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Complete Solutions to Exercise 5.2

1. Evaluating ar, =, (mod 8) with a=3 and =1, n, =3, r,=5, r,=7:
3(1) =3 (mod 8)

3(3)=9=1 (mod 8)

ar, =1, ar, =1, and ar, =1,.

Note that ar, =1, (mod n) with ar, =1,

2. Two different reduced residue system modulo 8:

{1, 3,5 7} and {—1, 11,13, 17}

3. We need to find the last digit of 7*""*. This means we need to work with

modulo 10 because we want to find the last digit. We need to determine x in
M =g (mod 10) where x is the least non-negative residue modulo n.
We use Euler’s Theorem (5.14):
a‘p(") =1 (mod n)
With n =10. We have ¢<10> = 4 so applying this theorem with
n =10, a =7 gives
700 — 71 =4 (mod 10) ()
Writing the index 2014 as a multiple of 4 and remainder we have
2014 = (503 x 4) + 2.
Rewriting the index 2014 of 7in 7" =z (mod 10) gives
o0t _ {02
=(7")" 7 =7 =49=9 (mod 10)
-

=1

The last digit of 77" is 9.

4. We need to find the last two digits of 13" . Since we are interested in the last

two digits so we work with modulo 100. We are required to find
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13100 = (mod 100).

where z is the least non-negative residue modulo 100.

In order to use Euler’s Theorem (5.14):
ao(") =1 (mod n)
with n =100 we must find d)(lOO). The prime decomposition of 100 is
100 = 2° x 5°.
We use formula (5.9) to find d)(lOO):

oL

by

oL

b,

1

qf)(n):n 1——

Hence

1 1
$(100) = 100[1_5][1_3 = 40.

Applying Euler’s Theorem with gb(lOO) =40, n =100 and a =13 gives

13" =1 (mod 100) (1)
Writing the index 1000 as a multiple of 40 plus any remainder:
1000 = 40 x 25 .
Therefore
1317 = 131
= (13")" =1% = 1= 01 (mod 100) By (1))
Hence the last two digits of 13" are 01.

. We are required to find the least non-negative residue z in
117 = 2 (mod 301).
In order to use Euler’s Theorem we need to first find ¢(301).

The prime factorization of 301 is

301 =7x43
Using formula (5.9) to find ¢<301):
qf)(n): n 1_i 1_i 1_i
P, p, D,

with n =301, p, =7 and p, = 43 gives

¢(301) = 301[1 - %] [1 - 4—13] =252,
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Now we are in a position to use Euler’s Theorem (5.14):
o =1 (mod n)
With a =11, n = 301:

301)

1109 = 17172 =1 (mod 301) (1)

Recall we need to find the least non-negative residue z in 11" = x(mod 301).
Writing the index 1767 as a multiple of 252 and any remainder:
1767 = (7 x 252) + 3.
We have
(rx2m2)43

1177 =11
= (11® )7 11° =11° = 1331 = 127(mod 301)

—
=1

Hence 117 = 127(m0d 301).

1000 000

6. To find the last three digits of 27 we need to work with modulo

1000. We need to find the least non-negative residue z in the following
27'"""™ = 2 (mod 1000).
We use Euler’s Theorem but to use this we need to find (b(lOOO) . Using the
result of question 7 Exercises 5.1:

o) =)
we have

6(1000) = ¢(10") = 10" x ¢ (10) = 100 x 4 = 400.

Using Euler’s Theorem:

a¢(") =1 (mod n)
With ¢(1000) =400, a =27 and n = 1000 gives

27" =1 (mod 1000) (+*)
Writing the index 1 000 000 as a multiple of 400 and any remainder;
1 000 000 = 2500 x 400 .

Therefore

o7 000000 _ om2500x400 (27400 )2500 =1 (mod 1000) [By (**)]

1000 000

The last three digits of 27 are 001.



Complete Solutions 5.2 Page 4 of 15

7. In each case we use Euler’s Theorem to find the multiplicative inverse.
(a) We are required to solve 7z = 33 (mod 50) . One way to solve this is to

find the inverse of 7 modulo 50 for which we can use Euler’s Theorem:

ao(") =1 (mod n)
Recall we can only use this theorem if the gcd(a, n) =1.

Since ged (7, 50) =1 so we can use this result.

First we need to find gb(50). The prime factorization of 50 is

50 = 2x5°
By applying (5.9):
(b(n):n T | PR o P
p, b, p,

to find ¢(50) gives
1 1
¢(50) = 50[1—5][1 —g] =20.
Using Euler’s Theorem with a =7, n =50 we have
7 =7 =1 (mod 50).
We can rewrite the index 20 as 1941:
7 =7(7") =1 (mod 50).
Hence 7" (mod 50) is the inverse of 7 (mod 50). We need to find
7" (mod 50). Evaluating a simpler power of 7;
7' =49 = ~1(mod 50) (1)

2><9

9
Using this 77 = —1 (mod 50) o evaluate 7" (mod 50)
=

) =-T7T=43 (mod 50)
By (1)

Therefore 43 (mod 50) is the inverse of 7 (mod 50). Multiplying both sides of
the given equation 7z = 33 (mod 50) by 43 gives

A3x Tz =43%x33 =19 (mod50).
—

=1

Our solution to 7x = 33 (mod 50) is =19 (mod 50) .
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(b)  We need to solve the linear congruence 13z = 51 (mod 100) . Since

gcd(l?), 100) =1 so we can use Euler’s Theorem. In order to use this we need
to find d)(lOO) which we have evaluated many times:
¢(100) = 40.
Substituting ¢ =13, n =100 and gb(lOO) =40 into
a¢<") =1 (mod n)
gives
13" =1 (mod 100) .
What is the inverse of 13 (mod 100) ¢
13% (mod 100) because
13" =13" x13 =1 (mod 100).
We need to find the least non-negative residue of 13* (mod 100). Evaluating
some simple powers of 13:
13" =169 = 68, 13" = 2197 = 97 = —3 (mod 100 (%)
We use the last result 13° = — (mod 100) because —3 is a small number to

find powers of. Remember we have to evaluate 13 (mod 100) so writing this
index 39 as a multiple of 3:

139 = 1355 = (133)13 (~3)" = —1594323 = 23 (mod 100).
*)

The inverse of 13 (mod 100) is —23 (mod 100). Multiplying both sides of the

il

By

>
—

given equation 13z = 51 (mod 100) by —23 gives

_23x13z=-23x5l=—1173 = —73 = 27 (mod 100).

=1

Therefore, the solution is z = 27 (mod 100).
(c) The given equation is 13z = 52 (mod 100). Similarly we have the

answer r =4 (mod 100).

(We can solve each of these congruences by solving the equivalent Diophantine

equations.)
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8. How do we solve 15x = b]. (mod 32) ?
We need to find the inverse of 15 (mod 32) . We can use Euler’s Theorem to

find this inverse. To apply Euler’s Theorem, we need to find ¢(32):
6(32) = 32[1—%] = 16.
By Euler’s Theorem with a =15, n = 32 and gz5<32> =16 we have
15 = 15" =1 (mod 32
Therefore, the inverse of 15 (mod 32) is 15" (mod 32) because
15" =15(15" ) =1 (mod 32).
We need to find 15" (mod 32). Finding some simple powers of 15:
15" = 225 =1 (mod 32 (%)

Therefore

17 %15 = 15(mod 32).

4 X 7
15 = 1577 = (152) %15
*)

{l

By

=
—

Multiplying both sides of the 15z = bj (mod 32) by 15 gives

15x 152 =15xb, (mod 32).

=1

Therefore
z, =15 xb, (mod 32| (%)
Substituting b, =5, 7, 9, 11 and 13 into (**) yields
7, =15%5 =11 (mod 32)

7, =15x7 =105 = 9 (mod 32

7, =15x9 =135 =T (mod 32

7, =15x11 =165 = 5 (mod 32)

z, =15x13 =195 = 3 (mod 32
Note that the advantage of finding the inverse of 15 (mod 32) is that you can

solve 15z, = b]. (mod 32) for different values of b; in one go.
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9. How do we prove that n ‘ 99---99 where there are gb(n) number of 9’s in
99...-99 ¢
Since we are given that ged (n, 10) =1 so we can use Euler’s Theorem.

Proof.

Using FEuler’s Theorem with a =10 gives

10&(") =1 (mod n) which implies 10®(") —-1=0 (mod n) .

As 10¢(") —-1=0 (mod n) therefore n

(100(”’) — 1). What does 109(") represent?

1 followed by gb(n) zeros. We have
10" ~1=100--00 1= 99.--99 .
—

-
There are c)(n) There are c)(n)
ZETos. nines.

Son

(100(") _ 1) implies n ‘ 99---99 where there are gb(n) 9’s.

10. We need to show that o’ =1 (mod p") provided p/a .

Proof.

We are given that p y a so gcd(p, a) =1. Why?

Because by question 3 of Exercise 2.1 we have

Let p be prime and it does not divide a then gecd (p, a) =1.
We also have
gcd(p”, a) =1.

Why?

Because gcd(p, a) =1 and the only divisors of p" are 1 and p, p°, -, p".

The integer a does not have prime p in its prime factorization.

As we have gcd( p", a) =1 therefore we can apply Euler’s Theorem (5.14):
ac&(m) =1 (mod m)

With m = p". By Proposition (5.4) of the last section:
(") =p" —p""

We have ¢(p”> = p" — p"". Substituting this into Euler’s Theorem we have

a(p(p”) =g’ " =1 (mod p").
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We have our required result.

n
11. The given statement a o{o() =1 (mod n) is false. Consider the following;:
Let n =5 and a = 3 then gcd(?), )—1 and
3% = g1 = (mod 5) :
However
310 = 3 = 3 = 9 = 4 (mod 5)
12. (a) Proof.
Since we are given that gcd(a, n) =1s0a’ (mod n) exists. By Euler’s
Theorem we have
o = l(mod n)
a(a¢(71)1) = 1(m0d n) [By rules of indices]
By the definition of inverse of @ modulo n we have
ol = o (mod n)
This completes our proof.
[

(b) Proof.
Substitute z = bac&(n)f1 (mod n) into the given equation:

¢(n)71

axr = aba = a(“b(")flﬂb = a¢(n)b (mod n) .

By Euler’s Theorem we have
o =1 (mod n)
Putting this into the right-hand term in the above yields
o™ =(1)b = b (mod n).
Since z = ba”" (mod n) satisfies ax = b (mod n) so it is the solution. This is

our required result.

13. (i) Using the multiplicative property of ¢ and (b( p) = p—1 we have
¢(n) = gb(pxg) — ¢(3><23) - ¢<3)><¢(23> —2%22 = 44.
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(i) The factorization of 44 = 2° x 11. Therefore

gcd(3, 44) - gcd(3, 92 % 11) —1.
We need to find 3™ (mod gb(n)) This means we have to determine

37! (mod 44).
Since gcd (3, 44) =1 so by Euler’s theorem we have
3" =1 (mod 44).
Now ¢(44) = ¢>(4) X d)(ll) = 2x 10 = 20. Substituting this into the above
yields
3 =1(mod 44) = 3(3")=1(mod 44).
Hence the inverse of 3 modulo 44 is given by
37 = 3" (mod 44) (*)

Evaluating powers of 3 gives

3' =27, 3' =81 =7 (mod 4.
Using the last power to evaluate (*) gives

39 = (3') 3" =(~7) x27 = 49" x27 =5 x27 = 675 = 15 mod 44]

Putting this into (*) yields 37 = 3" = 15<m0d 44).

14. We need to prove m¢(n) + na(m) =1 (mod mn) given that gecd (m, n) =1.
Proof.

~—

Since we are given that ged (m, n) =1 so by Euler’s Theorem we have

mqﬁ(n) =1 (mod n)
nc&(m) =1 (mod m)
We have two simultaneous congruences so we can use the Chinese Remainder

Theorem:

(3.23) r=aNz +aNzx +aN7z, ++aNm

272772

Given r = q, (mod nl), T = a, (mod nQ) the solution of this is
r=aNz +a,Nz, (mod n1n2) (*)
We use this result with z =1, a = mé("), a, = né(m), n,=n and n, =m.

Substituting these into (*) gives
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mc&(")NlaU1 + 7L®<m>]\72:c2 =1 (mod mn) ()
nxm .
Remember N, = = m and similarly N, =n. The T, 's are the
n .

multiplicative inverse of N E
Nz =mz =1 (mod n) implies mz, = kn +1
Ny, =nz, =1 (mod m) implies nz, =Im +1
Substituting these, Nz, = kn +1 and N,z, =Im +1 into (**) gives
mqﬁ(n)le1 + n(/)(m)NQ:UQ = mé(n) (kn + 1) + n©(7n) (Zm + 1) =1 (mod mn)
Expanding out gives
mo(n) (/m + 1) + nqﬁ(m) (lm + 1) = ma(")kn + m¢(”) + na(m)lm + nqﬁ(m)
=k (mo(n)n) + l(no(m)m) + mfp(n) + nQ(m)

=0 (mod mn) =0 (mod mn)

= ma(n) + n¢(m) =1 (mod mn)
Hence we have our required result

mc&(") + na(m) =1 (mod mn)

15. We need to prove p* ' +¢" " =1 (mod pq).
Proof.
Since p and ¢ are distinct primes so gcd( P, q) = 1. Using the result of the
previous question;
mc&(") + na(m) =1 (mod mn) .
with m = p and n = ¢ we have:
" +¢" =1 (mod pg) (1)
As p and ¢ are prime so using Proposition (5.2):
If ris prime then (b(r) =r—1.
to find (b(p) and gb(q) gives
<b(p)=p—1 and ¢(q)=q—1-
Substituting this into () yields
P =y g =1 (mod pg).

This completes our proof.
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16. Since gcd(a, 16) =1 so we can use Euler’s Theorem:
a¢<m) =1 (mod m)
With m =16:
o =1 (mod 16) ()

What is ¢(16) equal to?
We worked this out in section A;

¢(16):¢(24):24 ~2°=16-8=8.
Substituting this into (*) gives

o =g =1 (mod 16).

We need to find the inverse of ¢’ modulo 16. Rewriting the index 8 as 5+3

we have
o =ad*P =4’ (a5> =1 (mod 16).

Hence the inverse of ¢® modulo 16 is a’ (mod 16).

17. We use proof by contradiction.
Proof.

Let r € {7", T,
J 1

b Ty o 7})(”)} then r; has an inverse because it is in the

3
reduced residue system. Suppose rj_l =7 (mod n) where 7, is not in the
reduced residue system. By the definition of the reduced residue system we
have gcd(rk, n) =g >1. We have

rjflrk =1 = (rj’l> = 1(m0d n)
By Proposition (3.16) of chapter 3:

ar = b (mod n) has ¢ solutions provided g ‘ b where g = gcd(a, n)

We can only have r, (r,_l) = l(mod n) provided g ‘ 1 which is impossible

J

because from above we have g > 1.
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18. We are required to prove that

r

| =1 or -1 (mod n) where {r T 7})(”,)} is a

TOXT, X Ty X o XT 5

@(n
reduced residue system modulo n.

Proof.

T

We are given that {r, y ey T is a reduced residue system modulo n,
1 3 o(n)

29

so each of these numbers are relatively prime to n. Why?

Because by the Definition (5.11) of the reduced residue system we have
gcd(ri, n) =1forall e=12, 3, -, ¢(n)

Each r, must have an inverse modulo n because it is relatively prime to n.

The inverse of  must belong to the reduced residue system by

gcd(ri, n) = 1. Hence the inverse of 7 modulo n must be an element in

{rl’ 7’2, 7’3, T ro(n)}'

Let z = TOX T, X Ty X e X r(b(n). Note that in this list of reduced residues we

have both r and n—r. Why?
We consider two cases: 1) r has a self inverse 2) 7 does not have self
inverse.
If r has a self inverse then multiply this by n —r and we have
Q(n—q)zn(—n)z —r? = —1(m0d n)
If r does not have self inverse then there is another reduced residue T where
i = j which is its inverse. This means you can pair up 7. with its inverse T to
get
X, El(mod n)

Therefore the product of all the reduced residues

TOX T, X7y X e ><r¢<n) = (—1)k (mod n)

where k is the number of self inverses divided by 2.

This completes our proof.

(ii) Wilson’s Theorem (4.4) is the following:
If p is prime, then (p — 1)! = —1(modp).
Proof.
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We use the result of part (i). Since p is prime so our reduced residues system
is given by {1, 2, 3, -+, p— 1}. By part (i) we have
1x2x3% - x(p—1)=(-1) (mod p).

where k is the number of self inverses divided by 2. Modulo p has two residues

which have self-inverses and these are 1 and p —1. Why?
By Lemma (4.3):
=1 (modp) & r=+1 (modp)
Therefore & =1 which gives
(p—1)1=1x2x3x - x(p-1)=(-1) = —1(mod p).

This completes our proof.

19. We need to find the last three digits of 2019 . For the last three
digits we need to work with modulo 1000. We need to find the least positive

residue z which satisfies 2019*"" = x(mod 1000). Since the
ged (2019, 1000) =1 so we can apply Euler’s Theorem. First we note that
$(1000) = 400 . Therefore
2019" =1 (mod 1000) (%)
We need to write the index 2019”" as a multiple of 400 and any remainder.
Again we can use Euler’s Theorem to find this. However we have
2019 = 19 (mod 400).

Therefore we have to find

20192 = 19" = y(mod 400) (1)
and ¢(400) =160 so

19" = 1(m0d 400) (**)
Applying the division algorithm to index 2019 and 160 gives
2019 = (12 x 160) + 99.

Using this calculation in 19*"" =y (mod 400) gives

19219 = 19110089 (19“”“)12 19" =

1 x19" =19" = y(mod 400).
By (**

y (*%)
Modulo 400 is too large to work with. We factorize 400:
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400 =16x25.
To find the above 19% = y(mod 400) we use moduli 16 and 25:

197 =y, (mod 16), 19" =y, (mod 25).
Evaluating the first of these 19” =y, (mod 16):

y, =197 = 37 = 37 = (34)24 x 3° 3 =27 = 11(mod 16).

all

By 3*=1{mod 16
Now evaluating the other residue 19" =y, (mod 25). Since gcd(19, 25) =1 so
we can apply Euler’s Theorem to this by first evaluating ¢ (25) =5 —-5=20.
Writing the index 99 as a multiple of 20 and any remainder gives
99 = (5x20) 1.

By Euler’s theorem we have
g, = 19" =107 = (19%) x19°!

=1"x19"

=197 =(~6) =4[mod 25) |Because —6x4 = —24=1(mod 25)
Summarizing these results 19” = ll(mod 16) and 19% = 4(mod 25). Applying
the Chinese Remainder Theorem to these two results gives

19” = (al X N, % xl> + <a2 X N, X xQ)
= (4x16x 7, +(11x25x7,) (mod 25 x16) (1)
Solving
162, =1(mod 25) = 2, =11(mod 25)
25z, = 1(m0d 11) = 1, = 9(mod 16)
Substituting these into (T) yields
19" = (4x16x11) + (11x 25 x 9) = 379 (mod 400).

Putting this into (1) gives

y = 20197 =19 =19% = 379(m0d 400).
Therefore, we have

¢ = 201929 = 901970 = 9019% = 197 (mod 1000)

It is still pretty difficult to evaluate x = 20197 = 19° (mod 1000) because

of the large index. However this is much easier than dealing with the index

2019*"" which has 6674 digits.
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Again modulo 1000 is too large to work with so we again use the Chinese
Remainder Theorem by factorizing 1000 first; 1000 = 8 x 125. Both these

moduli, 8 and 125, are much easier to work with. We need to evaluate
19" = n, (mod 8), 19" = n, (mod 125).
Applying Euler’s Theorem with ¢(8> =450 19'=3"'= l(mod 8) . Hence
n, = 19" =3"x3* =3 =27 = B(mod 8) where £ is an integer.
Now evaluating n, we have ¢<125> =125—-25=100 so 19" = 1(mod 125).
Therefore
n, =19™ = 19" (mod 125)
We still have a reasonable large index and modulo but let us preserve with
this. By using a calculator we find that 19° = 6(m0d 125) . Using this in the
above calculation gives
n, = 197 = 19(6X13)+1
= (19°)" %19 = 6" x19 = 6° (6 x 19) = 31* (114) = 54 (mod 125)
Summarizing these two calculations we have

19" = 3(mod 8) and 19" = 54(mod 125).
Now using the Chinese Remainder Theorem we have
19°" = (al XN, ><x1> + (a2 X N, x xQ)
= (3x125x 3, ) + (54 x8xz,) (mod 125 x8) (11
To find z, and x, we need to solve the following:
125z, = 1(mod 8) = I, =5 (mod 8)
8z, =1(mod 125) = =, = 47 (mod 125)
Substituting these into (1) gives
197 = (3x125x 5) + (54 x 8 x 47) = 179 (mod 1000) .
Hence, we have x = 2019 = 19°™ =179 (mod 1000). The last three digits

of 20192 is 179.



