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Complete Solutions to Exercises 3.1

1. We need to check all 10 axioms. Let ,   and
a c e
b d f
     
       
     

u v w

Axiom 1. We first check closure under vector addition. We have
a c a c
b d b d

     
           

and
a c
b d
 

  
is in 2 √

Hence we have closure under vector addition.
Axiom 2. Commutative.

a c a c c a c a
b d b d d b d b

            
                           

√

Hence   u v v u .
Axiom 3. Associative law:

 

 

a c e
b d f

a c e
b d f

a c e a c e
b d f b d f

      
          

      
   

       
       

                 

u v w

u v w

√

We have        u v w u v w .

Axiom 4. Neutral element is
0
0
 
  
 

O and for any u we have

0 0
0 0

a a a
b b b

       
                   

u O u √

Axiom 5. Additive inverse, we have

 
0
0

a a a a
b b b b

        
                     

u u O √

Axiom 6. Let k be scalar then
a ka

k k
b kb
   

    
   

u √

Hence ku is also in 2 , therefore we have closure under scalar multiplication.
Axiom 7. Associative Law for scalar multiplication. Let k and c be real numbers then

     
a ca kca a

k c k c k kc kc
b cb kcb b

        
            

        
u u √

Axiom 8. Distributive Law for vectors. Let k be a real number then

 
a c

k k
b d

a c
k

b d

ka kc ka kc a c
k k k k

kb kd kb kd b d

    
      

    
 

   
         

                        

u v

u v

√
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Axiom 9. Distributive Law for scalars. Let k and c be real numbers then

   

 
 

a
k c k c

b

k c a

k c b

ka ca ka ca a a
k c k c

kb cb kb cb b b

 
    

 
 

    
         

                        

u

u u

√

Axiom 10. Identity Element. For every vector u in V we have
1

1 1
1

a a a
b b b

     
             

u u √

Since all 10 axioms are satisfied, we conclude that 2 is a vector space.
2. Very similar to solution 1.
3. The rules of matrix algebra established in Chapter 1 ensure that 22M is a
vector space. However we can show these again as follows:

Let ,   and
a b e f i j
c d g h k l
     
       
     

u v w . Checking all 10 axioms.

Axiom 1.  We check u v is also in the set 22M :
a b e f a e b f
c d g h c g d h

      
              

u v √

Since u v is a 2 by 2 matrix therefore it is in 22M .
Axiom 2. Commutative,   u v v u . We know from Chapter 1 that matrix addition
is commutative. You may like to check this if you want.
Axiom 3. Similarly we have the associative law,        u v w u v w for matrix
addition.
Axiom 4. Neutral element O which satisfies

0 0
0 0

a b a b
c d c d
     

         
     

u O u √

Axiom 5. Additive inverse.

 

0 0
0 0

a b a b
c d c d

a a b b
c c d d

    
          

    
         

u u

O
√

Axiom 6. Let k be scalar then
a b ka kb

k k
c d kc kd
   

    
   

u √

Since
ka kb
kc kd
 
 
 

is  a 2 by 2 matrix which means it is in 22M therefore we have

closure under scalar multiplication.
Axiom 7. Associative Law for scalar multiplication. Let 1k and 2k be real numbers
then
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     2 2 1 2 1 2
1 2 1 1 2 1 2

2 2 1 2 1 2

k a k b k k a k k b a b
k k k k k k k

k c k d k k c k k d c d
     

        
    

u u √

Axiom 8. Distributive Law for vectors. Let k be a real number then

 
a b e f

k k
c d g h

a e b f
k

c g d h

ka ke kb kf
kc kg kd kh

ka kb ke kf a b e f
k k k k

kc kd kg kh c d g h

    
      

    
  

    
  

    
       
            
       

u v

u v

√

Axiom 9. Distributive Law for scalars. Let 1k and 2k be scalars then

   

   
   

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 1 2 2
1 2 1 2

1 1 2 2

a b
k k k k

c d

k k a k k b
k k c k k d

k a k a k b k b
k c k c k d k d

k a k b k a k b a b a b
k k k k

k c k d k c k d c d c d

 
    

 
  

    
  

    
       
            

      

u

u u

√

Axiom 10. Identity element, 1. We have

1 1
a b a b
c d c d
   

     
   

u u √

Since all 10 axioms are satisfied therefore we conclude that the set of 2 by 2 matrices
22M is a vector space.

4. Again the rules of matrix algebra established in chapter 1 prove that 23M is a
vector space but you can justify it to yourself by checking the 10 axioms as we did for

22M in the above question.
5. We need to check all 10 axioms with vector addition and scalar multiplication
defined as:

      f g x f x g x  

    k f x k f x

Let ,f g and h be members of the set  ,F a b which means each of these are

functions which are defined on the interval  ,a b .

Axiom 1. By definition we have f g is also in  ,F a b . Hence we have closure
under vector addition.
Axiom 2. Commutative law:
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      
      

f g x f x g x

g x f x g f x

  

   
Hence f g g f   .
Axiom 3. Associative law:

        
     
        

f g h x f g x h x

f x g x h x

f x g h x f g h x

    

  

     

We have    f g h f g h     which means that the associative law is
established.
Axiom 4. Neutral element, which is  0 0x  for all x in the interval  ,a b . For any

function f in  ,F a b we have

          0 0 0f x f x x f x f x     
Axiom 4 is satisfied because we have 0f f  .
Axiom 5. Additive inverse which is f :

             0f f x f x f x f x f x       
Axiom 6. Let k be scalar then by definition of scalar multiplication we have

    k f x k f x

Since  k f x is a member of the set  ,F a b therefore we have closure under scalar
multiplication.
Axiom 7. Associative Law for scalar multiplication. Let k and c be real numbers then

         k c f x kcf x kc f x   
Axiom 8. Distributive Law for vectors. Let k be a real scalar then

              k f g x k f x g x k f x kg x k f kg x      

We have  k f g k f kg   .
Axiom 9. Distributive Law for scalars. Let k and c be real scalars, then

           k c f x k f x c f x k f c f x    

We have  k c f k f c f   .

Axiom 10. Identity element, for every f in  ,F a b we have

   1 f x f x
Hence Axiom 10 is satisfied.
Since we have established all 10 axioms therefore we conclude that the set  ,F a b is
a vector space.

6. Matrices of the form
1 0
0 a
 
 
 

do not form a vector space because there is no

neutral element or there is no zero vector. We cannot have
0 0
0 0
 
  
 

O in this set

therefore it does not form a vector space.
7. Checking the 10 axioms. The first 3 axioms are straightforward to check.
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Axiom 4 we need the zero vector which in this case is
0 0
0 0
 
  
 

O . We can get this

by substituting 0a  and 0b  into
0

0
a

b
 
 
 

. Check that

0 0 0 0
0 0 0 0
a a

b b
     

      
     

Axiom 5 is the existence of the additive inverse. For every vector
0

0
a

b
 
 
 

there is

0
0
a

b
 
  

such that

0 0 0 0 0
0 0 0 0 0
a a a a

b b b b
        

                  
O

Axiom 6. Let k be scalar then
0 0

0 0
a ka

k
b kb

   
   

   
(We have closure under scalar multiplication).
For Axiom 7 you just need to check:

 
0 0

0 0
a a

k c kc
b b

    
    

    
Axiom 8. Distributive Law for vectors. Let k be a real number then

 
 

0 0 0
0 0 0

0
0

0
0

0 0
0 0

0 0
0 0

a c a c
k k

b d b d

k a c
k b d

ka kc
kb kd

ka kc
kb kd

a c
k k

b d

       
             

 
   

 
   
   
    
   
   

    
   

Axiom 9. Distributive Law for scalars. Let k and c be real numbers then we need to
show that  k c k c  u u u :

   
 

00
00

0
0

0 0 0 0
0 0 0 0

k c aa
k c

k c bb

ka ca
kb cb

ka ca a a
k c

kb cb b b

  
        

 
   
       
          
       

Axiom 10. Identity element is 1 and we have
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0 0
1

0 0
a a

b b
   

   
   

ALL 10 axioms are satisfied, therefore we conclude that matrices of the type
0

0
a

b
 
 
 

do form a vector space.
8. Matrices of size 2 by 2 do not form a vector space because we do not have
closure under vector addition.

Suppose    a d b c   and let
a b
c d
 
  
 

u
1 1

and
1 1
 
  
 

v :

1 1 1 1
1 1 1 1

a b a b
c d c d

      
              

u v

The determinant of
1 1
1 1

a b
c d
  

   
is equal to

       

 

       
0  by †

1 1 1 1 1 1
1 1

0 Because

a d c b ad a d cb c b
ad cb a d c b

a d b c a d b c


            

       

         



Hence u v is not a 2 by 2 matrix whose determinant is equal to zero.

If a d b c   then let
a b
c d
 
  
 

u
1 2

and
3 4
 
  
 

v . In this case we can show that

the matrix obtained by uv is not in the given set because the determinant is not zero.
This set of matrices does not form a vector space.
9. We need to check all 10 axioms to show that the given set 2P is a vector space.
Let   2x ax bx c  p ,   2x d x ex f  q and   2x g x hx i  r . Checking the
axioms is very similar to Example 1.
10. The last axiom 10 fails because

2 0 0
1

2 1 2 2
     
           

Since
2 0
2 2
   
   

   
therefore axiom 10 fails. This means that 2 with the given scalar

multiplication definition is not a vector space.

11. The set
a
b
 
 
 

in 2 where 0a  and 0b  is not a vector space because axiom

6 fails. Axiom 6 states that we have closure under scalar multiplication. The scalar
multiplication

 
1

1
1

a a a
b b b

       
              

which is not in the given set V because 0a  and 0b  . Therefore the given set
is not a vector space.
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12. The set of rationals is not a vector space because when we multiply by a scalar,
which is any real number, then the result is not a rational number. For example if we
consider the rational 1 and multiply this by the scalar  then the result is 1 
which is not a rational number. Remember  is irrational.
We do not have closure under scalar multiplication therefore the set of rationals  is
not a vector space.
13. This is easy to check that all 10 axioms of a vector space are satisfied.
The zero vector O is the normal number 0.
14. Axiom 6 which states that we have closure under scalar multiplication, that is
if we multiply a vector by any scalar then the result is also in the given set. In this
case axiom 6 fails because for example  1 5 5   but 5 is not a positive real
number therefore  is not a vector space.

15. Vector u is also in the vector space V provided u is in V.
Since V is a vector space so by Axiom 5:

Additive Inverse. For every vector u there is a vector u (minus u) which satisfies
   u u O .

Hence u is in V.

16. Need to prove that      k k k    u u u .
Proof. Since k is a real number we can write 1k k   . Using this we have

   
      

1

1       Because  1

k k

k k

  

        

u u

u u u u

Similarly we show that    k k  u u :

   
  
   

1

1

1

k k

k

k k

  

 

   

u u

u

u u
Hence combining both results we have      k k k    u u u .

■
17. Need to prove if k ku w then u w .
Proof. We have k ku w which means that

 
k k
k
 

 

u w O
u w O

Since 0k  therefore   which gives  u w O u w .
■

18. Required to prove if 1 2k ku u then 1 2k k .
Proof. We have

 

1 2

1 2

1 2

k k
k k
k k


 

 

u u
u u O

u O
Since u O therefore 1 2 1 20  which givesk k k k   .
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■
19. Need to prove      u w u w .
Proof. We have

    
   

 

1

1 1

    

   

   

  

u w u w

u w

u w
u w

■
20. Required to prove

  copiesn

n    u u u u u . We use mathematical induction.

Remember the procedure is to prove it for a base case such as 1n  . Assume it is true
for n k and then prove it for 1n k  .
Proof. We have 1 u u u √.
Assume it is true for n k , that is

  copiesk

k    u u u u u (*)

Need to prove it for 1n k  . We have to prove that
 

1  copies

1
k

k


      u u u u u u

Consider the 1k  additions of u:



 
  copies by (*)

1 1
k

k

k k

      

   

u u u u u u u

u u u



Hence by mathematical induction we have our result,
  copiesn

n    u u u u u .

■


