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Complete Solutionsto Exercises 3.6

1. We need to find null space of each matrix.

1 0
(a) Let A= (0 lj then the null space is the vector X which satisfies AXx =0 . We have

Lox O g X=0 and 0
= 1 = an =
0 1)Ly 0 gives y

The graph of the null space is the zero vector (or the origin in the X-y plane), that is
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(b) Let B= (2 4} then the reduced row echelon form of this matrix is R = {O Oj . We

can find the null space of the given matrix B by solving the equivalent system Rx=0:

1 2)x) (0
0 o)ly) (o
Expanding the top row we have

X+2y=0 gives X=-2Y
Let y =S where Sis any real number then we have X=-2y =-2S and the solution is

SURINEH

1 2 -2
Hence null space N of the given matrix B = (2 4} is N= {S( lj

SED}.V\/hatdOGS

the null space N look like?

It is the straight line spanned by the vector ( lj which is

(-2.1)
Null Space of B
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10 10
(c) Similarly wehave C=| 1 2 | and thereduced row echelon form of thisis| 0 1 |.
6 10 00
The null space is the vector x which satisfies the equivalent system
10 0
01 (ij 0| gves x=0and y=0
00 0
The null space N is the zero vector as shown in solution to part (a).
1 2 10
(d)Let D=| 3 4 |.Thereduced row echelon form of thismatrixis| 0 1 |. Asforthe
5 6 00

solution of part () we have the null space N is given by the zero vector or the origin of the
x-y plane {(0, 0)} and isshown in part (a).
Parts (c) and (d) are both overdetermined systems.

2. (a) Writing out the given equations in matrix form we have Ax = O where

1 -2 -3 X 0
A=|4 -5 6|, x=|y| ad O=|0
7 -8 -9 z 0
Converting the matrix A into reduced row echelon form by using MATLAB we have
1 -2 -3 101
A=l4 -5 -6 R=/0 1 2
7 -8 -9 0 0O
By examining the equivalent system Rx =O we have

1 0 1)x 0

01 2j|y|=|0

0 0 O){z 0

Expanding the middle row we have y+2z=0 which gives y=-2z. Let z=s wheresis
any real number then we have y=-2z=-2s.

Expanding the top row we have
X+z=0 gives Xx=-2=-S
Thus x=-s, y=-2s and z=s. Our general solutionis

X -S -1
Xx=|y|=|-2s|=5s| -2 | wheresisin [J
z S 1
(b) Similarly writing out the given egquations in matrix form as Bx =0 where
2 -2 -2 X 0
B=|{4 -4 4|, x=|y| and O=|0
8 -8 -8 z 0

Putting matrix B into reduced row echelon form gives

2
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2 -2 -2 1 -1 -1
B={4 -4 -4 0 0 0|=R
8 -8 -8 0O 0 O
Solving the system Rx =0 we have
1 -1 -1Y)x 0
0O 0 Ojy|=|0
0 0 O0)lz 0

Expanding the top row yields
X—y—-z=0 whichgives x=y+2z
Let y=s and z=t then x=s+t and we have the general solution

X S+t 1 1
X=|y|=| s |=s|/1|+t|0|wheres, tell
z t 0 1

(c) Repeating the same process as above, the given linear equations can be written in matrix
formas Cx =0 where

2 9 -3 X 0
C=/56 -1|,x=|y|andO=|0
9 8 -9 z 0
Converting matrix C into reduced row echelon form matrix R gives
2 9 -3 1 00
C=|5 6 -1 0 1 0|=R
9 8 -9 0 01
Matrix C isof full rank, so Cx=0 = x=0 istheonly solution:
X 0
Xx=ly|=|0
z 0
(d) The given linear equations in matrix form can be written as Dx = O where
-3 1 -1 X 0
D=| 2 5 -7|,x=|y|andO=|0
4 8 -4 z 0
The reduced row echelon form of matrix D is given by
-3 1 -1 1 00
D=| 2 5 -7 0 1 0|=R
4 8 -4 0 01

X 0
Aswith part (c) the solutionis x=| y |=]| 0].
z 0

3. Notice al of these matrices are the coefficient matrices of question 2 and the null space
is the solution space x evaluated above.
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(a) By solution to question 2(a) above we have

-1 -1
X=8S| -2 |=su where u=| -2
1 1

Thus the null space of the given matrix A is {su | Se R} where u is the vector above.

What is nullity of the given matrix A equal to?
We only have one vector in the null space of A therefore this vector u isabasis for the null

space which means that nullity(A)=1.

What is rank(A) equal to?

The reduced row echelon form of matrix A has 2 non-zero rows therefore rank (A)=2.
(b) By solution to question 2(b) above we have solution space is given by

1 1 1 1
X=5|1|+t|0|=su+tv whereu=|1| and v=|0
0 1 0 1

The null space of matrix Bis N ={su+tv | sell, te .

The vectorsu and v are linearly independent and span the solution space therefore they are

abasis (axes) for the null space N. Since the basis for the null space has 2 vectors, u and v,

therefore nullity(B)=2.

What is the rank of matrix B equal to?

The reduced row echelon form of matrix B has only one non-zero row therefore

rank(B)=1.

(c) Similarly for matrix C the solution spaceis

0

Xx=|0

0

Thus the null space of matrix C is N ={O} that isnull spaceisjust the zero vector.

What is the nullity of matrix C equal to?
Remember from the definition of dimension we have that the dimension of the zero vector
spaceis zero, so we have

nullity(C)=0
Since the reduced row echelon form of matrix C isthe 3 by 3 identity matrix therefore the
number of non-zero rowsis 3 which means rank (C) = 3. Matrix C is of full rank.

(d) Thisisvery similar to part (c) because matrix D is of full rank. We have
N ={O}, nullity(D)=0 and rank(D)=3

4. We have the same matrix as Example 36 of the main text. The reduced row echelon form
matrix R was also evaluated in that example and null space is the solution space x of the
equivaent system Rx =0O whichis
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X 0
10 -1 -2 -3 -4 -5)\|x 0
0 2 3 4 5 6||x% 0
00 O O O O O0f|x[=|0
00 0O O O 0 O0f]x 0
00 O O O 0 O0)]x% 0

X, 0

Expanding the second row we have
X, + 2%, + 3%, + 4%, + 5% + 6%, =0
which gives
X, = —2%; = 3%, — 4% —5% — 6%, (*)
Notethat x;, X,, X, % and x, arethefreevariables, so let
=S X =t %=p, %=0q and x, =r
Substituting these into (*) gives
X, = —=2X%; —3X, — 4%, — 5% — 6X,
=-2s-3t—-4p-59-06r
Expanding the top row in the above matrix representation we have
X — X, —2X, —3%; — 4%, —5%, =0
X, = X5+ 2X, + 3% + 4% + 5%,
=S+ 2t+3p+4q+5r
Wehave x, =s+2t+3p+4q+5r, x,=-25s-3-4p-5q-6r, X, =S, X, =t, X, =p,
X =0 and X, =r1:

X S+2t+3p+4q+5r
X, —2s—-3t—4p—-5q-6r
X, S
X=X, |= t =SV, +tVv, + pv,+qVv, + IV,
X p
X q
X, r
where
1 2 3 4 5
-2 -3 —4 -5 -6
1 0 0 0 0
v,=| O}, v,=| 1|, vy=| O, v,=| Of, vg=| O
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

Our null space for the given matrix A is
N={sv,+tv,+ pv,+qv,+rv, | sell, te [] pe [qe , e |

5
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where the v vectors are as shown above.

5. In each case we need to place the given matrix into (reduced) row echelon form.
(a) For the given matrix A we have

A:[l 4 —9] { 0 —73/13}=R
2 5 -7 0 11/13
Multiplying this by 13 gives us asimpler basis for the row space:
13 0
01,113
-73) (11

How do we find a basis for the column space of matrix A?
Thefirst two columns of matrix R contain leading ones so abasisisthefirst 2 columns of

1\ (-4
matrix A. Hence {2] ( ]} and by applying row operations on these we obtain

T

We have rank (A) = 2 because there are 2 vectors in the basis for the column (or row)

space of matrix A.
What is a basis for the null space of the given matrix A?
We can solve the equivalent system Rx=0:

X 0
1 0 -73/13 _lo
0 1 11/13)° |
0
Expanding out the top row gives
73 _7_3Z

X——2z=0 = X
13

Similarly from the bottom row we have y:—i—;z. Let z=s where sisany real number.

Substituting this into the above we have x:Ez:7—ss and y:—l—lz:—l—ls.
13 13 13 13
Multiplying by 13 gives us
73
x=s| -11
13
73
A basisfor the null spaceis <| —11 |} . Hence nullity(A)=1.
13

Later onin thisexercise in question 11 we show that every vector in the null spaceis
orthogonal to every vector in the row space. In this example we have
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13 ( 73 0)( 73
0 | -11|=(13x73)+0+(~73x11)=0 and | 13 |- -11|=0
-73) | 13 11) | 13

This example demonstrates that a basis vectors for the null and row space are orthogonal
(perpendicular) to each other.

(b) Putting matrix B into reduced row echelon form gives

13 0
B=| 2 5 0 [4|=R
~14 -37 0 0

1) (0
A basisfor the row space of matrix B is the non-zero rows of matrix R, that is {(OJ [J}

To find abasis for the column space of matrix B we can transpose this matrix and then
placeit into reduced row echelon form:

1 3

T

; 12 -14
B =] 2 5| =
3 5 =37
-14 -37
(12 -14 10 -4
BT =
3 5 37 01 -5
1 0
Thus abasis for the column space of matrix Bis | 0, | 1|+.Wehave rank(B)=2.
-4 |-5

What else do we need to find?
A basisfor the null space of matrix B. Considering the equivalent homogeneous system
Rx =0 we have
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10 0
X
01 ( j: 0
o 0o)*” o
We have the solutions x =y =0. However the zero vector {O} cannot be abasisfor the

null space of B. The null space has no basis. Hence nullity(B)=0.
(c) Similarly we have

1 3 -95 1 300
C=|26 71 0 01 0|=R
1 3 -81 0 001
A basisfor the row space of matrix C is
1) (0) (O
3/ 10| |0
o|'|1|"|0
0) \0) (1
We need to transpose the given matrix C in order to find a basis for the column space of C:
T 12 1
1 3 -95
. 3 6 3
C'=26 71|-=
-9 7 -8
1 3 -81
51 1
Placing C" into reduced row echelon form gives
12 1 100
. 3 6 3 010
C —
-9 7 -8 0 01
51 1 0 0O
The non-zero rows of the matrix on the Right Hand Side forms a basis for the column space
1) (0) (O
of the given matrix C. Hence <| 0|, | 1|, | O |; isabasisfor the column space of C. We
0) \0) (1

have rank(C) = 3. Hence the column space of matrix C isthe whole of [ °.
To find the null space of matrix C we solve the equivalent system Rx=0:

x) (O
1 3 00

yl |0
0 010 =

z| |0
0 0 01

w/ (0

Expanding the bottom row we have w= 0 and from the middle row we have z=0. By
expanding the top row we have

x+3y=0 gives x=-3y
Let y=s wheresisany real number then Xx=-3y=-3s. Hence the general
homogeneous solution is
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s
0
0
-3
1
Thus abasis for the null space of matrix C is oll- Thisgives nullity(C)=1.

0

6. (@) Thisisan undetermined system.
We first write out the augmented matrix and then evaluate the reduced row echelon form:
X'y zZ W X'y zZ W

2 5 7 103 1 0 15 9
[1125‘6} {0110‘—3}
The reduced row echelon form matrix is on the Right Hand Side. Expanding the bottom
row of this Right Hand matrix we have
y+2z=-3 whichgives y=-3-2
Expanding the top row yields
X+z+5w=9 which gives x=9-z-5w
Let z=s and w=t then we have
y=-3-z=-3-sand x=9-z-5w=9-s-5t
The solution x of the given non-homogeneous system is

X 9-s-5t -1 -5 9
y —3-s -1 o| |-3
X = = =S +1 +
Z S 1 0 0
w t 0 1 0
—_— =

=Xy =Xp
Hence our solution is X = X,, + X, where X, isthe homogeneous solution and X, the

particular solution.
(b) The augmented matrix and its reduced row echelon form is given by

X Y z Xy Zz

2 -1 -4 13 1 0 0| 2
3 3 5| 13 0101
3 4 10| -10 0 0 1)]-2

The matrix is of full rank. Reading off the rows of the Right Hand Matrix gives
x=2, y=-1and z=-2

2
We have aunique solution and itisgiven by x=| -1 |.
-2

7. We use the following Proposition in this question:
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(3-26) (a) rank (A =)rank (A | b) =n then the linear system has a unigque solution.
(b) rank(A) = rank(A | b) < n then an infinite number of solutions.
(c) If rank (A) = rank(A | b) then the linear system has no solution.

(a) Writing out the coefficient matrix, A, and augmented matrix, (A | b), into reduced

row echelon form we have

A:@ 288) (3) 3

Putting the augmented matrix into reduced row echelon form we have
2 8 |12 1 4|6
42 0 00

(A ]b)=
7 28
What istherank of A and (A | b) equal to?

In both cases we have rank(A) = rank(A | b) =1 because both matrices on the Right
Hand Side have 1 non-zero row. Does the given system have any solutions?

Yes because we have 2 columns and rank(A) = rank(A | b) =1<2 therefore by

Proposition (3-26) part (b) we have an infinite number of solutions.

(b) Writing out the coefficient matrix, A:
1 0 -9 12
01 -4 4

2 -3 -6 12
A =
3 -5 -7 16
Putting the augmented matrix into reduced row echelon form we have

2 -3 -6 122 10 -9 12| -5
ATR)=ly 5 5 6] s 01 —4 4| -4

In both cases we have rank(A)= rank(A | b) =2 because both matrices on the Right

Hand Side have 2 non-zero rows. Does the given system have any solutions?
Yes because we have 4 columns and rank(A) = rank(A | b) = 2 <4 therefore by

Proposition (3-26) part (b) we have an infinite number of solutions.
(c) Very similar to Example 39 part (b):

1 23 1 0 -1
A=(4 5 6 01 2| = rank(A)=2
7 8 9 0 0 O
Putting the augmented matrix into reduced row echelon form we have
1 2 3|1 1 0 -110
(A|b)=[4 5 6|2 01 21| = rank(A]| b)=3
7 8 9|4 0 0 0|1

We have rank(A)=2 but rank(A | b)=3. Since rank(A)=rank(A | b) soby

Proposition (3-26) part (c) we conclude that the given system has no solution.

(d) Writing out the augmented matrix and placing into reduced row echelon form gives:



Complete Solutionsto Exercises3.6 11

2 5 -3 7|0 1 00 0| 28376
11 4 -89 01 0 0| -1.5527
34 0 1|6 0 01 0| -93248
5 21 -1 3|2 0O 0 0 1| 3.6980

Thisisthe MATLAB output correct to 5sf.
What istherank of A and (A | b) equal to?
In both cases we have rank(A) =rank(A | b)=4 because both sides of the vertical bar

of the matrix on the Right Hand Side have no zero rows. Does the given system have any
solutions?

Y es we have a unique solution becauserank (A ) = rank(A | b): 4 and the given
system has 4 unknowns.

8. How do we check that a given vector isin the null space of a matrix?
Check that Au=0.

(d) We have
1 1 1)1 0
Au=|2 -1 0| 2|=|0|=0
5 2 -3)|3 0

Thus the given vector u isin the null space of the matrix A.
(b) Similarly we have

1
1 4 -5 0
Bu = 1|= =0

Hence the given vector u isin the null space of the matrix B.
(c) What do you notice about the multiplication Cu?

1 | where the number of columns of
5 6 7 8 c

matrix C does not equal the number of rows of u. Hence u isnot in the null space of matrix
C

2
. . 1 2 3 4
It isimpossible because we have Cu=( j

(d) We have
1 -2 6 1) 1 -22
3 6 7 8 3 *
Du = = =0
5 21 7|4 *
1 6 3 2\ 7 *

Thereason for placing a* in the right hand vector is because we cannot have the zero
vector since thefirst entry is —22. We do not need to evaluate the other entries.
The vector u isnot in the null space of matrix D.

9. We need to prove that A isinvertible < nullity(A)=0.
Proof.
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By applying Proposition (3-19) which says that:
The matrix A is invertible < rank(A)=n
We have rank(A)=n. By Theorem (3-22) which is
nullity(A)+rank(A)=n
Thus rank(A) =n < null ity(A) =0. Hence we have our required result, A is invertible
< nullity(A)=0.

10. We need to prove that elementary row operations do not change the null space of a
matrix.

Proof.

Let matrices A and R be row equivalent. By Proposition (1-11):

Proposition (1-11). If a linear system is described by the augmented matrix (A | b) and

it is row equivalent to (R | b ') then both linear systems have the same solution set.

We have AXx=0 and Rx =0 have the same solution. Hence A and R have the same null

space which means that elementary row operations do not change the null space.
|

11. We need to prove that every vector in the null space of matrix A is orthogonal to every
vector in the row space of matrix A where A is a mby n matrix.

Proof.
Remember the null space of matrix A is the set of vectors X which satisfy:
& ... &
Ax=0 where A=| : .
G 8y
X
Let x=| : | be a vector in the null space of matrix A. What do we need to prove?
X,

Required to prove that dot product of the row vectors r of A and X is zero; r -x=0.
Carrying out the matrix multiplication AX=0 we have
G o Gn (X 0
Ax=| : . Cl=
A A 0

For each row vector r of matrix A we have r -X =0 therefore each row vector of matrix A
is orthogonal to the null space vector X. This completes our proof.

12. We need to prove if A is a matrix of size mby n then the null space of A is a subspace
of O".

Proof. We know that null space is a member of [1 " because it is the set of vectors X which
satisfy AX=0 and vector X has n entries.


acauser3
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How do we show that the null spaceis a subspace of [1 " ?
By using:

Proposition (3-5). A nonempty subset Sis a subspace of a vector space V <> U and v
are vectors in Sthen any linear combination Ku +Cv is also in S

Let vectors U and v be members of the null space of matrix A. This means we have
Au=0 and Av=0 (1)
Consider the linear combination ku+ cv. What do we need to prove?
This vector Ku+cV is also in the null space of matrix A; that is A(ku+cv)=0.
We have
A(ku+cv)=k(Au)+c(Av)
=k(0)+c(0)  [By (1)]
=0

Hence by Proposition (3-5) we conclude that N is a subspace of [1".

13. We need to prove:

Proposition (3-24). The linear system AX =b has a solution <> b is in the column space
of matrix A.

Proof.
Expanding out AX =b where A is a mby n matrix:
Cl cee Cn
a; - |l X b
S AR b,
a a, a, b
= X| 5 [FX| X =] < XC +XC,+---+XC,=b
M Ay A b,

Hence b is in the column space of matrix A << Ax =b has a solution.

14. We need to prove:

Proposition (3-26). Consider the linear system AX =b where A has n columns and b #O .
(a) If rank(A) = rank(A | b) =n then the linear system has a unigque solution.

(b) If rank(A) = rank(A | b) < n then the linear system has an infinite number of
solutions.

(c) If rank (A) = rank(A | b) then the linear system has no solution.

Proof of (a).
By question 8(b) of the last Exercise 3(e) which says:
A hasrank n < the linear system AX =Db has a unique solution

We have if rank(A)= rank(A | b) =n then Ax=b has a unique solution. This is our

required result.

Proof of (b).


acauser3
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Let r =rank(A) and we are given that r =rank(A) = rank(A | b) <n.
We know by Theorem (3-22) that
nullity(A)+r =n
From this we have nullity(A)=n-r and since r <n therefore nullity(A)> 0. Remember

null ity(A) =n-r is the dimension of the null space so let

{Vl’ V2, - Vn—r}
be a basis for the null space. Remember for any real scalars ¢, C,, ---, ¢, the linear
combination
CV,+, C,V,+ ---+C,_ V *)

n-r ~ n-r

is also in the null space of A. Thus (*) is the solution of Ax =b, that is the homogeneous

solution of AX =b. Hence we have an infinite number of solutions because the result is
true for an infinite number of scalars.

Proof of (c).
Already proven in Proposition (3-25) of the main text.
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