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Complete Solution to Exercises 3.3

1. (a) We are given the matrices
1 0 0 1

 and
0 1 1 0

   
    
   

A B and the matrix A is not a

multiple of matrix B therefore the matrices are linearly independent.

(b) What do you notice about given matrices
1 1 2 2

1 1 2 2
 and

   
    
   

A B ?

Matrix B is twice matrix A, that is 2B A or 2 B A O which means that the matrices
are linearly dependent.

(c) Matrices
1 2 2 2

 and
3 4 2 2

   
    
   

A B are not multiples of each other therefore they

are linearly independent.

(d) Can you spot a relationship between
1 2 2 / 5 4 / 5

3 4 6 / 5 8 / 5
 and

   
    
   

A B ?

2

5
B A or

2

5
 B A O . Since we can produce the zero vector with non-zero scalars, 1

and
2

5
 , therefore the given vectors are linearly dependent.

2. (a) We are given the functions  2 21   and   2 1x x x    f g . What do you notice

about these functions?

 2 21 2 1x x x   
This means that we have

   
 

2 2

2 2

1 2 1 0

        Because  1   and   2 1

x x x

x x x

    

        f g O f g

Hence f and g are linearly dependent.
(b) Using scalars k and c we have

  2 2 0k c k cx   f g ($)

Substituting 0x  into ($) gives  22 0 2 0 0k c k k     . Substituting 1x  into

($) gives  22 1 2 0 because 0  therefore 0k c k c k c      .

Hence 0k  and 0c  that is all (both) scalars are zero therefore we conclude that the
given functions 22  and x f g are linearly independent.
(c)  Using scalars k and c we have

  1 0xk c k ce   f g

Substituting 0x  and 1x  gives the simultaneous equations
0

0

k c

k ce

 
 

Solving these simultaneous equations gives 0k  and 0c  .
All (both) scalars are zero therefore we conclude that the given functions

1  and xe f g are linearly independent.
(d) Using scalars k and c we have

    cos sin 0k c k x c x   f g (*)
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Substituting 0x  into (*)

   
1 0

cos 0 sin 0 0 gives 0k c k

 

  
 

Substituting
2

x

 into (*)

0 1

cos sin 0 gives 0
2 2

k c c
 

 

        
    

Hence 0k  and 0c  . Both scalars are zero therefore the given functions

   cos   and   sinx x f g

are linearly independent.
[Showing  cos x and  sin x are linearly independent is important in the theory of

differential equations].
(e) We need to test    sin   and   sin 2x x f g for linear independence.  Since

 sin 2x is not a scalar multiple of  sin x so they are linear independent.

3. (a) We have the fundamental trigonometric identity
   2 2cos sin 1x x 

Multiplying each side by 5 gives
   

     

2 2

2 2

5cos 5sin 5

5cos 5sin 5 0 *

x x

x x

 

  
Consider the linear combination

     2 2
1 2 3 1 2 3cos sin 5 0k k k k x k x k     f g h

Comparing this with (*) we have 1 2 35, 5  and  1k k k    gives 0. All scalars are not
zero therefore vectors f, g and h are linearly dependent.
(b) We are given the functions      2 2cos 2 , sin   and  cosx x x  f g h . Can you

remember any trigonometric identity relating these functions?

     2 2cos 2 cos sinx x x 
Rearranging this gives

     2 2cos 2 sin cos 0x x x   (†)
The linear combination

     2 2
1 2 3 1 2 3cos 2 sin cos 0k k k k x k x k x     f g h

Comparing with  † we have 1 2 31, 1  and  1k k k    . Hence f, g and h are linearly

dependent.
(c) We are given the functions 21,   andx x  f g h . Writing these as a linear
combination:

  2
1 2 3 1 2 31 0k k k k k x k x     f g h

Equating coefficients gives 1 2 3 0k k k   . The functions f, g and h are linearly

independent.
(d) We are given the functions        sin 2 , sin cos   and  cosx x x x  f g h . Do you

remember any trigonometric identity which relates these 3 functions?
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     sin 2 2sin cosx x x
We can write this as

     sin 2 2sin cos 0x x x  ($)

Consider the linear combination
       1 2 3 1 2 3sin 2 sin cos cos 0k k k k x k x x k x     f g h

Comparing this with ($) gives 1 2 31, 2   and   0k k k    . Since we have non-zero

scalars (k’s) therefore f, g and h are linearly dependent.
(e) We need to decide whether the following functions

       sin 2 , sin cos   and  cosx x xe x e x x e x  f g h

are linearly dependent or independent. Since these are the same functions as part (d)
apart from the multiple xe therefore we have

       
       

1 2 3 1 2 3

1 2 3

sin 2 sin cos cos

sin 2 sin cos cos 0

x x x

x

k k k k e x k e x x k e x

e k x k x x k x

    

     

f g h

The square bracket term is 0 for the k values given in part (d) above:

       sin 2 2sin cos 0cos 0xe x x x x    
We have 1 2 31, 2   and   0k k k    . We have non-zero scalars (k’s) therefore f, g and

h are linearly dependent.
Later on in question 8 we will prove:

A set of vectors  1 2 3, , , , nv v v v is linearly independent then

 1 2 3, , , , nk k k kv v v v

where k is a non-zero scalar, is also linearly independent.

We can use this result in our case with 0xk e  .

(f) Writing the given functions 1,   andx xe e  f g h in a linear combination

 1 2 3 1 2 31 0x xk k k k k e k e     f g h

By substituting various values of x we get the only possible solution

1 2 30, 0  and  0k k k   . Hence the functions f, g and h are linearly independent.

(g) We need to test 2 3,   andx x xe e e  f g h for linear independence. Since we

cannot write 3xe in terms of xe and 2 xe :
2 3

1 2
x x xc e c e e 

Similarly
3 2

1 2
x x xk e k e e 

By (3-9):

The vectors in the set  1 2 3, , , , nS  v v v v are linearly dependent  one of these

vectors, say kv , is a linear combination of the preceding vectors, that is

1 1 2 2 3 3 1 1k k kc c c c      v v v v v

Applying this result to the above we conclude that 2 3,   andx x xe e e  f g h linearly
independent.
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4. Required to show that      sin , sin 3   and  sin 5x x x  f g h are linearly

independent. From our knowledge of trigonometry we know that  sin 5x cannot be

written in terms of  sin x and  sin 3x , that is

     sin sin 3  sin 5k x c x x 
Hence by Proposition (3.14) we conclude that the given vectors

     sin , sin 3   and  sin 5x x x  f g h

are linearly independent.

5. Need to show that the following matrices form a basis for 22M :

1 0 0 1 0 0 0 0
, ,   and

0 0 0 0 1 0 0 1

       
          
       

A B C D

For a basis we need to prove that A, B, C and D span 22M and also these matrices are

linearly independent.

Span: Let
a b

c d

 
  
 

X be an arbitrary matrix and

1 2
1 2 3 4

3 4

1 0 0 1 0 0 0 0

0 0 0 0 1 0 0 1

k k a b
k k k k

k k c d

          
              

          
Equating the entries, we have 1 2 3 4, ,   andk a k b k c k d    . Since the matrix X was

arbitrary therefore we can produce any 2 by 2 matrix by a linear combination of matrices
A, B, C and D. Hence these matrices span 22M .

Linearly Independent: Using the above to produce the zero matrix,
0 0

0 0

 
 
 

, we have

1 2 3 4, ,   andk a k b k c k d    and because each entry is 0 therefore all the k’s are
zero, that is 1 2 3 40, 0, 0  and  0k k k k    . Hence matrices A, B, C and D are linearly

independent.
We have both, span and linear independence, therefore the given matrices form a basis
for 22M .

6. We need to show that   21, 1, 1t t  span 2P and is linearly independent.

Span: Let 2at bt c  be an arbitrary member of 2P . We have

         

   

2 2
1 2 3 1 2 2 3

2
1 2 2 3 3 3

2
3 2 3 1 2 3

2

1 1 1 2 1 Expanding

2

Collecting Like
2

Terms

k k t k t k k t k k t t

k k t k k t k t k

k t k k t k k k

at bt c

         

     

 
       

 
  

Equating coefficients gives

3k a , 2 3 1 2 32   andk k b k k k c    
Substituting the first equation 3k a into the middle equation 2 32k k b  gives

2 22      2k a b k a b    

acauser3
스탬프
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Substituting 2 2k a b  and 3k a into the last equation 1 2 3k k k c   :

   1 12 gives 2k a b a c k c a b a c a b          

Hence we have found scalars, 1k c a b   , 2 2k a b  and 3k a ,  which produce the

arbitrary polynomial 2at bt c  therefore we conclude that the given set of vectors

  21, 1, 1t t  span 2P .

Linearly Independent: Using the above to produce the zero polynomial, with
0, 0  and  0a b c   :

1 0 0 0 0k     ,  2 2 0 0 0k    and 3 0k 

Since all the scalars are zero therefore   21, 1, 1t t  is linearly independent.

The set   21, 1, 1t t  span 2P and is linearly independent therefore we can say it

forms a basis for 2P .

By the spanning set from above we have

         22 1 2 1 1at bt c c a b a b t a t         

For our polynomial 2 1t p we have 1, 0  and 1a b c   . Putting these values into
the above gives

        
   

22

2

1 1 1 0 1 2 1 0 1 1 1

2 2 1 1

t t t

t t

        

    

7. We need to show the following vectors of 2P do not form a basis:

  221, 2 , 5 1t t t 

Easier to show that this set is linearly dependent.

         

      

22 2 2
1 2 3 1 2 2 3

2 2
1 2 2 3 3 3

2
2 3 2 3 1 3

Collecting Like Terms

1 2 5 1 2 5 2 1 Expanding

2 5 10 5

5 2 10 5 0

k k t t k t k k t tk k t t

k k t tk k t k t k

k k t k k t k k

         

     

       

Equating coefficients we have
2

2 3

2 3

1 3

: 5 0

: 2 10 0

: 5 0

t k k

t k k

const k k

 

  

 

From the bottom equation we have 1 35k k  . Let 3 1k  then  1 5 1 5k     .

Substituting 3 1k  into the top equation 2 35 0k k  gives

 2 25 1 0 gives 5k k   

We have non-zero scalars, 1 5k   , 2 5k   and 3 1k  , therefore the given set of vectors

  221, 2 , 5 1t t t  is linearly dependent.

This means that   221, 2 , 5 1t t t  cannot form a basis for 2P .
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8. We need to prove that if a set of vectors  1 2 3, , , , nv v v v is linearly

independent then  1 2 3, , , , nk k k kv v v v , where k is a non-zero scalar, is also

linear independent.
Proof.
Consider the linear combination

       1 1 2 2 3 3 n nc c kc k k c k    v v v v O (*)

where the c’s are scalars.
What do we need to prove?
Required to prove that the only scalars which satisfy (*) is when they are all zero, that is

1 2 3 0nc cc c     . We have

       

   

1 1 2 2 3 3

1 1 2 2 3 3

1 1 2 2 3 3  Taking Out a Factor of

n n

n n

n n

c c k

c kc

c c

c k k c k

kc k kc

k c c k







   

   

   

v v v v O

v v v v O

v v v v O







0k  [Not Zero]  because the proposition states this.
We are also given that  1 2 3, , , , nv v v v are linearly independent therefore they

satisfy

1 1 2 2 3 3 1 2 30 0n n nc c c cc c c c         v v v v 

Hence  1 2 3, , , , nk k k kv v v v are linearly independent.

■
9. We need to prove a non-zero vector v is linearly independent.
Proof.
Let v be a non-zero vector in a vector space V. Consider the linear combination

0k k   or   v O v O [By (3-1) part (d)]
The only way this scalar multiplication k v is zero is if 0k  because v is non-zero.
Hence the vector v is linearly independent.

■
10. We are required to prove the zero, O, vector is dependent.
Proof.
k O O for any non-zero scalar k therefore O is linearly dependent.

■
11. Need to prove that if any two vectors are equal, j mv v where j m , then the set

is linearly dependent.
Proof.
Without Loss of Generality we can assume j m . Consider the linear combination

1 1 2 2 3 3 j j m m n nk k k k k k        v v v v v v O   (*)

Take all the k’s to equal zero apart from  andj mk k . Let =1  and  1j mk k   then (*)

becomes
 1 2 30 0 0 1 0j m n j m          v v v v v v v v  

Since we are given j mv v therefore j m v v O . We have non-zero scalars,

=1  and  1j mk k   ,  which produce the zero vector therefore the given set is linearly

dependent.
■
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12. We need to prove that any non-empty subset of a linearly independent set of
 1 2 3, , , , nS  v v v v is also independent.

Proof.
Any non-empty subset of S will contain vectors from this list 1 2 3, , , , nv v v v . Let

these vectors be 1 1, , , ,j j m m v v v v where 1 j m  and m n .

Suppose these are linearly dependent. Consider the linear combination

1 1 1 1j j j j m m m mk k k k       v v v v O (†)
Then all the scalars k’s are not zero.
Take 1 2 1 1 0j m nk k k k k       . The linear combination

1 1 2 2 3 3 n nk k k k    v v v v O (††)
By (†) all the scalars are not zero in (††) which means the vectors in

 1 2, , , nS  v v v

are linearly dependent. This cannot be the case because we are given that these vectors
are independent. Hence our supposition – the vectors 1 1, , , ,j j m m v v v v are

dependent must be wrong so they are linearly independent.
■

13. We need to prove that  1 2 3, , , , ,nv v v v w spans V but is linearly dependent

provided that  1 2 3, , , , nv v v v spans V.

Proof.
Vectors  1 2 3, , , , nv v v v span V therefore we can write the vector Vw as a

linear combination of the vectors in  1 2 3, , , , nv v v v .

1 1 2 2 3 3 n nk k k k    v v v v w

Rearranging this gives

1 1 2 2 3 3 n nk k k k     v v v v w O

We can produce the zero vector with non-zero scalars (the scalar associated with w is
1 ) therefore  1 2 3, , , , ,nv v v v w is linearly dependent.

Let u be an arbitrary vector in V. Since we are given that  1 2 3, , , , nv v v v spans V

therefore

 
1 1 2 2 3 3

1 1 2 2 3 3 0
n n

n n

k k k k

k k k k

    

     

u v v v v

v v v v w





Hence  1 2 3, , , , ,nv v v v w also spans V.

■
14. We are required to prove that if  1 2 3, , , , nB  v v v v is a basis for V and

 1 2 3, , , , mS  v v v v is a set of linearly independent vectors in V then m n .

Proof.
Suppose m n then by the result of question 13 the set  1 2 3, , , , mS  v v v v is

linearly dependent which contradicts that S is linearly independent. Hence m n .
■

15. We need to prove that  if  1 1 2 3, , , , nB  v v v v and  2 1 2 3, , , , mB  u u u u

are bases for a vector space V then n m .
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Proof.
By the result (proposition) of question 13 we have n m and m n which means that
n m .

■
16. We need to prove that if the largest number of linearly independent vectors in a
vector space V is n then any n linearly independent vectors forms a basis for V.
Proof.
Let  1 2 3, , , , nv v v v be a set of n linearly independent vectors in V.

Let w be an arbitrary vector in V. Since n is the largest number of independent vectors in
V therefore  1 2 3, , , , ,nv v v v w is a set of linearly dependent vectors which

means that the vector w is a linear combination of  1 2 3, , , , nv v v v . Hence the set

 1 2 3, , , , nv v v v span V. Since we know these v’s are linearly independent

therefore  1 2 3, , , , nv v v v are a basis for V.

■

17. We need to prove that if S and V have the same basis then S V .
Proof.
Let  1 2 3, , , , nv v v v be the basis vectors of S and V. Let a vector u be in S. This

vector must also be a member of V. Why?
Because 1 1 2 2 3 3 n nk k k k    u v v v v and V is a vector space. Similarly a vector in

V must be in S. Since every vector in S is in V and every vector in V is in S so they must
be equal, S V .

■




