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SECTION 6.5 Composite Integers with Primitive Roots

By the end of this section you will be able to

 understand that not every positive integer has a primitive root

 determine which composite integers have primitive roots

In the last section we showed that every prime has a primitive root – Primitive Root

Theorem (6.22).

In this section we will describe the composite integers which also have primitive roots.

For example:

The set of integers  2, 5 are primitive roots modulo 9.

The set of integers  2,  5,  11,  14,  20,  23 are primitive roots modulo 27.

The set of integers  3,  5,  7,  11,  23,  27,  29,  31 are primitive roots modulo 34.

However there are no primitive roots moduli 8, 12, 15, 16, 20, 21, 24, 28, 30, 32, 33.

The aim of this section is to determine which composite integers have a primitive root.

6.5.1 Primitive Roots Modulo 2p

We examine the primitive roots modulo 2p where p is an odd prime.

Example 6.27

Show that 2 is a primitive root of (a) 5 (b) 25 25

Solution

(a) Since 5 is prime so  5 5 1 4    . Evaluating powers of 2 gives

 1 2 3 42 2, 2 4, 2 3, 2 1 mod 5   

Hence 2 is a primitive root modulo 5.

(b) We have    25 5 5 1 20    . We only need to examine the indices of 2 which are

positive divisors of  25 20  . Why?

Because by Corollary (6.5):

Let the integer a modulo n have order k. Then  k n .

The positive divisors of 20 are 1, 2, 4, 5, 10 and 20. By using a calculator we find:
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 1 2 4 5 10 202 2, 2 4, 2 16, 2 7, 2 24, 2 1 mod 25     

Hence 2 is a primitive root modulo 25 because the first index of 2 to give 1 modulo 25 is

 25 20  .

We have the following results for primitive roots moduli 2 2 23 , 5   and  7 :

The integers  2, 5 are primitive roots modulo 23 9 .

The integers  2,  3,  8,  12,  13,  17,  22,  23 are primitive roots modulo 25 25 .

The integers  3, 5, 10, 12, 17, 24, 26, 33, 38, 40, 45, 47 are primitive roots modulo

27 49 .

In this subsection we will show that modulo 2p has primitive roots but to prove this we

need a couple of results.

Lemma (6.23).

Let p be an odd prime. Then there is a primitive root r modulo prime p such that

1pr    21 mod p

In the previous example we had 2 is a primitive root of prime 5 and
5 1 42 2 16     21 mod 5

We can also show that 3 is a primitive root modulo 7 and
7 1 63 3 43     21 mod 7

The given statement claims that this is not just the case for these two examples but is

generally true. We need to prove there is a primitive root r modulo prime p such

that 1pr    21 mod p .

Proof.

By the Primitive Root Theorem we know the prime p has a primitive root, r say. If
1pr    21 mod p then we are done. Suppose

 1 21 modpr p  (*)

As r is a primitive root modulo p therefore r p is also a primitive root modulo p

because  modr p r p  . We need to show that

  1p
r p


   21 mod p

We examine this primitive root r p modulo p.
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Expanding   1p
r p


 by applying the binomial expansion (see Introductory Chapter) we

have

     

 
 

  

2

2

1 1 2 2

All these are multiples of
1 2 2 2 2

0 mod

1 2 2 2

by (*)

1 0 0 mod

mod

1 mod

p p p

p
p p p

p

p p p

r p r p r p p

r p r pr p

r pr pr p

  

  



  

      

  

   





We have

   1 2 21 mod
p pr p pr p
    (‡)

Since r is a primitive root modulo p so  gcd , 1r p  which implies that

2ppr    20 mod p

Why?

Because if  2 20 modppr p  then  2 0 modpr p  . This cannot be the case because r

is a primitive root modulo p. Therefore 2ppr    20 mod p .

Substituting this 2ppr    20 mod p into the congruence (‡) gives

  1 21
p pr p pr
      21 mod p

Hence there is a primitive root r p of p such that   1p
r p


   21 mod p .

■

Lemma (6.24).

Let r be a primitive root modulo p. Then the order of r modulo 2p is either 1p or

   2 1p p p   .

Note that in the case of order is    2 1p p p   , r is a primitive root modulo 2p .

Proof. See question 16 of Exercises 6.5.

Example 6.28

Determine a primitive root of 7. Determine the order of this primitive root modulo 49.

Solution

What is a primitive root of 7?

We first test powers of 2 modulo 7. Since  7 6  so we only need to find the powers of
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2 which are proper divisors of 6 (these are 2 and 3):

 2 32 4 , 2 8 1 mod 7  

Since  32 1 mod 7 so 2 cannot be a primitive root modulo 7.

Evaluating powers of 3 modulo 7 gives

   2 33 9 2 mod 7 and 3 2 3 6 mod 7    

Hence 3 is a primitive root modulo 7.

By the previous lemma the order of 3 modulo 27 49 is 7 1 6  or  7 7 1 42  .

We first evaluate base 3 to index 6 modulo 49:

 63 43 1 mod 49 

Hence the order of 3 modulo 49 must be  7 7 1 42  . (We don’t need to check because

the lemma says the order must be 6 or 42 and it is not 6.)

Since  49 42  so 3 is a primitive root modulo 49.

This example suggests that we can use the previous lemma to test whether a primitive

root modulo p is also a primitive root modulo p2.

This last lemma leads to the following result:

Theorem (6.25).

Let p be an odd prime. Then there is a primitive root modulo 2p .

We have already shown in the last section that a prime p has primitive roots. What does

this theorem claim?

It claims that 2p also has a primitive root provided p is an odd prime. For example

 3, 5, 10, 12, 17, 24, 26, 33, 38, 40, 45, 47 are primitive roots modulo 27 49 .

How do we prove this?

By using the previous lemma and showing that the order is  2p .

Proof.

For primitive root of p2 we must have the order equal to

   2 1p p p  

Let p be an odd prime then by Lemma (6.23) there is a primitive root r of prime p such

that
1pr    21 mod p (*)
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From the previous lemma we have the order of r modulo 2p is either 1p or  1p p  .

Case I The order of r is 1p .

Consider the primitive root r p modulo p. By the proof of the Lemma (6.24) we have

  1p
r p


   21 mod p

This   1p
r p


   21 mod p implies that r p cannot have order 1p . By Lemma

(6.24):

The order of r modulo 2p is either 1p or    2 1p p p   .

Since r p is also a primitive root of p so the order of r p must be    2 1p p p   .

Hence in this case r p is a primitive root modulo 2p .

Case II Order of r is  1p p  .

Clearly this r is a primitive root modulo 2p because    2 1p p p   .

■
Note that the primitive root modulo 2p is the same primitive root r as p or it is r p

(or both).

In most cases the primitive root modulo p will also be a primitive root modulo

2p . However, in a few cases the primitive root modulo p is not a primitive root modulo

p2. If this occurs, then r p is a primitive root modulo p2.

For example, all the primitive roots of the odd primes 13, 17 and 19 are also primitive

roots modulo 132, 172 and 192 respectively.

It is pretty hard to find a primitive root of prime p which is not a primitive root of 2p .

However here is one example which you are asked to show in Exercises 6.5 question 12:

14 is a primitive root modulo 29 but 14 is not a primitive root modulo 229 .

6.5.2 Primitive Roots of 2p

To show that modulo kp has primitive roots we first prove the following:

Proposition (6.26).

Let p be an odd prime and r be a primitive root modulo 2p . Then we have

 2 1kp p
r

    1 mod kp for every integer 2k  .

How do we prove this proposition?

By mathematical induction.
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Proof.

The given result is true for the base case 2k  because by Lemma (6.23) we have
1pr    21 mod p

Assume the given result is true for k m , that is
 2 1mp p

r
    1 mod mp (‡)

We use this to prove the result for 1k m  , that is we need to show
 1 1mp p

r
    11 mod mp 

Note that    1 2 1m mp p p    . Since r is a primitive root so  1gcd , 1mr p   and we

can now apply Euler’s theorem:
   

2 1 11 mod
mp p mr p
  

By the definition of congruence there is an integer a such that
 2 1 11

mp p mr ap
   

By assumption (‡) we know that p a otherwise we would have    
2 1

1 mod
mp p mr p
   .

Raising both sides to the power p gives

    
2 1 11

m p pp p mr ap
   

Expanding the right - hand side by using the binomial expansion we have

    
    

 
 

2

1

1 1

2
1 1 1

0 mod

1

1

1
1

2!

1 mod

m

m

p pp p m

p
m m m

p

m m

r ap

p p
pap ap ap

ap p





 

  





 


    

 




Using the rules of indices on the left hand side we have

        
2 2 11 1 1 11 mod

m m mp
p p p p p p p m mr r r ap p
        

We already have p a therefore

 1 1
1

mp p mr ap
      11 mod mp 

Hence we have shown what is required and this completes our proof.

■
Using these results we prove that every odd prime power has a primitive root.

Theorem (6.27).
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Let p be an odd prime. Then there is a primitive root modulo kp where 1k  .

How do we prove this result?

By contradiction.

Proof.

Every prime p has a primitive root by Primitive Root Theorem (6.22):

Every prime has a primitive root.

We are left to prove the given statement for kp where 2k  .

Let r be a primitive root modulo 2p . By the previous Proposition (6.26) we have

 2 1kp p
r

    1 mod kp (†)

The Euler totient function  of kp is

   1 1k kp p p  

Applying Euler’s Theorem (5.14):

   1 mod
n

a n
 

On kn p we have

     
1 1

1 mod
k kp p p kr r p

    (††)

Suppose that d is a proper divisor of  1 1kp p  such that

 1 modd kr p (*)

By the definition of congruence there is an integer t such that

 11 1d k kr tp tp p    which implies  1 moddr p

By applying Proposition (6.4):

Let a modulo n have order k. Then  1 modha n k h 

To the last calculation  1 moddr p gives  1p d because r is a primitive root

modulo p.

We are supposing that d is proper divisor of  1 1kp p  so  1 1kd p p  .

Therefore, d will be a factor of  2 1kp p  . Why?

If d p then 1kd p  which implies  2 1kd p p  .
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If d p then  gcd , 1d p  and so by using Euclid’s Lemma (1.13):

If  a b c with  gcd , 1a b  then a c .

On  1 1kd p p  implies  1d p  which implies  2 1kd p p  .

This  2 1kd p p  implies that there is an integer m such that

 2 1kdm p p  (**)

Raising the congruence in (*) to the power m gives

   1 1 mod
m

d dm m kr r p  

From (**) we have

   
2 1

1 mod
kp pdm kr r p
  

This contradicts (†). This implies that we cannot have d is a proper divisor of

 1 1kp p  . Hence r is a primitive root modulo kp .

■

This theorem says that every odd prime power has a primitive root and it is given by:

Proposition (6.28).

Let r be a primitive root modulo p where p is an odd prime. Then either r or r p (or

both) is a primitive root modulo kp where 1k  .

Proof. See question 17 of Exercises 6.5.

We also have the following result:

Proposition (6.29).

Let p be an odd prime and r be a primitive root modulo 2p . Then r is a primitive root of

every power of p.

Proof. See question 18 of Exercises 6.5.

We can use these propositions to test if a given integer is a primitive root of an odd

prime power.

Example 6.29

Find a primitive root of 55 3125 .

Solution
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In Example 27 we showed that 2 is a primitive root of 25 25 .

By the previous Proposition (6.29) we conclude that 2 is also a primitive root of

55 3125 .

6.5.3 Primitive Roots of Even Integers

Are there any other integers apart from the odd prime powers which also have primitive

roots?

Yes, because integers like 6, 10, 14, 22 have primitive roots and these integers are not

odd prime powers.

Next, we show that the even integer 2 kp where p is an odd prime also has primitive

roots.

Proposition (6.30).

Let p be an odd prime. Then there is a primitive root of 2 kp where 1k  .

How do we prove this result?

By considering two cases of the primitive root – odd and even.

Proof.

Let r be a primitive root of kp . (We know such an r exists by the last proposition.)

We consider two cases of the primitive root r;

Case I r is odd Case II r is even

Case I r is odd

The Euler phi function of 2 kp is given by

     
   1 1

2 2 Because multiplicative

1 1 1

k k

k k

p p

p p p p

   
 

    
    

We need to use Euler’s Theorem (5.14):

   1 mod
n

a n
  provided  gcd , 1a n 

Since we are considering the case where r is odd and it is a primitive root of kp so

 gcd , 2 1kr p  and we can apply Euler’s Theorem:

   
1 1

1 mod 2
kp p kr p
  
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Suppose d is a proper divisor of  1 1kp p  such that

 1 mod 2d kr p

By the definition of congruence we have that there is an integer m which satisfies

 1 2 1 2d k kr p m m p   

From this  1 2d kr m p  we have

 1 modd kr p

This is a contradiction because r is a primitive root of kp so there can be no proper

divisor d of      12 1k k kp p p p    such that  1 modd kr p .

Therefore r is a primitive root modulo 2 kp .

Case II r is even

In this case  gcd , 2 2kr p  . By Definition (6.10):

If  gcd , 1a n  and a has order  n then a is a primitive root of n.

This r which is an even primitive root of kp cannot be a primitive root of 2 kp .

The primitive root of 2 kp must be odd.

Let kr p   . Then  modk kr p r p  . This is a primitive root of kp . Why?

Because

even odd oddkr p     

We can now treat this as case I.

Hence this odd integer kr p   is a primitive root of 2 kp .

■

From this proof we have the following result:

Proposition (6.31).

Let p be an odd prime and 1k  . Then 2 kp has a primitive root. Additionally, if r is a

primitive root modulo kp then

(a) r is also a primitive root modulo 2 kp provided r is odd.

(b) kr p is a primitive root modulo 2 kp provided r is even.

The following statement gives the integers which have no primitive roots:

Proposition (6.32).
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(a) The integer 2k where 3k  has no primitive roots.

(b) Let 2m  and 2n  such that  gcd , 1m n  . Then the integer mn has no

primitive roots.

Proof. See questions 20 and 21 of Exercises 6.5.

Putting all these propositions together we have:

Proposition (6.33).

The positive integer 1n  has a primitive root  2, 4, , 2k kn p p where p is an odd

prime and 1k  .

Summary

In this section we have proved that every odd prime power kp has a primitive root.

We also showed that apart from 2 and 4 the only even integers which have a primitive

root are of the form 2 kp where p is an odd prime and 1k  .

The only integers which have primitive roots are 2, 4, kp and 2 kp .


