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Complete Solutions to Exercises 2.3 

1. (a) Using scalars k and c and equating the linear combination to zero

1 2k c e e O  we have

1 2

1 0

0 1

0 0

0 0

k c k c

k k

c c

   
     

   

       
          
       

e e

This gives 0k   and 0c   which means all the scalars are zero therefore 1e  and 2e are

linearly independent. 

(b) We have the linear combination k c u v O :

3 6

4 8

3 6 3 6 0

4 8 4 8 0

k c k c

k c k c

k c k c

   
     

   

        
          

        

u v

We have the simultaneous equations 

 

 

3 6 0 *

4 8 0 **

k c

k c

 

 

From the first equation (*) we have 

3 6 which gives   2k c k c 

Let 1c   and then substituting this, 1c  ,  into  2 2 1 2k c   . Checking that this

satisfies the second equation (**): 

   4 2 8 1 0  √ 

Since the scalars, 1c   and 2k  , are nonzero and which satisfy the linear combination 

k c u v O  therefore the given vectors u and v are linearly dependent. 

(c) Given
6 3

,
10 5

   
    

   
u v  we have vector u is a multiple of vector v, actually 

2 u v which implies that 2 u v O . There are non-zero scalars 1 and 2 such that 

 1 2 u v O

Hence the given vectors u and v are linearly dependent. 

(d) Similarly 
1

,
2 2





   
    

   
u v are multiples of each other because  u v . 

From this we have  u v O  which means there are non-zero scalars 1 and   such 

that 

 u v O

The given vectors u and v are linearly dependent. 

(e) Since one of the vectors,
0

0

 
  
 

u , is the zero vector therefore by Proposition (2-12)

we have if one (or more) of vectors is the zero vector then the vectors 

1 2 3, , ,  and  nv v v v are linearly dependent. Hence vectors u and v are linearly 

dependent. 
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2. (a) Consider the linear combination  

1 1 2 2 3 3k k k  e e e O  

We have 

1 1 2 2 3 3 1 2 3

1 1

2 2

3 3

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

k k k k k k

k k

k k

k k

     
     

         
     
     

         
         

             
         
         

e e e

 

This gives 1 2 3 0k k k    which means all the scalars are zero therefore 1 2,e e  and 3e  

are linearly independent. 

(b) We have the linear combination 1 2 3k k k  u v w O : 

1 2 3 1 2 3

2 1 0 0

2 2 0 0

2 1 1 0

k k k k k k

       
       

            
              

u v w  

The augmented matrix  A O  is given by 

1

2

3

R 2 1 0 0

R 2 2 0 0

R 2 1 1 0

 
 
 
  

 

Carrying out the row operations: 

1 2 3

1

2 1

3

R 2 1 0 0

R R 0 1 0 0

R 2 1 1 0

k k k

 
 

  
  

 

From the middle row we have 

2 0k     

Substituting this 2 0k   into the other rows yields 1 0k   and 3 0k  . 

All the scalars are equal to zero, 1 2 3 0k k k    therefore the given vectors, u, v and w, 

are linearly independent. 

(c) By examining the given vectors 

1 2

1   and   2

1 2

   
   

     
      

u v  we note that 2 v u  

because 

2 1

2 2 1 2

2 1

   
   

        
      

v u . Hence we have 2 v u O  which means the scalars 

are not zero therefore the given vectors u and v are linearly dependent. 

(d) We have the linear combination 1 2 3k k k  u v w O : 
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1 2 3 1 2 3

1 0 2 0

2 4 0 0

3 6 6 0

k k k k k k

       
       

             
              

u v w  

The augmented matrix  A O  is given by 

1

2

3

R 1 0 2 0

R 2 4 0 0

R 3 6 6 0

  
 

 
 
 

 

Executing the following row operations: 

1

2 2 1

3 3 1

R 1 0 2 0

R *=R 2R 0 4 4 0

R *=R 3R 0 6 6 0

  
 

  
   

 

Carry out the row operation 3 2

3
R * R *

2
 : 

1 2 3

1

2

3 2

R 1 0 2 0

R * 0 4 4 0

R *+3R */ 2 0 0 12 0

k k k

  
 

 
 
 

 

From the bottom row we have 3 0k  . Using back substitution gives 2 3 0k k  . Hence 

1 2 3 0k k k    which means that the given vectors are linearly independent. 

 

3. (a) We examine the linear combination 1 2 3 4k k k k   u v w x O  

1 2 3 4 1 2 3 4

0 1 2 0 0

1 0 1 1 0

0 5 0 0 0

3 0 0 4 0

k k k k k k k k

         
         
                

         
         

         

u v w x  

The augmented matrix is given by: 

1 2 3 4

1

2

3

4

R 0 1 2 0 0

R 1 0 1 1 0

R 0 5 0 0 0

R 3 0 0 4 0

k k k k

 
 
 

 
   

 

From the third row we have  

2 25 0  which gives  0k k   

Substituting this 2 0k   into the top row we have 

3 30 2 0  which gives  0k k    

Substituting 3 0k   into the second row: 

1 4 4 10  gives  k k k k     

Substituting 4 1k k  into the bottom row: 
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4 4 4 43 4 0  gives  0k k k k      

Since 4 1k k  therefore 1 0k  . All the scalars, 1 2 3 4 0k k k k     which means that 

the given vectors , ,   and  u v w x  are linearly independent. 

(b) What do you notice about the first vector u and the last vector x of the given 

vectors? 

1 0 3 5

1 1 6 5
, , ,

3 5 9 15

3 0 4 15

        
       
           
        
       

        

u v w x  

5 1

5 1
5 5

15 3

15 3



   
   

       
   
   
   

u

x u . Since 5 x u  or 5 x u O  therefore we have the linear 

combination  

5 0 0 5     u v u x u x O  

We have nonzero scalars which give the zero vector therefore the given vectors 

, ,   and  u v w x  are linearly dependent. 

(c) We examine the linear combination 1 2 3 4k k k k   u v w x O  

1 2 3 4 1 2 3 4

1 3

1 2 43

1 2 3

1 2 4

2 0 2 0

2 3 2 3

3 2 1 0

4 3 0 1

2 0 02 0

2 3 32 0

3 2 0 0

4 3 0 0

k k k k k k k k

k k

k k kk

k k k

k k k

       
       

             
        
       

       

       
       

           
       
      

        

u v w x





 
 



 

Writing out the simultaneous equations we have 

 

 

 

 

1 3

1 2 3 4

1 2 3

1 2 4

2 2 0 1

2 3 2 3 0 2

3 2 0 3

4 3 0 4

k k

k k k k

k k k

k k k

  

   

  

  

 

From the first equation (1) we have 3 1k k . Let 1 1k   then 3 1k  . Substituting this 

1 1k   and 3 1k   into the third equation (3) gives 

2 2 23 2 1 0 2 2  which gives  1k k k       

Substituting 1 1k   and 2 1k   into the bottom equation 

4 44 3 0  gives  1k k      

Just need to check that these scalar values, 1 2 3 41, 1, 1  and  1k k k k      satisfy the 

second equation (2): 

2 3 2 3 0     
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Since these nonzero scalars, 1 2 3 41, 1, 1  and  1k k k k     ,  satisfy 

1 2 3 4k k k k   u v w x O  therefore the given vectors , ,   and  u v w x  are linearly 

dependent. 

 

4. We need to prove that if ku v  then the vectors u and v are linearly dependent. 

Proof. Since ku v  therefore  1 k u v O . Hence we have nonzero scalars which 

give the zero vector therefore vectors u and v are linearly dependent. 

           ■ 

5. We need to prove the vectors u v , v w  and u w  are linearly dependent. 

Proof.  Since  

          u v v w u w O      

therefore u v , v w  and u w  are linearly dependent because  

     1 2 3k k k     u v v w u w O  where 1 21, 1k k    and 3 1k    

           ■ 

6. We need to show that 1e  and 1 2e e  are linearly independent. 

Proof.  

We know 1e  and 2e  are linearly independent. Consider the linear combination 

 1 1 2k c  e e e O       

Expanding this out yields 

 
1 1 2

1 2

k c c

k c c

  

  

e e e O

e e O
   

Since 1e  and 2e  are linearly independent so all the scalars in the bottom equation are 

zero, hence 0  and  0k c c   . This implies 0k c  .  

Hence  1 1 2k c  e e e O  gives 0k c   therefore 1e  and 1 2e e  are linearly 

independent because all scalars are zero. 

           ■ 

7. We need to prove that 1e , 1 2e e  and 1 2 3 e e e  are linearly independent in 3 . 

Proof.  

We know that 1e ,  2e  and  3e  the standard unit vectors in 3  are linearly independent. 

Consider the linear combination 

   1 1 2 1 2 3 1 2 3k k k     e e e e e e O  

Expanding these out 

   
1 1 2 1 2 2 3 1 3 2 3 3

1 2 3 1 2 3 2 3 3

k k k k k k

k k k k k k

     

     

e e e e e e O

e e e O
 

Vectors 1e ,  2e  and  3e  are linearly independent therefore 

1 2 3 2 3 3

1 2 3 2 3 3

0, 0  and  0

,   and   0

k k k k k k

k k k k k k

     

     
 

We have 3 0k  , 2 3 0k k    and 1 2 3 0 0 0k k k      . We have  

   1 1 2 1 2 3 1 2 3k k k     e e e e e e O  gives 1 2 3 0k k k    

Hence 1e , 1 2e e  and 1 2 3 e e e  are linearly independent. 

           ■ 
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8. Required to prove that , ,   and     u v v w w x u x  are linearly dependent given 

that u, v, w and x be linearly independent. 

Proof.  

Consider the linear combination 

       1 2 3 4k k k k       u v v w w x u x O  

Expanding this out gives 

         
1 1 2 2 3 3 4 4

1 4 1 2 2 3 3 4 Factorizing

k k k k k k k k

k k k k k k k k

       

       

u v v w w x u x O

u v w x O
 

We are given that the vectors u, v, w and x are linearly independent therefore all the 

scalars in brackets are zero, that is  

1 4 1 2 2 3 3 4

1 4 1 2 2 3 3 4

0, 0, 0  and  0

, ,   and  

k k k k k k k k

k k k k k k k k

       

       
 

Let 4 1k   then substituting this and the resulting k’s into the above we have 

 1 2 31, 1 =1   and   1k k k        

Since the linear combination 

       1 2 3 4k k k k       u v v w w x u x O  gives 

1 2 3 41, 1, 1  and  1k k k k       

which means all the scalars are not zero. Hence the vectors  

, ,   and     u v v w w x u x  

are linearly dependent. 

■ 

9. We need to show that 1 2 3k k k  x u v w  where u, v and w are linearly independent 

is unique. 

Proof.  

Suppose we also have 1 2 3c c c  x u v w . Required to prove  

1 1 2 2 3 3,   and  c k c k c k    

Equating the two linear combinations we have 

 

       

1 2 3 1 2 3

1 2 3 1 2 3

1 1 2 2 3 3

Collecting vectors

Factorizing

k k k c c c

k k k c c c

k c k c k c

    

     

     

u v w u v w

u v w u v w O

u v w O

 

Since u, v and w are linearly independent therefore all the scalars are zero:  

1 1 2 2 3 3

1 1 2 2 3 3

0, 0  and  0

,   and  

k c k c k c

k c k c k c

     

  
 

Hence the representation 1 2 3k k k  x u v w  is unique. 

           ■ 

10. Proof. Consider the linear combination 

       1 1 1 2 2 2 3 3 3 n n nk c k c k c k c    v v v v O  

Note that 1 1 2 2 3 3, , ,  and  n nc c c cv v v v  are all vectors.  

Required to prove that 1 2 3 0nk k k k     . Expanding out the above and 

rearranging yields 

       1 1 1 2 2 2 3 3 3 n n nk c k c k c k c    v v v v O  

Since the vectors 1 2 3 ,    and, , nvv v v  are  linearly independent therefore 
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1 1 2 2 3 3 0n nk c k c k c k c      

The scalar 0jc   [Not Zero] for any  j between 1 to n because we are given that c’s are 

real non-zero scalars. Therefore 1 2 3 0nk k k k     .  

Since the linear combination 

       1 1 1 2 2 2 3 3 3 n n nk c k c k c k c    v v v v O  gives 1 2 3 0nk k k k      

therefore we conclude that the vectors 1 1 2 2 3 3, , ,  and  n nc c c cv v v v  are linearly 

independent. 

           ■ 

11. We need to prove if  1 2 3, , , , nS  v v v v  is linearly independent then 

any subset  1 2 3, , , , mT  v v v v  where m n  is also linearly independent. 

Proof.  

We are given that  1 2 3, , , , nS  v v v v  is linearly independent therefore we have 

1 1 2 2 3 3 1 2 3    0n n nk k k k k k k k          v v v v O  

Consider the linear combination 

1 1 2 2 3 3 m mc c c c    v v v v O  

Required to prove that 1 2 3 0nc c c c     .  Equating the two linear combinations 

and remembering that m n  we have 

     
1 1 2 2 3 3 1 1 2 2 3 3

1 1 1 2 2 2 1 1

n n m m

m m m m m n n

k k k k c c c c

k c k c k c k k 

         

         

v v v v v v v v O

v v v v v O
 

Since  1 2 3, , , , nS  v v v v  is linearly independent therefore all the scalars in the 

last line are zero, that is 

1 1 2 2 1 0m m m nk c k c k c k k           

In particular we have the first m scalars 

1 1 2 2

1 1 2 2

0

, ,   and  

m m

m m

k c k c k c

k c k c k c

      

  
 

Because all the k’s are zero therefore 1 2 3 0mc c c c     . Hence 

 1 1 2 3, , , , mS  v v v v  is linearly independent. 

           ■ 

 

12. Proof. Consider the linear combination 

1 2 3

1 2 3

1 1 0
Substituting the given values of 

1 1 0
the vectors ,   and  

1 1 0

k k k

t

k k t k

t

  

       
        

           
        

       

u v w O

u v w

 

The augmented matrix is  

1

2

3

R 1 1 0

R 1 1 0

R 1 1 0

t

t

t

  
 
 
 
 

    

Executing the following row operations: 



Complete Solutions to Exercises 2.3    8 

 

 

1

*

2 2 1

*

3 3 1

R 1 1 0

R =R R 1 1 0 0

R =R R 1 0 1 0

t

t t

t t

  
 

   
    

 

Multiply the bottom row *

3R  by  1/ 1 t  provided 1t   : 

 

1

*

2

** *

3 3

R 1 1 0

R 1 1 0 0

R =R / 1 1 0 1 0

t

t t

t

  
 
  

   

 

Carrying out the row operation **

1 3R R : 

* **

1 1 3

*

2

**

3

R R R 1 1 0 0

R 1 1 0 0

R 1 0 1 0

t

t t

     
 
  

 
 

 

Carrying out the row operation * *

2 1R R : 

1 2 3

*

1

* * *

2 2 1

**

3

R 1 1 0 0

R R +R 0 0 0

R 1 0 1 0

k k k

t

t

   
 

  
 
 

 

From the middle row we have 2 0k t  . Remember for linear independence we need all 

the scalars to be zero. So 2 0k   which means that 0t   because if 0t   then we could 

take 2 0k  .  

From the top row we have 

  1 21 0t k k       

We already have 2 0k   and so substituting this into this   1 21 0t k k    gives 

  11 0t k   

Again we have 1 0k   so 1 0 or 1t t   .  

Hence the vectors u, v and w are linearly independent whenever 0, 1  or  1t t t    . 

 

13. We need to prove the following result: 

Let  1 2 3, , , , nS  v v v v  be n vectors in the n - space n . Let A be the n by n 

matrix whose columns are given by the vectors 1 2 3, , ,  and  nvv v v : 

 1 2 nA v v v  

Then vectors 1 2, , , nv v v   are linearly independent   matrix A is invertible. 

Proof. 

Consider the linear combination: 

1 1 2 2 n nk k k   v v v O  

where the k’s are real scalars. Let us write this linear combination in matrix form 

Ax O  where  1 2 nA v v v : 
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 

1 1

2 2

1 2 n

n n

k k

k k

k k

    
    
     
    
    
     

v v v O x

  . Let us assume that matrix A is invertible. Then by the following Theorem of 

chapter 1:

Theorem (1.35). Let A  be an n by n matrix, then the following statements are 

equivalent: 

(a) The matrix A is invertible (non-singular).

(b) The linear system Ax O  only has the trivial solution x O .

We have that 

1

2

n

k

k

k

 
 
  
 
 
 

x O which means that 

1 2 0nk k k   

Therefore the vectors 1 2 3, , ,  and  nvv v v are linearly independent.

  . Now we assume that the vectors 1 2, , , nv v v are linearly independent. 

Consider the matrix  1 2 nA v v v . Required to prove that matrix A is 

invertible.  

Suppose matrix A is non-invertible. Then by the following proposition of chapter 1: 

Proposition (1.39).  Let A  be a square matrix and R be the reduced row echelon form 

of A. Then R has at least one row of zeros   A is non-invertible (singular). 

The reduced row echelon form of matrix A has at least one row of zeros. This means 

that the linear system Ax O  which is equivalent to Rx O  where R is the reduced 

row echelon form of matrix A has less equations than unknowns so we have an infinite 

number of solutions. This implies all the scalars (k’s) are not zero which suggests that 

the vectors 1 2, , , nv v v are linearly dependent. This is a contradiction because we

are assuming the vectors are linearly independent. Hence our supposition matrix A is 

non-invertible must be wrong so matrix A is invertible. This completes our proof. 

■
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