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Complete Solutions to Supplementary Problems 1

1. We need to find ged (69, 161). We can use the Euclidean algorithm to find this:
161 = (2 69) +[23]
69 = (3x23)+0
Hence gecd (69, 161) = 23 . Factorizing each of these integers 69 and 161 into

multiples of 23 we have
69 =3 x23 and 161 =7x23

161 Tx25 7

Simplifying the given fraction — = = —.
plitying g 69 2 26{ 3

2. (i) First we need to find the ged (57, 76) . Applying the Euclidean algorithm we

have

76 = (1 57) +[19] (*)

57 = (3x19)+0
Therefore ged (57, 76) =19. Now we need to solve the Diophantine equation
572 + 76y = ged (57, 76)=19 (1)
Rearranging (*) to make 19 the subject gives
19 =76 — (57 x1) = (76 x 1) + (57 x (1))
From the last line we have z = —1, y =1 as a solution to 57z + 76y = 19.
(ii) We need to solve the given equation 57z + 76y = 95. Note that

95 =5x19
By part (i) we already have the solution for 19. Multiplying (}) by 5 gives

5[(76x1) +(57 x(—l))} —5%19
(76x5)+ (57 x (~5)) = 95

Hence © = —5, y =5 is a solution to 57x + 76y = 95.

3. (a) We need to solve 63z + 99y = ged (63, 99). Using the Euclidean algorithm to

find the ged we have
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99 = (1x 63) + 36
63 = (1 36) + 27
36 = (1x27) +[9]
27 =(3x9)+0

Therefore ged (63, 99) =9 and we need to find x and y which satisfy

63z +99y =9
Using the first calculation backwards:
9=236-27
= 36 — (63 — 36)
=(2x36)— 63

= (2[99 - 63]) - 63

= (2x99) — (3% 63) = 99(2) + 63(—3)
Since 99 (2) + 63 (—3) =9 =gcd (99, 63) so an integer solution is * = -3, y=2.
(b) This time we need to solve 2014z + 2015y = gcd(2014, 2015). Similarly, we

have

2015 = (1x 2014) + 1
Therefore gcd(2014, 2015) — 1. Hence
2015 — 2014 = 2015 (1) + 2014 (—1) = 1
Our solution is z = -1, y =1.
(c) (i) We are asked to solve 2015z + 39y = ged (2015, 39). Determining the ged

by applying the Euclidean algorithm:
2015 = (51 % 39) + 26

39:(1><26)+

26 = (2x13)+0
We have ged (2015, 39) =13. We need to solve the equation 2015z + 39y = 13.
Retracing our footsteps in the above calculation yields:
13 = 39— 26 = 39 — 2015 — (51 39)
= 52(39) — 2015
Rewriting the last line as 39 (52) + 2015(—1) =13. Hence z =—1, y =52.
(ii) Now we need to find solutions to

20152 + 39y = — ged (2015, 39)
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Multiplying the calculation in part (i), 39 (52) + 2015(—1) =13, by —1 gives
~[39(52) +2015(~1)| = 13
39(—52)+2015(1) = —13
Therefore x =1, y = —52.

(a) Applying the division algorithm to a = 37, b =4 gives
37 =(9x4)+1
The quotient is 9 and remainder is 1.
(b) This time let a = —1007 and b = 20. Remember the remainder r > 0. Using a
calculator we have —51x 20 = —1020. Since we want a = —1007 so
a = —1007 = (~51x20) +13
The quotient is —51 and remainder is 13.

(c) We need to find the quotient and remainder of —1 000 001 divided by 999.

Again using a calculator we have
—1002 x 999 = —1 000 998

Adding 997 to this gives
(—1002 X 999) +997 = —1 000 998 + 997 = —1 000 001

Therefore, the quotient is —1002 and remainder 997.

(a) The divisors of 100 are {il, +92 +4, 45 410,420,425 450, + 100}.

(b) Same answer as part (a).

(c) The divisors of 200 are the divisors of 100 because 100 goes into 200 and +200

{:l:l, +92 44, +5 +10, 420, +25 +50, +100, iQOO}

(a) Since 6 x11 =66 so 6 ‘ 66. The given statement is true.

(b) As 6 x0 =0 therefore 6 ‘ 0 is true.
(c) Clearly 7/17 SO 7‘ 17 is false.
(d) Since 7x14 =98 so 7‘ 98 which implies 7/98 is false.

(e) The statement 0 ‘ 7 is false because every number multiplied by zero gives

zero so cannot get 7. False.



7.
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Can we find integers such that a‘ be but a/b and a/c ¢

Yes. An example is 54 = 9x 6 and 27‘ <9><6) but 27/9 and 27/6.

Two integers a and b are relatively prime if ged (a, b) =1.

We are asked to show that b ‘ (n5 — n) How?

Use mathematical induction.

Step 1:

Clearly the result is true for n =1 because

5‘(15—1) N 5‘0

Step 2:
Assume the result is true for n = k:
s|(w-k) ¢
Step 3:
Required to prove the result is true for n =k + 1. We need to show that
5 ((k+1)" - 1+ 1) (%)

Expanding (k + 1)5 — (k - 1) by using the binomial expansion (1.37) on (k - 1)5
and then subtracting k£ + 1 gives
(k+1) = (k+1) = (k* +5k" + 10" + 10K + 5k +1) — (k + 1)
=k” +5k" +10k° +10k* + 5k +1—k —1
= (K" = k) + 5K* + 10K + 10k + 5k
5m by (*)

:5m+5k4+10k3+10k2+5k=5[m+k4+2k3+2k2+k:

Therefore 5

[(k + 1>5 — (k‘ + 1)] By mathematical induction we have our result.

(You can also show that n and n’ give the same remainder when dividing them by

5, that is why 5 divides their difference.)

Proof.

Let n be any integer. By the Division Algorithm we have
n="79+r 0<r<7
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We examine the cube of this number n® by using the binomial formula:

(1.37) ([a+b) =Ca" +C, " b+C, 0" +C, 0" b +..+Cp"

3

We have

\ )

n’ = (7q + 7’)3 = (7q)3 + 3(7(])2 + 3(7q) +r°=Tm+7r" where 0<r <7
Tm

Remember the remainder r can only take values 0, 1, 2, 3, 4, 5 and 6. Finding the
cube of each of these numbers and letting r' represent the remainder gives

0° =0, r'=0

1’ =1, r'=1

2 =8=(1x7)-1, r'=-1

3 :27:(4><7)—1, r'=—1

£ =64=(9x7)+1, r'=1

5 =125 =(18x7)-1, r'=-1

6° =216 =(31x7)-1, r'=-1
r® can only have remainder values 0, 1 and —1 after dividing by 7. Hence the

cube of any integer has the form 7kor 7k £+ 1.

11. The given statement a ‘ b and b ‘ a implies a = b is false because

5‘—5 and —5‘5but 54 5.

12. The given statement a /~/ b and a‘ bc = a‘ ¢ is false because

8/12 and 8‘(12><4> but 8J/4

It is true if a and b are relatively prime, that is
ged (a, b) =1
This is Euclid’s Lemma (1.13).

13. We are asked to prove d‘ a and d‘ b then d ‘ ab.
Proof.
We are given d ‘ a and d ‘ b so there are integers = and y such that
dr=a and dy =0>
Multiplying these together gives



14.

15.

16.
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de x dy = d*zy = ab.
Since d’zy = ab so by the definition of divisibility we have
d’| ab

This completes our proof.

We need to prove that fourth power of an odd integer is of the form 16k +1.
Proof.
Let n be an odd integer. By the division algorithm we can write
n=4q+r where 0<r <4 (*)
Taking the fourth power of this number (using binomial) yields

n' = (4q + 7“)4 = <4q)4 + 4(4(])3 r 4+ 6(4(])2 r’ +4 (4q)r3‘ + 7

=16m

=16m + '
Since we are considering an odd integer so the remainder r in (*) can only be
r=1or r=3.1If r =1 then clearly we have our result. Putting » = 3 into the
above calculation gives
n' :(4(]—|—7“>4 =16m + 3' = 16m + 81

:16m+(5><16)+1
:16(m+5)+1:16k+1 where k = m + 5

Hence the fourth power of an odd integer is of the form 16k 4 1.

We need to show that there are no integer solutions to 6x 4+ 30y = 4. First, we

find the ged of 6 and 30:
gcd(6, 30) —6
Since the right-hand side of the given equation is not a multiple of 6 so there are

no integer solutions to the equation.

Clearly —2 ‘ 4 but ged must be positive (by definition). Therefore

gcd(—2, 4) =2 not —2.
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17. The error is in step B because we have omitted the binomial coefficients in the

expansion of 4¢ + r. It should be

<4q + 7“)4 = (4q)4 + 4<4q)3 r—+ 6(4(])2 r* +4 (4qr3) + 7

18. We are asked to find gcd(l 000 001, 1122 211). We apply the Euclidean
algorithm:
1122211 = (1 %1000 001) £122 210
1000 001 = (8 %122 210) 1922321
122 210 = (5 X 22 321) +10 605
99 321 = (2 %10 605) +1111

10 605 = (9 x 1111) + 606
1111 = (1x 606) + 505

606 = (1><505)+

505 = (5x101)+0
Hence ged (1 000 001, 1122 211) —101.

(ii) By Proposition (1.10) part (ii):

The gcd(a, b) = g is the least positive integer value of ma + nb where m and n

range over all the integers.

We have the smallest positive integer of 1 000 001z + 1122 211y is 101 because by
part (i) we have gcd(l 000 001, 1122 211) =101.
(iii) We are asked to find to solve 1 000 001z + 1122 211y = 202. Note that

202 = 2x101. Using the Euclidean algorithm derivation in part (i) backwards we

have



19.

20.
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101 = 606 — 505

= 606 — 1111 — (1x 606)|

=2(606) — 1111

(10 605 — (9% 1111)) 1111

=2(10605) — 19(1111)
~ 2(10605) 19[22 321~ (210 605)}
= 40(10605) — 19[22 321]
- 40[122 210 — (5% 22 321)] —19[22 321
- 40[122 210} - 219[22 321]
= 40[122 210| - 219[1 000 001 — (8 x 122 210)}
- 1792[122 210] - 219[1 000 001}
= 1792[1 122 211 — (1x1 000 001)] — 2191000 001]
- 1792[1 122 211] - 2011[1 000 001]

We have 1792{1 122 211} — 2011[1 000 001} =101 which we can rewrite as
1122 211[1792] + 1 000 001[—2011] = 101
For the equation 1 000 001z + 1122 211y = 101 we have the solution
T, = —2011 and y, = 1792
Since we are given 1 000 001z 41122 211y = 202 =2 x 101 so our solution is
x=-2011x2=—-4022 and y =1792x 2 = 3584

Proof.
By Proposition (1.17):

The Diophantine equation ax + by = ¢ has integer solutions < g| c.

We are given gcd(a, b) =1and 1 ‘ ¢ so ax + by = ¢ has integer solutions.

We are asked to find the general solution of 2014z 4 2015y = 2016 . Since
gcd(2014, 2015) =1

By the result of the previous question we have integer solutions. We can first solve

2014z + 2015y = 1
An integer solution to this is z, = —1, y = 1. Now using Corollary (1.19):

All solutions of ax 4+ by = ¢ are given by
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r=ux,+bt and y =y, —at
In our case a = 2014 and b = 2015. Substituting r, = —1, y, =1, a = 2014,
b =2015 into z =z, + bt and y =y, —at gives
x=—1+2015t =2015¢ —1 and y =1 —2014¢
where t is any integer.
A particular solution for ¢t =1 is
z=(2015x1)—1=2014 and y = 1— (2014 x 1) = —2013.
We have r = 2014 and y = —2013.

. Let fbe the number of fish sold and ¢ be the number of portions of chips sold. We

have the Diophantine equation
2.80f + 0.9¢ = 200
Multiplying this equation by 10 yields
28f 4+ 9c¢ = 2000 (1)
We need to find the ged (28, 9) by using the Euclidean algorithm:
28 =(3x9)+1
Hence ged (28, 9) = 1. By using the above calculation we can find the solution to
28f4+9c=1 (1)
Rearranging 28 = (3 X 9) +1 gives 28 — (3 X 9) =28 (1) + 9(—3) = 1. Equation ()
has the solution f'=1 ¢'= —3. Multiplying this by 2000 gives the solutions
fi = 1x2000 = 2000, ¢, = —3x2000 = —6000 to equation (1).
Applying Corollary (1.19):
All solutions of af 4+ bc = d are given by
J=1J +bt and c=¢, —at.
With f = 2000, ¢, =—6000, a =28, b=09:
f=2000+ 9¢ and ¢ = —6000 — 28t

The number of portion of chips sold cannot be negative so we must have

c=—6000—-28t>0 <« —28{>6000 < tg—%g():—QMQS

We also cannot have negative number of fish sold. Therefore
f=2000+9>0 < 9t>-2000 & > —@ = —222.22

Combining these two inequalities, t < —214.28 and ¢t > —222.22, gives
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—222.22 <t <-—214.28
We are dealing with integers so the only values ¢ can take are
t =—-215, —216, —217, —218, —219, —220, —221 and —222

(i) The largest feasible value for tis —215. Substituting ¢ = —215 into
f =2000+ 9¢ and ¢ = —6000 — 28t

gives f = 2000+ 9¢ = 2000 +[9x (~215)| = 65 and

¢ = —6000 — 28t = —6000 — |28 x (~215) = 20
The least portion of chips sold is 20.
(ii) The smallest feasible value for ¢ = —222 . Substituting this into the above
gives

f = 2000 + 9t = 2000 + |9 x (—222)] = 2
¢ = 6000 — 28t = —6000 — |28 x (~222)| = 216

The largest portion of chips sold are 216.

. We are asked to prove that if a/c but a ‘ (bc) then gcd(a, b) >1.

Proof.
This is straightforward because it is contrapositive statement of Euclid’s Lemma
(1.13):

If a‘ (bc) with gcd(a, b) =1 then a‘ c.
Recall the contrapositive of this says if a /~/ ¢ and a ‘ (bc) then gcd(a, b) =1

which implies that gcd(a, b) > 1 because by the definition of gcd (a, b) >1.

. We are asked to prove a" ‘ b" implies a | b.
Proof.

Suppose a / b . Therefore, for every integer x we have ax = b. This implies that

for every integer y we have a"y = " which in turn implies a" /~/ b" . This is a

contradiction because we are given a" ‘ b" . Hence

n

a

b" implies a,‘ b.

This completes our proof.
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24. We are asked to prove the following:
If | (b xb, %+ xb,) and

ged (a, bl) = gcd(a, bz) =... = ged (a, bn_l) =1 (pairwise prime)
Then a ‘ b .

How do we prove this?
By applying mathematical induction.
Proof.

For the base case n =2 we have our result by Euclid’s Lemma (1.13):

If x‘ (yxz) with gcd(:p, y)zl then :L" Z.

That is a ‘ <b1 X b2> and gecd (a, b1) =1 implies that a | 0, .
Assume the result is true for n = % ;
I | (b xb,x+xb,) and
ged (a, bl) = gcd(a, bz) =...=ged (a, bk_1> =1 (pairwise prime)
Then a | b

.
Consider the case n =k +1. We need to show that:
If | (b xb,x+xb, xb,,,) and

gcd(a, b1>:gcd(a, bQ):---:gcd(a, b

k) =1 (pairwise prime).

Then a | b

k+1 "

From the result of question 15(ii) Exercises 1.3 we have
ged(a, b xb,x-xb)=1.
From a‘ <b1 Xb, X+ Xb, ><bk+1) we have
al (b b, x| x,, ).
Applying Euclid’s Lemma on this with ged (a, b, xb, X% bk) =1 gives

b

a k+1 "

Hence by mathematical induction we have our result;

I | (b xb,x+xb,) and

ged (a, bl) = gcd(a, b2) =...=gcd (a, bnq) =1 (pairwise prime).



Then a ‘ b . This completes our proof.
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