé(t — 1) timesd(t — 2)?
Solution 4(¢) * §(t) = o(¢)
St—1)*d6(t—2)=46(t—3)
d(t — 1) timesd(t — 2) equals the zero function.
20 By Laplace transform, solvg’ = y with y(0) = 1 to find a very familiary(¢).
Solution y' =y y(0) =1
sY(s)—1=Y(s)

Y(s) = :11 gives y(t) = et.
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21

22

23

By Fourier transform as in (9), solvey” + y = box functionb(z) on0 < z < 1.
Solution The Fourier transform ofy” + y = b(z) is

1 .
2 SN Ty O
(K + 1) (k) = (k) = [ e~ da = ——.
1
0

1— e—ik
Sy — e
¥R = o
This transform must be inverted to find y(x). In reality | would solve separately on

x < 0and0 <z < 1andx > 1. Then matching at the breakpoints= 0 andx = 1
determines the free constants in the separate solutions.

There is a big difference in the solutionsgd + By’ + Cy = f(z), between the
casesB? < 4C' andB? > 4C. Solvey” +y = § andy” — y = § with y(d-00) = 0.

Solution(a) The delta function produces a unit jumpjihatz = 0:

y" +y = 0hasy = cycosx + cysinz forz < 0, y = Cysinz for z > 0.
The jump iny’ givesCy — ¢2 = 1. The condition ony(+ oo) does not apply to this
first equation.

y” —y = 0hasy = ce® forx < 0 andy = Ce ® for z > 0; theny(+ oo) = 0.
Matchingy atx = 0 givesc = C.

Jumpiny’ atz =0 gives—C —c=1soc=C = —%
Solutiony(z) = —1e® forz < 0 andy(z) = —3e * forz >0

(Reviewy Why do the constanf(t) = 1 and the unit step (¢) have the same
Laplace transform/s? Answer: Because the transform does not notice .

Solution The Laplace Transformoes not notice any values off (¢) for ¢ < 0.
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Problem Set 8.1, page 443

1 (a) To prove that cosz is orthogonal to cosx whenk # n, use(cosnz) (coskz) =
1 cos(n+k)z+ 3 cos(n—k)z. Integrate fromx = 0tox = 7. Whatis [ cos kx da ?

(b) Correction FromO0 to 7, cos x is not orthogonal to sin 2z (the book wrongly
proposedfo7T cosz sinz dz, but this is zero). For orthogonality afl sines and cosines,
the period has to br.

Solution (a)
/(cos nx)(cos kx)dr = 3 /cos(n + k)axde + 3 /cos(n —k)rdx
0 0 0
_ [sin(n+k)z  sin(n—k)z]"
‘{ St k) T 2=k ), OO

Solution (b) /(cos x)(sin2z)dz = /(cos x)(2sinxz cosz)dr = [—g cos® x}
0

f4750
=3 .

Non-orthogonality comes frory/ cosmaz sinnx dx whenm — n is an odd number.

™

0
2 SupposeF(z) = x for 0 < = < w. Draw graphs for—27 < z < 27 to show
three extensions af': a 27-periodic even function and&r-periodic odd function and
am-periodic function.

Solution
D or  —om V) m bt 0 o

3 Find the Fourier series oar < z < 7 for
(a) f1(x) = sin® 2, an odd function (sine series, only two terms)

Solution (a) The fast way is to know the identitjn® z = 3 sinz — 2 sin3z. This
must be the Fourier sine series! It has only two terms.

More slowly, use Euler’s great formula to produce compleamentials:

3
= :—Zsin?)x—i—zsinx.

i e—iLE 3 e3i1} _ 3ei13 + 3e—i1) _ e—3i1}
813

Or slowly compute the usual formulgdssin® z sin z dz and [ sin® z sin 3z dz.
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(b) f2(x) = | sinz|, an even function (cosine series)
Solution (b)

1 2
aoz—/|sin:c|dx:—
™ 7r

0

17 1 Teos(k — 1 s(k+ D))"
ap = %/|sinx| cos kx dx = i {Cosl(ﬂ_l s COb/(f ++1 )I]
0

i =0

=0 (oddk) or

—2 —2 ] = K (even k)

1
s {k—1+k+1 (k2 —1)
(¢) f3(z) = z for —r < z < 7 (sine series with jump at = )

. 1] 1 "
Solution (c) by, = — /:1: sin kzdz = | —— sin kx — — cos kz
T k2 mk o

= —%(cos km + cos(—km)) = —%(—1)’“.

4 Find the complex Fourier serie€ = Y c,e’* on the interval-7 < = < 7.
The even part of a function is(f(z) + f(—x)), so thatfevez) = fevel—). Find the
cosine series fofevenand the sine series fgqq. Notice the jump at = .

Solution 1 7 . 1 n ‘
cp = — ewe—zkw de = — /em(l—zk) dr
21w 21w

1 61(171'1@) 7"' _ err(lfik) _efﬂ(lfik)
on(1 — ik) _ o (1 — ik)

o1 . -
The even part of the function lsé:(e” + e~ 7). The cosine coefficients are

1 / z —x 1 i -
ao—ﬂ/(e +e )dx—%(e —e M)

2k cosh[r] sin[kn] + 2 cos[kn] sinh[n]
7w+ k2w

1/ .
ak:%/(e”—i—e ) coskx dx =

o1 . oo
The odd part of the function |52+ (e — e~®). The sine series is:

_ 1 ﬂ(ew — =) sin ka do = 2 cosh[r] sin[kn] — 2k cos[kn] sinh[n]
27 T+ k27

5 From the energy formula (21), the square wave sine coeffegatisfy

W+ = [ sw@Pds = [ 1d-on

—T —T

b

™
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Substitute the numbets from equation (8) to find that? = 8(1 + % + 2—10 +ooo)

Solution The sine coefficients for the odd square wave are
4 (1—(=1)F 4 (1 1 1
%= (T RIS

o S (1= (—)F? 11
Energy identity givesr? = 8 Z ) =8ty tE
k=1

6 If a square pulse is centeredat= 0 to give

™
o

f(x)y=1 for |:z:|<2

f(z)=0 for g< |z <,

draw its graph and find its Fourier coefficiemisandby,.

Solution

/2

1 1
ao—%/dI—E

—m/2
/2

L[ et 2T (2
(lk—ﬂ_ Cos:v:v—kﬂ_sm2—smc B

—m/2
/2

1
b, = — / sinkxdxr =0
T

—7/2

7 Plot the first three partial sums and the functigmr — z) :

( ) 8 (sinx sindx sindzx
z(m—x)= —
1 27 125

+m)ﬁ<x<m
™

Why is 1/k3 the decay rate for this function? What is its second dexie&ti

Solution The parabolyy = z(r — z) = am — 22 starts aty(0) = 0 with slope
y'(0) = w and second derivativg” (0) = —2. Its sine series makes it an odd function
xm + 22 from —7 to 0. This odd extension hasecond derivative= +2. That jump

in ¥y means that the Fourier coefficiemtswill decay like 1/k3. (Remembei /k for
jumps iny(x) and1/k? for jumps iny’(z)—no jumps iny, y’ for this example.)

8 Sketch the2r-periodic half wave withf (z) = sinz for0 < z < 7w and f(z) = 0 for
—7 < x < 0. Find its Fourier series.

Solution The function is not odd or even, so integrals must go fremto =. The
function is zero from-r to 0 leaving only these integrals fag, a, by, :
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1 |
ao = o bmxda::—w[—cosx]o =
ar = l/Sirm:cosk::z:d:z::—L costl —kjz | cos(l +k)a =
™ 2m 1-k 1+k 0
0
1 1 1 2
k ever) — = and 0 fork od
[ r}7r<1—/€+1-l-k> (1 — k2) | d

™

1 . 1
b = — /sin:z:sin kx dx givesb, = 3 and othen,, = 0.
0

9 SupposeG(z) has perio®L instead of2r. ThenG(z + 2L) = G(z). Integrals
go from—L to L or fromO0 to 2L. The Fourier formulas change by a factotL :
L

- . > . 1 )
The coefficients inG(z) = 3. Cre*™*/L are C} = 5T / G(z)e~*me/L g,
= J

Derive this formula forCj: Multiply the first equation forG(z) by and
integrate both sides. Why is the integral on the right sideaétp 2LC}, ?
Solution Multiply G(z) = 3 Cyre*™=/L py e=72/L |ntegrate.
p 7 N
/G(x)e—ikﬂ'w/L dr = /e—ikﬂm/L cheikﬂ'w/L dx
—L —L e
L L
/ G(z)e *me/L dy = O, / dx = 2LC}, (orthogonality)
L —L
1 L
- —ikmx /L
Ck 5T /G(x)e dx
—L

10 ForGeven use Problem 9 to find the cosine coefficightfrom (Cy, + C_x)/2:
k i k
Gever(z) =Y Ax cos % has A = l/Gever(gc) cos 2 dz.
5 L L L
0
Gevenis %(G(x) + G(—x)). Exception forAy = Cj : Divide by 2L instead ofL.

Solution The result comes directly fror§1(C;C +C_g).

1
11 Problem 10 tells us thatiy, = —(cx + c—g) on the usual interval fronf to .

Find a similar formula forb, from ¢;, andc_. In the reverse direction, find the
complex coefficient;, in F(z) = 3" cre*® from the real coefficients,, andby,.
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Solution Solution and correction We are comparing two ways to write a Fourier
series:

oo

o0 o0
Z cpe™® = ag + Z ag coskx + Z by sin kx
1 1

Pick out the terms fok and—k :

Ckezkm + kaeilk

¥ = aycoskx + by sinkx

Use Euler’s formula to reach cosines/sines on both sides:
(ck + c—g) coskx +i(ck — c—p) sinkx = ay, cos kx + b sin kx

This shows thati, = ¢ + c—_y, (correction from text) andbg, = i(cx — c—).
Reverse Euler’s formula to reach complex exponentials din &ides :

lbk (eikm _ e—ikm)

. . 1 . .
Ckezkz +c_pe ikx _ _ak(ezkm te zkw) + o
(3

2

. 1 1 1 1
This shows thaty, = —ar + —br and c_p = —ar — —bys.
2 21 2 21

Real functions with reat’s andb’s lead toc_;, = ¢ (complex conjugates)

12 Find the solution to Laplace’s equation witly = 6 on the boundary. Why is this the
imaginary part o2(z — 2%/2 + 2%/3...) = 2log(1 + z)? Confirm that on the unit
circle z = €%, the imaginary part of log(1 + z) agrees witlo.

Solution The sine series of the odd functigit@) = 6 has coefficients,, =

-, — R

0 n 1

)

2/t?s,in nd db = g {isin nf — gcos nb
T T n

T 2cos nmw 1 11 1
n2

- - 2’31
The solution to Laplace’s equation inside the circle hatofae™ :

2 2
u(r,0) = > bpr™sin nf = 2rsinf — 51"2 sin 26 + §r3 sin 36. ..

2 2
=1Im [22 - 522 + 523 . } = Im[2log(1 + 2)].

13 If the boundary condition for Laplace’s equationigs = 1 for 0 < § < = andug = 0
for —m < 6 < 0, find the Fourier series solutiar(r, §) inside the unit circle. What is
u at the originr =07

Solution This 0-1 step functiom(6) equals% + % (square wave). Equation (8) of the
text gives the Fourier sine series for the square wave :

1 2 {sin@ sin 30  sin 50 }
_|_...

0-1 Step Functionug(6) = 5 + — | + 2 + .

Then the solution to Laplace’s equation includes factérs

1 2 rsinf r3sin30 r° sin 560
u(r,@):§+—
™

1 + 3 + 5
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14 With boundary valuesio(6) = 1 + e + 1e?? + ..., what is the Fourier series
solution to Laplace’s equation in the circle? Sum this geoimseries.
Solution Inside the circle we see factors (andl +z + 22 +--- =1/(1 —x)):
1 0 1 2 2i0 1 10
u(r,@)zl—i—y‘e +ZT e+ =1/ 1—§rel .

15 (@) Verify that the fraction in Poisson’s formula (30) sfiis Laplace’s equation.

Solution(a) We could verify Laplace’s equation iné coordinates or recognize that
every term in the sum (29) solves that equation:

ou 10w 10t
or2  ror 12002
(b) Find the response(r, §) to an impulse at = 0,y = 1 (wheref = 7).

Solution(b) When the source is at the potht= , this replaces cos 6 by —r cos 6
in equation (30). Then the response to a point source istefatir = 1,0 = 7 :

1 1—r2
u(r,9)22— 3
w 14+ 724+ 2rcosf

=0.

16 With complex exponentials i’ (z) = > cxe?**, the energy identity (21) changes to
[ |F(z)*dz = 27" |ex|?. Derive this by integrating " c,e™**) (> e ).

Solution All productse?*e~** integrate to zero except when= k& :

/(ckeikm)(@e_””) dx = 2mecg = 2nlex |
The total energy is the sum over &ll
17 A centered square wave h&%z) = 1 for |x| < 7/2.
(a) Find its energyf' | F'(z)|? dz by direct integration
/2
Solution(a) /|F(x)|2da: = / dr = .
—7/2

(b) Compute its Fourier coefficients as specific numbers
w/2

Solution (b 1 / ko gy = [ L ]
Cr, = — e xr = |—
olution(b) ¢k =52 2n —ik |

—7/2
1 1 km

— tkw/2 _ —ikm/2) — _ T &3 -
o © %) wksm<2)

(c) Find the sum in the energy identity (Problem 8).

. 2/1 1 1
Solution(c) sin — =1,0, —1, 0 (repeated) s@ == ctgtop ) =1
() sin - =1,0, 1,0 (repeated) o 3 |cy| W(1+9+25+ )
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18 F(z) =1+ (cosx)/2+ -+ (cosnx)/2™ + -- - is analytic : infinitely smooth.
(a) If you takel0 derivatives, what is the Fourier seriesdf F'/dx10?
(b) Does that series still converge quickly ? Compat®with 2" for n = 210,
Solution(a) 10 derivatives okos nx gives—n'? cos nx:
leF 1 210 310 nlO
70 = —§cosx—?cos 2@ — ﬁcos 3x--— 2—ncos ne—---
Solution(b) Yes,2" gets large much faster than® so the series easily converges.
At n =29 =1024 we have2" = 2'°%* much larger tham'® = 219,

19 If f(z) = 1for|z| < w/2andf(z) = 0forw/2 < |z| < =, find its cosine coefficients.
Can you graph and compute the Gibbs overshoot at the jumps ?

. 1
Solution ;| — average value = >

/2
1 1 /2 2 k
ar = — / coskxdac:[—sink:v} = ——sin —
™ p mk —npp Tk 2

20 Find all the coefficienta; andby, for F, I, andD on the interval-nm < x < 7:

F(x):d(:c—g) I(x)—/omd(:zr—g)d:c D(a:):%(;(:c—g).

Solution(a) Integratecos kx andsin kz against(z — %) to get
1 1 kn 1 | krm

ap = — cos — and by = — sin —
k 2 F 2

apg = —
27 T T

Solution(b) The integrall (x) is the unit step functioi! (z — 7 ) with jump atz = 7 :

2
1 f 1

ag =

w/2

1] 1 /. ok 1k
ak—;/coskxd:v—ﬁ(smkw—sm7>——ﬁmn?

w/2
bk:l/sinlgggdgc:—L coskw—cosk—ﬂ

T Tk 2

w/2

Solution(c) D(z) is the “doublet’= derivative of the delta functiod (z — Z). You
must integrate by parts (add(—m) = D(x) = 0 fortunately).

17 1 [ ™,
;/D(,T)COS /mdx—;/é(x—i) (ksin kx) dx

—T

Soay, for D(x) is kby, in part (b), andby, for D(x) is —kay in part (b).
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21

22

23

For the one-sided tall box function in Example 4, with= 1/h for 0 < = < h, what
is its odd part} (F(z) — F(—=))? | am surprised that the Fourier coefficients of this
odd part disappear dsapproaches zero arfd(z) approaches(z).

Solution Every function has an even part and an odd part:

FCVCH(I) = %(F(ZC) + F(—ZC)) FOdd(I) = %(F(:C) - F(—ZC)) F= chcn + Fodd

For the one-sided box function, those even and odd parts are
1 1 1
Foven(z) = o for |z] <h Foaqa(x) = -7 for —h<ax < O’+ﬁ for 0 <z <h.

The Fourier coefficients af,4q don’t really “disappear” ag — 0, because the energy
J |Foaal? dz is growing. But it is growing in the high frequencies and amytjgular
coefficientcy, (at a fixed frequenck) approaches zero @s— 0.

Find the serieg"(z) = Y cxe’*® for F(z) = e on—7 < x < 7. That functione®
looks smooth, but there must be a hidden jump to get coeffiignproportional to
1/k. Where is the jump ?

Solution Whene® is made into a periodic function there is a jump (or a drop) at .
The drop frome™ to e~ ™ starts the nex2r-interval. That drop shows up as a factor
multiplying thel/k decay that all jump functions show in their Fourier expansio

1 ik 1 e(l-ik)z ™
I x tkx d e
BT A {% T
_ 1 e —e™ ™
T o 1—ik

(a) (Old particular solution) Solvdy” + By’ + Cy = e**=,
(b) (New particular solution) Solvdy” + By’ + Cy = Y_ cpe*®,

Solution This problem shows directly the powerlofearity to deal with complicated
forcing functions as combinations of simple forcing funase?** :

1
(ik)2A+ikB+C ©
Ay" + By + Cy =Y cre’*® hasy, = ¢ Yiee.

Ay// + By/ + Cy — eikz has Yp = ik _ Ykeikm

Problem Set 8.2, page 453

1

2

Multiply the three matrices in equation (11) and compard it In which six entries
do you need to know that = —1? This is(w4)? = ws. If M = N/2, why is
(wN)M = —1?

Solution

Why is rowi of F the same as rowV — i of F' (numbered fron®) to N — 1)?
Solution
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3 From Problem 8, find the by 4 permutation matrix” so thatF" = PF. Check that
P? = ] sothatP = P~!. Then fromF F = 41 show thatF'’? = 4P.

It is amazing thatF"* = 16 P2 = 161. Four transforms of any: bring back16 c.
Forall N, F2/N is a permutation matri¥’ andF* = N21T.

Solution

4 Invert the three factors in equation (11) to find a fast fazéion of £/~ *.

5 Fis symmetric. Transpose equation (11) to find a new Fast €otlransform.
Solution

6 All entries in the factorization of involve powers ofw = sixth root of 1:

w1 8] Al 7 )

Write down these factors with, w, w? in D and powers ofv? in F3. Multiply!
Solution

7 Put the vectoe = (1,0, 1,0) through the three steps of the FFT to fipd= Fc. Do
the same foe = (0,1,0,1).

Solution

8 Computey = Fzc by the three FFT steps fer = (1,0,1,0,1,0,1,0). Repeat the
computation fore = (0,1,0,1,0,1,0,1).

Solution
9 If w = e?™¥/%* thenw? and/w are amongthe _ and_____ roots of 1.
Solution
10 F'is a symmetric matrix. Its eigenvalues aren’t real. How is fossible ?
Solution

The three great symmetric tridiagonal matrices of applied mathematics areK, B, C.
The eigenvectors ok, B, andC are discretaines cosines andexponentials The eigen-
vector matrices give thBST, DCT, andDFT — discrete transforms for signal processing.
Notice that diagonals of the circulant matrikloop around to the far corners.

[ 2 -1 1 -1
K - |1 2 -1 g_| 1 2 -1
I -1 2 -1 1
[ 2 -1 — K1 =Knyy=2
c =| ! 2 _1. _ By =Byn=1
| —1 - -1 2 Ciyn=Cn1=-1
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11 The eigenvectors oy and By are the discrete sines, ..., sy and the discrete
cosinescy, - .., cy—1. Notice the eigenvectaty, = (1,1,...,1). Here ares; and
c—these vectors are samplessaof kx andcos kx from 0 to 7.

.k . 27k s' N7k and [ cos wk co*37rk COS(2N—1)7T]<:
me—i—l’me—i—l"”’mN—i—l b2N’ 52N,..., 5N

For2 by 2 matricesK> and B,, verify thats;, s; andey, ¢; are eigenvectors.
Solution

12 Show thatCs has eigenvaluess = 0,3,3 with eigenvectorse, = (1,1,1),
er = (L,w,w?), es = (1,w?, w*). You may prefer the real eigenvectdrs 1, 1)
and(1,0,—1)and(1, -2,1).

Solution

13 Multiply to see the eigenvectors, and eigenvalues, of Cy. Simplify to \;, =
2 — 2 cos(27k/N). Explain whyC'y is only semidefinite. It is not positive definite.

2 —1 -1 1 . 1 .
—1 2 -1 w _ w
Cer = —1 2 -1 w2k =(2- w' —w k) w2k
-1 -1 2| | w®™-Dk w1k
Solution

14 The eigenvectorg;, of C' are automatically perpendicular becauseis a
matrix. (To tell the truth,C' has repeated eigenvalues as in Problem 12. There was
a plane of eigenvectors for= 3 and we chose orthogone] andes in that plane.)

Solution

15 Write the2 eigenvalues fol(; and the3 eigenvalues foB3. Always Ky and By 1
have the samév eigenvalues, with the extra eigenvalue for Byy1. (Thisis
becausdl = ATAandB = AAT))

Solution

Problem Set 8.5, page 477

1 When the driving function isf(¢t) = (), the solution starting from rest is the-
pulse response The impulse is(¢), the response ig(¢). Transform this equation
to find thetransfer function Y (s). Invert to find the impulse respongé).

y" +y = §(t) with y(0) = 0 andy’(0) =0
Solution Take the Laplace Transform ¢f + y = 4(t) with y(0) = ¢'(0) = 0:
s?Y (s) — sy(0) —y'(0) + Y (s) = 1
Y(s)(s2+1)=1

Y(s) = o1 is the transform ofy(¢) = sin .
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2 (Important) Find the first derivative and second derivat¥e (t) = sint for ¢t > 0.
Watch for a jump at = 0 which produces a spike (delta function) in the derivative.
Solution The first derivative ofin(t) is cos(t), and the second derivative-issin(t) + ().

3 Find the Laplace transform of the unit box functibft) = {1 for 0 < ¢ < 1} =
H(t) — H(t — 1). The unit step function i#/ (¢) in honor of Oliver Heaviside.

Solution The unit box function isf(¢t) = H(t) — H(t — 1)

: 1 e* 1
The transformisF(s) = — — c - —(1—e79)
S S S

00 1

The same result comes fromi(s) = /f(t) e Stdt = /e*“ dt.
0 0

4 If the Fourier transform of (¢) is defined byf(k) = [ f(t)e~***dt and f(t) = 0 for
t < 0, what is the connection betwegik) and the Laplace transfor#i(s) ?

Solution The Fourier Transform s the Laplace Transform with ik : f(k) = F(ik).
5 What is the Laplace transform®(s) of the standardamp function r(t) = ¢?

For ¢t < 0 all functions are zero. The derivative oft) is the unit stepH ().
Then multiplyingR(s) by s gives .
Solution The Laplace Transformk(s) of the Ramp Function(t) =t is
R(s) :/tefstdt: _te*St _/_6 st dt= 0_ et ¥ _ %
] S 0 ; S 52 0 S
Multiplying R(s) by s gives the Laplace transforiry s of the step function.
6 Find the Laplace transfordi(s) of eachf(t), and the poles of'(s):

@ f=1+t (b) f=tcoswt (c) f = cos(wt—0)
(d) f=cos?t e f=eZcost (f) f=tetsinwt
Solution(a) The transform of (¢) = 1 + ¢ has adouble poleats = 0:
_ —st _ —st —st _ _
F(S)—/(1+t)€ dt—/e dt-i-/te dt_g+8_2_s—2
0 0 0
Solution(b . . _ .
( ) ezwt + efzwt tezwt tefu.ot
f(t) =tcos(wt) =t 5 = + 5 transforms to
Oote(iwfs)t x tef(iwfs)t
F(s)= [ ———dt ——dt
() = [ s [
0 ) 0 0o . [e'S)
o —em ) (st —jtw + 1) n —e ) (st 4 jtw 4 1)
B 2(s — iw)? 0 2(s + iw)? 0
1 1 (s —iw)? + (s + iw)? 52 — w?

- 2(s —iw)? + 2(s +iw)?2  2(s —iw)2(s +iw)? (52 +w?)?

Poles occur at = iw ands = —iw, the two exponents of(t).
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Solution(c) f(t) = cos(wt — ) = coswtcosf +sinwtsing transforms to
s

w .
F(S) = mCOSH + msm@
Poles occur at = +iw.
Solution(d) ) )
F(t) = cos?(t) = Z(eit +emit)2 = 1(621'15 + 24 e2it)
T .
F(s) = / Z(em +e %t 4 2)e " dt
0
7 Lt 1 2 +1752+2
C A(s—2i)  4(s+2i) 25  4(s2+4) 25  s(s2+4)
. . 1 2t
Poles occur at = 0 ands = +2i. Another way is to writeos? t = H%
Solution(e) ) )
f(t) =e Pcost = —eli=2t 4 ——(42)t
2 2
L 2yt —st L _(i42)t —st
F(s) = ¢ e % dt + ¢ e~ dt
0 0
B 1 N 1 542
S 2(—i+24s)  206+2+s) (s+2)2+1
Poles occur at the exponents= —2 4 i in f(¢).
Solution(f) ; ;
— o=t i —  Sw=1)t _ © —(iw+1)t
ft) tfo sin wt 5;¢ 5;¢
Fs) = / b Gyt _ b Gty ) st gy
21 2
OOO oo
t t .
_ Y (iw—1—s)t dt — v —(iw+1+s)t dt
/ 2% / 2 ¢
0 ) 0 ) -
_ e Tt 4 (s —iw+ 1) de T 4 1 (s +iw + 1))
2(s —iw + 1) 2(s +iw+ 1) 0
Poles ofF'(s) occur ats = —1 =+ iw, the exponents of ().
7 Find the Laplace transformof f(t) = next integer aboveandf(t) = ¢ 6(¢).
A staircasef (t) = [t] = H(t) + H(t — 1) + H(t — 2) + - - - = next integer above
is a sum of step functions. The transform is
1 e % 1 e o 1 1
~ 4+ + +...:_(1+e +e _|_...):_ —
S S S S s\1—es
The differentiation ruleC(tf(t)) = —F'(s) with f(¢) = §(t) andF'(s) = 1 gives

L(t6(t)) = —%(1) = 0 (this is correct becaus&(t) is the zero functioh
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8

10

Inverse Laplace Transfomfrind the functionf (¢) from its transform&'(s) :
1 s+1 1
@ s — 2mi (b) s24+1 © (s=1)(s —2)
(d) 1/(s*+2s+10) (e) e */(s—a) (f) 2s
Solution(a) F(s) =
S

- is the transform off (t) = e2™t.
— 2Tl

S

Solution(b) F(s) = ——— + 7 is the transform of (¢) = cos ¢ + sint.
; 1 1 1 .
Solution(c) F(s) = GG Y sz 51 is the transform off () =
et — et,
Solution(d)
1 1
F - =
) 52425410  (s+1+3i)(s+1—3i)
_ i 3 i
T 6(s+ (1+3i)  6(s+ (1—30))
— o= (439t _ 2 —(1-34)t
f(t) G¢ 5e
e *sin(3t)
a 3
Solution(e) F(s) = e’
s—a
f(t)=e"=VH({t—1) = shiftof e
Solution(f) F(s) = 2s

2
£(t) = 2ds/dt

Solvey” +y = 0fromy(0) andy’(0) by expressind’ (s) as a combination of/ (s*+1)
and1/(s* + 1). Find the inverse transforg(t) from the table.

Solution v +y=0
s?Y () = sy(0) —y'(0) + Y (s) = 0
Y (s)(s* + 1) = sy(0) +y'(0)

Y(s) = y(0) (0)

The inverse transform ig(t) = y(0) cos(t) + y’(0) sin(t).

Solvey” + 3y’ + 2y = § starting fromy(0) = 0 andy’(0) = 1 by Laplace transform.
Find the poles and partial fractions fBi(s) and invert to findy(¢).

82—|—1+y s2+1

2 d
Solution The transform o% +3 d—z + 2y = 6(¢) with y(0) = 0 andy’(0) = 1is
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s2Y (s) — sy(0) — y'(0) + 3sY (s) — 3y(0) + 2Y (s) =
Y(s)(s>+3s+2)—1=1

2
Sl P § TP
Y(s) = 2 — 2

s+1 s+42

y(t) = 2e~t — 22t
11 Solve these initial-value problems by Laplace transform:
@ y' +y=e“"y(0)=8 (b) y" —y=e', y(0)=0, y (0) 0
©) y' +y=e",y(0)=2 @) y” +y=6t, y(0)=0, y'(0)=0
(€) y' —iwy=0(t),y(0)=0 (1) my"+ cy'+ky=0, y(O):Ly’(O):O
Solution(a)
y' +y=e“t with y(0) =8
sY(s) —8+4+Y(s) =

s — 1w

Y(s)(s+1) =

+ 8

1 8
— +

(s+1)(s—iw) s+1

1 1 1 8
Y(s) = —
(5) 1+iw<s—iw s—|—1>+s+1

Particular + null y(t) =

s — 1w

Y(s) =

(eiwt _ e—t) + 8e—t

1+ iw
Solution(b) y" —y =e' with y(0) =0 and y’(0) =0
s2Y(s) =Y (s) = . i 1 1
RS P T y
I S U
Ad(s+1) 4(s—1) 2(s—1)2
(t) = et et 4 tet
W= T T
Solution(c) y'+y=e"t with y(0) =2
1
sY(s) —2+Y(s) = Py
Y = ! 2

(s+1)2 + s+1
y(t) =tet + 2e¢

Solution(d)
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y" +y =6t with y(0) =y'(0) =0

6
Y (s)+Y(s) = 2
Y 241) = 0
(241D =5
6 3 3
Y(s) = — —
(s) s2 s+1i s—1i

y(t) = 6t — 3ie™ " + 3ie" = 6t — 6sint

Solution(e) y' —iwy = §(t) with y(0) =0
sY(s) —iwY(s) =1 )
Yis) = 5 — 1w
y(t) = et

Solution(f) my” + ey’ + ky = 0 with y(0) = 1 andy’(0) = 0
ms?Y (s) — msy(0) + csY (s) — cy(0) + kY (s) =0

Y (s)(ms? +cs+ k) =ms+c

;71574-0 has the form—_— +
ms?+cs+k S—81 S— 8o
We used thidvlathematicacommand to find; (¢)

Simplify[InverseLaplaceTransform[(m x s + ¢)/(m*$"2 + cx s + k), s, t]]

c+v/e2—akm )t Vo payy— V2 —akmt
e_( Zm ) (c (—1+e 2m4k ) + (1—|—e2m4k) \/02—4km>

t =
y(t) 2v/c2 — 4km
12 The transform ofet is (sI — A)~'. Compute that matrix (the transfer function)
whenA4 =[1 1; 1 1]. Compare the poles of the transform to the eigenvalued.of

Solution WhenA =[1 1;1 1] we have:

-1
-1 _|s—=1 -1 . 1 s—1 1
(sT—4) —[ -1 s—l} _32—23[ 1 s—1]'

The poles of the system ase= 2 ands = 0, the eigenvalues of.
13 If dy/dt decays exponentially, show th&lt'(s) — y(0) ass — co.
Solution oo
sY(s) = /se*“y(t) dt (integrate by parts)
0

—s dy —s ©
= /6 ta dt — [8 ty(t)]o

Y(s) =

[
:/eiSt—ydt+y(O)—>y(O) as s — oo
0 1
s+a

—0 as s —>
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14 Transform Bessel's time-varying equatigi’ +y'+ty = 0 using.Z[ty] = —dY/dsto
find a first-order equation fo®. By separating variables or by substituting
Y (s) = C/v/1 + s?, find the Laplace transform of the Bessel functjos: J,.
Solution The transform ofy " applies the,%( ) rule toy” instead ofy :
Z(t,y") = —-(ransform 0§ ") = ——(s*Y (s) - sy(0) ~ y'(0).

dy
Apply this to the transform oft— +—+ty=0

dtz  dt
dY dY
— — 2_ - —_—_— =
25Y(s) — s o +9(0) + sY (s) — y(0) 7 0
dY dY
—sY(s) — g2 — —
sY(s) = s ds ds
dY
Y(s) = —(s2+1)—
Y (s) = (52 + 1)
dY sds
Y (s) s2+1
1
logY(s) =1lo
e¥(s) =os ()

1
The transform of the Bessel solutign= Jy is Y(S)=————
15 Find the Laplace transform of a single archfdf) = sin 7.

Solution A single arch okin 7t extends fromt =0tot =1:

1

I t— t —imt— t
= /f t)e Stdt = /sm Ye Stdt = / e / e
0

0

0
1mt—st —imt—st t=1
{21 (im — s) 21(Z7T+S)L_O
17r s _1 e—iﬂ'—s -1

2i(im — s) + 2i(im + s)

B —e % -1 1 1 B e 41 S
o 2 it—s ir+s/) i w2 + 82

A faster and more direct approach: One arch of the sine cugreea withsin 7t +
unit shift of sin ¢, because those cancel after one arch.

sinmt +sin7(t — 1) = sinnwt + sinwt cosm = sinwt — sinat = 0.

16 Your acceleration’ = ¢(v* — v) depends on the velocity* of the car ahead:
(a) Find the ratio of Laplace transforms (s)/V (s).
(b) If that car has* = ¢ find your velocityv(t) starting fromw(0) = 0.

Solution(a) Take the Laplace Transform %}é = c(v* —v) assuming(0) = 0;
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V(s)(s+c¢) =cV*(s)
V*(s) s+c
Vis) ¢
Solution(b) If v*(t) = ¢t thenV*(s) = iz Therefore
s
c
Vst = 5
c
Vis) = s3 + cs?
R
Cc(s+c) cs o s2
—ct 1
o) =S — 24y
c c

17 Aline of cars has), = clvn,—1(t = T) — v, (t — T')] with vo(t) = coswt in front.
(a) Find the growth factod = 1/(1 + iwe™ /c) in oscillationv,, = A"e?.
(b) Show thatA| < 1 and the amplitudes are safely decreasingif< %
(c) If ¢T' > % show thaf A| > 1 (dangerous) for smadb. (Usesin 6 < 6.)
Human reaction time i¥' > 1 sec and human aggressivenessis 0.4/sec.

Danger is pretty close. Probably drivers adjust to be barafy.

Solution(a) ddit" = c(vp_1(t = T) —v,(t — T)) with v,, = Ae™?

iwAnewt — CAn—leiw(t—T) _ CAneiw(t—T)

Z'weu.oT

A

c
- iwT
A<1+zwe >_1

Solution(b)
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For |A] <1 we need ‘1 + Zewr) 5
C

1-% sin(wT') + s cos(wT)‘ >1
c c

w 2 w2
1— i T) Y cos?(wT) > 1
( Cbln(w )) + = cos?(wT)

2 2 2
-2 sin(wT) + w_2 sin?(wT) + — cos?(w
c c

2
- sm(wT)
c

T)>
2
w
= >1
2

2
62—2 > TW sin(wT)

w? 2w 1
Since sinwT < wT, we are safe |f— > —wT whichis T < 3

C
Solution(c) sinwT ~ wT when this number is small Then the same steps show
|A| > 1whencT > 1.
18 For f(t) = 4(¢t), the transformF'(s) = 1 is the limit of transforms of tall thin box
functionsb(t). The boxes have width— 0 and heightl /e and ared.

Inside integrals,b(t) = { (1)/6 Lc;Lgrvgvii: ¢ }approacheé(t).

Find the transfornB(s), depending o. Compute the limit ofB(s) ase — 0.
Solution We begin by finding the transform of the box:
= [ Leretane ] L1

€ S€E S€E

0
- 0 .
We take the limit ag — 0—the box approaches a delta function!

1 — eS¢
B.(s) = 111%76
— s€
. (1—SE—|—182€2—-'-)
zhm =1

19 The transform /s of the unit step functiot (7§ comes from the limit of the transforms
of short steep ramp functions(t). These ramps have slopge :

re = 1 € )
t
Tef ComputeRe(s) = / ~ e stdt + /efStdt. Lete — 0.
€
; > 1 0 €
0 €
. < t o0 —st(__ t—1 t=€ _gtt=0c0
Solution R.(s) :/—e’“ dt+/e*5t dt = {Lﬁ)} + {e ]
€ €s =0 =5 Ji=c

0 €

e (=se—1)+1 e 1—e7"¢

€s? s €s?

1—(1—se+1s2e2— ... 1
lim R(s) = lim (1 se ) =—.

€s?
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20 In Problems 18 and 19, show that the derivative of the rampction re(t)
is the box functiorb(¢). The “generalized derivative” of a step is the _ function.

Solution The generalized derivative of the short ramf) is the thin box(t)/e. We
say “generalized” because this is not a true derivative-at : the ramp has zero slope
left of ¢ = 0 and nonzero slope right ef= 0. But the transforms of. andb. follow
the rule for derivatives.
The generalized derivative of a step function wedta function.

21 What is the Laplace transform of/”’(t) when you are givenY(s) and
y(0),(0),y"(0)?
Solution The Laplace Transform af”(t) is s3Y (s) — s?y(0) — sy’(0) — y"(0)

22 The Pontryagin maximum principlsays that the optimal control is “bang-bang"—
it only takes on the extreme values permitted by the comdtaiTo go from rest at
x = 0 torest atz = 1 in minimum time, use maximum acceleratioh and

deceleration-B. At what timet do you change from the accelerator to the brake ?
(This is the fastest driving between two red lights.)

Solution The maximum principle requires full acceleratidrto an unknown time,
and then full deceleration B to reachr = 1 with zero velocity. The velocities are

v=At for t <tg
v = Aty — B(t —ty) for t > tg
Integrating the velocity = dx/dt gives the distance(t) :
x = At for t <tg
z=3At} at t =t
@ = LA 4 Ato(t — to) — LB(t — )% for t >t

At the final timeT" we reachz = 1 with velocityv = 0. This gives two equations for

to andT :
v ZAto—B(T—to)ZO

x = AtgT — At — 1B(T —t9)* =1

SubstituteI’ = +Lto(A + B) from the first equation into the second equation. This
leaves an ordinary quadratic equation to solveifor

Problem Set 8.6, page 453

1 Find the convolutiony x w and also the cyclic convolution ® w :
@wv = (1,2)andw = (2,1)

Solution(a)
Convolution:(1,2) * (2,1) l

O N =
N = O
N
| I
Il
| — |
[\ i\
-

Cyclic Convolution: {

Do =
N
—_
L —
=N
—_
I
| —
(SIS
—_
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(b)v =(1,2,3) andw = (4,5,6).

Solution(b) 1 3 07 4
2 1 0 4 13

(1,2,3) % (4,5,6) 3 21 [5]_ 28

0 3 2 6 27

|0 0 3 18

1 3 27174 31
Cyclic Convolution: 2 1 3 5 | = l 31 ]

3 2 1 6 28

2 Compute the convolutiofi, 3,1) * (2, 2_, 3) = (a,b—, ¢,d,e). To check your answer,
adda + b+ ¢+ d + e. That total should b85 sincel+3+1=5and2+2+3=7
and5 x 7= 35.

Solution 1 0 0 2
310 2 8
1 3 1 2 ] = 11
01 3 3 11
0 0 1 3

1+3+1times2+2+3is2+8+ 1141143 :(5)(7) = (35).
3 Multiply 1 + 3z + 22 times2 + 2x + 322 to find a + bz + c2? + dz® + ex*. Your
multiplication was the same as the convolutian3, 1) = (2, 2, 3) in Problem 8. When
x = 1, your multiplication shows whyl +3+ 1 =5 times2+ 2+ 3 = 7 agrees with
a+b+c+d+e=35.
Solution
(1+ 32+ 22) x (2+ 22 + 322) = 2+ 22 + 322 + 62 + 622 + 923 + 222 + 22 + 3*
=2+ 8z + 11z% + 11z + 3z*
At z = 1 thisis again(5) x (7) = (35).

4 (Deconvolution) Which vectow would you convolve withw = (1,2,3) to get
vxw = (0,1,2,3,0)? Whichv givesv ® w = (3,1,2)?

Solution v9 0 0 0
V1 Vo 0 1 1
V2 V1 o [ 2 ‘| = 2
0 Vo V1 3 3
0 0 wv 0

The first and last equation givg = v, = 0. Substituting into the second, third, fourth
equation gives; = 1. Thereforev = (0,1, 0).

1 3 2
For cyclic convolution | 2 1 3
3 2 1
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5 (@) For the periodic functionf(x) = 4 andg(z) = 2 cos z, show thatf * g is zero (the
zero function)!

Solution(a) From equation (4) we have

2m 2m
(fxg)(x) :/g(y)f(x—y)dy:4/2cosydy:4~O:O forall .
0 0
(b) In frequency spacek{space) you are multiplying the Fourier coefficients of
4 and 2cosz. Those coefficients areepy, = 4 andd;y = d_; = 1.

Therefore every produet.dy, is

Solution(b) In frequency space:{space) you are multiplying the Fourier coefficients
of 4 and2 cos z. Those coefficients ar@ = 4 andd; = d_; = 1. Therefore every
product cidy is zero These are the coefficients of the zero function.

6 For periodic functionsf = Y cxe’** andg = Y dye’**, the Fourier coefficients of
f*g are2mwegdy. Test this factoRr whenf(x) = 1 andg(z) = 1 by computingf = g
from its definition (6.4).

Solution From equation (4):
2m

2w
(F+9)@) = [ f)ata—)dy= [1-1dy =2
0 0
The same convolution ik-space hagy, = 1 anddy = 1 (all otherc,, = d;, = 0). Then
2megdy, gives the correct coefficient8f and0) of the convolutionf x g (which equals
2m).
27
7 Show by integration that the periodic convolutigrcos x cos(t — z)dx is 7 cost. In k-
0

space you are squaring Fourier coefficients = ¢, = 3 to get; and };
these are the coefficients éfcos t. The2x in Problem 8 makes cost correct.
Solution

27 2w

/cosxcos(t —z)dx = /cos:c(costcosa: +sintsinz) de = wcost + 0.

0 0

8 Explain why f * g is the same ag * f (periodic or infinite convolution).

Solution In Fourier space convolutiofi x g or f ® ¢ leads to multiplicatior d,
which is certainly the same @sc,. Sof ® g = g ® f in z-space.

9 What 3 by 3 circulant matrix C produces cyclic convolution with the vector
c = (1,2,3)? ThenCd equalsc ® d for every vectord. Computec ® d for
d=(0,1,0).

Solution The circulant matribxC =

1 3 2
21 3 ] gives cyclic convolution witl{1, 2, 3).
3 2 1

1 3 2 0 3
213H1]:M.
3 21 0 2

Whend = (0,1,0) we havec ® d = Cd =
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10 What 2 by 2 circulant matrix C' produces cyclic convolution witle = (1,1)?

11

12

Show in four ways that thi€’ is not invertible. Deconvolution is impossible.
(1) Find the determinant af. (2) Find the eigenvalues @f.
(3) Findd sothatCd = c® dis zero. (4) Fc has a zero component.

Solution The2 by 2 circulant matrixC' = { } } ] gives(1,1)®d = Cd.

(1) The determinant of this matrix is zero.
1—-A 1

1 1-A
Then(1 — )\)? = 1 and)\ = 0,2. That zero eigenvalue means that the maffiss
singular.

(2) The eigenvalues af' come fromdet =(1-XN?-1=0.

(38) Cd= { ! % ] { _i ] = { 0 } soCisnotinvertibIe:{

—1 )
1 0 ] in nullspace.

1

(4) The Fourier matri¥" givesFc = [ i _} } { } } = [ (2) ] This again shows
A =2 and0.
(a) Changé(z) xd(z —1)toa multiplication@(k:) E(k) :

The boxb(z) = {1 for 0 < z < 1} transforms tob(k) = [ e~***dz.

Ot =

The shifted delta transforms td(k) = Jo(z — 1)e ke gy,

(b) Show that your resultd is the transform of a shifted box function. This shows how
convolution withd(z — 1) shifts the box.

Solution This question shows that continuous convolution witlh — 1) produces a
shift in the box functiorb(x), just like discrete convolution with the shifted delta varct
(...,0,0,1,...) produces a one-step shift.

We computei(z — 1) = b(x) in z-space to find(x — 1), or in k-space to see the effect
on the coefficients:

b(k) =

s =1 s
e zkm:| 1—e ik
-tk |, ik

—

efikmdx _ |:

=2

2
_ —ik ) —ikx
Shifted box e~ ¢ agrees With/e*“”da: e .
ik -tk |4
1

= o

Take the Laplace transform of these equations to find thefeeafunctionG(s) :
(@) Ay" + By’ + Cy = 4(t) (b)y' =5y =4(t)  (©)2y(t) —y(t —1) =4(t)
1
. 9 o .
Solution(a) As*Y (s)+BsY (s)+CY (s) = 1gives thetransferfunctlom
1

Solution(b) sY(s) — 5Y (s) = 1 gives the transfer functiok (s) = g
5 —
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1
— e 5
13 Take the Laplace transform gf”’ = §(¢) to find Y'(s). From the Transform Table
in Section 8.5 findy(¢). You will seey” = 1 andy”” = 0. Buty(t) = 0 for
negativel, so youry”’ is actually a unit step function and yout” is actuallyd(t).
Solution y”” = § transforms ta:*Y (s) — s%y(0) — s%y’(0) — sy”(0) — y""(0) =1

- 1 t3
Assume zero initial values to getY (s) = 1 andY (s) = — andy® = G
S

Solution(c) 2Y(s) — Y (s)e™* = 1 gives the transfer functiok (s) = 5

This is also the solution t9”" = 0 with initial valuesy,y’,y"”,y" = 0,0,0, 1.

14 Solve these equations by Laplace transform to fing). Invert that transform
with the Table in Section 8.5 to recognigé).

@y’ —6y=e" y(0) =2 (b)y" + 9y =1,y(0) = y'(0) = 0.
Solution(a) The transform of’ — 6y = e~* with y(0) = 2 is
sY(s) —2—-6Y(s) = ——

s+1
2 1
Y =
) = 6t G606
2 1 1
= + —
s—6  T(s—6) T(s+1)
151
CT(s—6) T(s+1)
15 1
The inverse transform ig/(t) = 7e6t — ;e_t

Solution(b) The transform ofy” + 9y = 1 with y(0) = ’(0) = 0is
s?Y (s) + 9Y (s) = !
S

1
Y =
() s(s?2+9)
_ i _ 1 _ 1
95 18(—3i+s) 18(3i+s)
1 1 .. 1 .
The inverse transform ig(t) = — — — 3 — —¢ =3 = )
inv 9(t) = 5~ 75~ 156 = Yp + U

15 Find the Laplace transform of the shifted stét — 3) that jumps fronD to 1 at¢ = 3.
Solvey’ — ay = H(t — 3) with y(0) = 0 by finding the Laplace transforii(s) and
then its inverse transformi(t) : one part fort < 3, second part fot > 3.

Solution The transform off (¢t — 3) multipliese 3¢ by the transformt of H (¢).
y'—ay=H(=3) y(0)=0

6—33

sY(s) —aY(s) =

Yis) = 5(2—353) - ejm <s i 3 %) '

The inverse transform(t) is the shift of} (e=3* — 1) : zero untilt = 3.
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16 Solvey’ = 1 with y(0) = 4—a trivial question. Then solve this problem the slow way
by findingY (s) and inverting that transform.

Solution The trivial solution is :y = ¢ + 4. The transform method gives

1
sY(s)—4=-
s
1 4
Y(s) = = + =
(5) ==+
y(t) =t+4

17 The solutiony(t) is the convolution of the inpuf(¢) with what functiong(¢) ?
@y’ —ay = f(t) withy(0) =3

Solution(a) y' —ay = f(t) with y(0) =3
sY(s) =3 —aY(s) = F(s)

y(t) =3e~t + f(t) x e 2t
(b)y’ — (integral ofy) = f(t).
Solution(b) The transform of;’— (integral ofy) = f(t) is sY (s) — Yis) = F(s),
if y(0) =0.

. 1 .
The inverse transform of— = 28 T iS cos(it).
s — = 5% —
S

ThenY (s) = F(Sz is the transform of the convolutiof(t) = cos(it).

18 Fory’ —ay = f(t) with y(0) = 3, we could replace that initial value by addiBg(t)
to the forcing functionf(¢). Explain that sentence.

Solution For a first order equation, an initial conditi@i0) is equivalent to adding
y(0)4(t) to the equation and starting that new equation at zero.

19 Whatisd(¢t) = 6(t) ? Whatisé(t — 1) x6(t —2) ? Whatisé(t — 1) timesd(t — 2)?
Solution 4(¢) * §(t) = o(¢)
St—1)*d6(t—2)=46(t—3)
d(t — 1) timesd(t — 2) equals the zero function.
20 By Laplace transform, solvg’ = y with y(0) = 1 to find a very familiary(¢).
Solution y' =y y(0) =1
sY(s)—1=Y(s)

Y(s) = :11 gives y(t) = et.
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21

22

23

By Fourier transform as in (9), solvey” + y = box functionb(z) on0 < z < 1.
Solution The Fourier transform ofy” + y = b(z) is

1 .
2 SN Ty O
(K + 1) (k) = (k) = [ e~ da = ——.
1
0

1— e—ik
Sy — e
¥R = o
This transform must be inverted to find y(x). In reality | would solve separately on

x < 0and0 <z < 1andx > 1. Then matching at the breakpoints= 0 andx = 1
determines the free constants in the separate solutions.

There is a big difference in the solutionsgd + By’ + Cy = f(z), between the
casesB? < 4C' andB? > 4C. Solvey” +y = § andy” — y = § with y(d-00) = 0.

Solution(a) The delta function produces a unit jumpjihatz = 0:

y" +y = 0hasy = cycosx + cysinz forz < 0, y = Cysinz for z > 0.
The jump iny’ givesCy — ¢2 = 1. The condition ony(+ oo) does not apply to this
first equation.

y” —y = 0hasy = ce® forx < 0 andy = Ce ® for z > 0; theny(+ oo) = 0.
Matchingy atx = 0 givesc = C.

Jumpiny’ atz =0 gives—C —c=1soc=C = —%
Solutiony(z) = —1e® forz < 0 andy(z) = —3e * forz >0

(Reviewy Why do the constanf(t) = 1 and the unit step (¢) have the same
Laplace transform/s? Answer: Because the transform does not notice .

Solution The Laplace Transformoes not notice any values off (¢) for ¢ < 0.
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