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Complete Solutions to Exercises 7.3 

1. (a) (i) We are given the matrix 
1 0
0 2
 

  
 

A  for which we need to find the eigenvalues and 

1 21 and 2  

corresponding eigenvectors. Since we have a diagonal matrix therefore by Proposition (7-3) 
the eigenvalues are the entries along the leading diagonal, . 
For the eigenvalue 1 1  : 

1 1 0 0
0 2 1 0

0 0 0
  gives  1  and  0

0 1 0

x

y

x
x y

y

    
    

    

    
      

    

Our eigenvector belonging to 1 1  is 
1
0
 

  
 

u . The eigenvector for the other eigenvalue

2 2  is 
1 2 0 0

0 2 2 0

1 0 0
  gives  0  and  1

0 0 0

x

y

x
x y

y

    
    

    

    
      

    

The eigenvector corresponding to 2 2  is 
0
1
 

  
 

v . 

(ii) To find the invertible matrix P we need to follow the procedure outlined in the main text.
Step 1:

Need to check that the eigenvectors are linearly independent. Since 
1
0
 

  
 

u and
0
1
 

  
 

v  are 

not multiplies of each other therefore eigenvectors u and v are linearly independent. 
Step 2: 
The matrix P is given by  

 
1 0
0 1
 

   
 

P u v I

Note that the matrix P is the identity matrix I. 
Step 3: 
The diagonal matrix D is given by 1D P AP : 

1 1 0
0 2

  
    

 
D I AI A

Note that D is a diagonal matrix with eigenvalues 1 1  and 2 2  as the entries along the 
leading diagonal. 

(b) (i) We need to find the eigenvalues and corresponding eigenvectors of
1 1
1 1
 

  
 

A : 

Proposition (7-3). If matrix A is a diagonal or triangular matrix then the eigenvalues of A 

are the entries along the leading diagonal. 
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 

  

 

2

2
1 2

1 1
det det

1 1
1 1 1

1 2 1
2 2 0  gives  0 and 2






 

 

     

 
   

 

   

   

      

A I

For the eigenvalue 1 0  we can find the eigenvector by:
1 0 1 1 1 0

 gives  0
1 1 0 1 1 0

x x
x y

y y

       
          

       

Thus x y   and let 1y   then 1x   . The corresponding eigenvector is 
1
1
 

  
 

u .

Similarly we can find the eigenvector v belonging to the other eigenvalue 2 2  : 
1 2 1 1 1 0

 gives  1  and  1
1 1 2 1 1 0

x x
x y

y y

        
          

        

Thus 
1

1

 
  
 

v  belongs to the eigenvalue 2 2  . 

(ii) Step 1:

Need to check that 
1
1
 

  
 

u and
1

1

 
  
 

v  are linearly independent. Since one vector is not a 

multiple of the other therefore they are linearly independent. 
Step 2: 

Let  
1 1
1 1
 

   
 

P u v . 

Step 3: 

Then taking the inverse of this matrix P we get 1 1 11
1 12


 

  
 

P . Thus 1D P AP is  

1 1 1 1 1 1 11
1 1 1 1 1 12

0 0 1 1 Multiplying the 1
2 2 1 1 two Left Hand matrices2
0 0 0 01 1Multiplying by scalar 
0 4 0 22 2


    

     
   

    
     

    

     
      

    

D P AP

Again the leading diagonal entries are 0 and 2 which are the eigenvalues of the given matrix 
A. 

(c) (i) The eigenvalues of
3 0
4 4
 

  
 

A  are 1 23  and  4   because by Proposition (7-3) 

the entries along the leading diagonal are the eigenvalues of a  triangular matrix and A is a 
triangular matrix. 

Proposition (7-3). If matrix A is a diagonal or triangular matrix then the eigenvalues of A 

are the entries along the leading diagonal. 
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The eigenvector u belonging to 1 3   is given by 
3 3 0 0 0 0

  gives  1  and  4
4 4 3 4 1 0

x x
x y

y y

       
           

       
 

Hence 
1
4

 
  

 
u . The eigenvector v corresponding to 2 4   is given by 

3 4 0 1 0 0
  gives  0  and  1

4 4 4 4 0 0
x x

x y
y y

        
          

       
 

Thus 
0
1
 

  
 

v  for 2 4  . 

(ii) Step 1: 

The eigenvectors 
1
4

 
  

 
u  and 

0
1
 

  
 

v  are linearly independent. 

 Step 2: 

Let  
1 0
4 1

 
   

 
P u v .  

Step 3: 

Then taking the inverse of this matrix P we get 1 1 0
4 1

  
  
 

P . Thus 1D P AP  is  

1 1 0 3 0 1 0
4 1 4 4 4 1
3 0 1 0

16 4 4 1
3 0
0 4

    
     

   

  
   

  

 
  
 

D P AP

 

Again the leading diagonal entries are 3 and 4 which are the eigenvalues of matrix A. 

(d) (i) We are given the matrix 
2 2
1 3
 

  
 

A . The eigenvalues are 

 

  

  2
1 2

2 2
det det

1 3
2 3 2

5 4 1 4 0  gives  1  and  4






 

     

 
   

 

   

        

A I

 

The eigenvector u belonging to 1 1   is evaluated by 
2 1 2 1 2 0

  gives  2  and  1
1 3 1 1 2 0

x x
x y

y y

       
           

       
 

Hence 
2
1

 
  

 
u . The eigenvector v corresponding to 2 4   is given by 

2 4 2 2 2 0
  gives  1  and  1

1 3 4 1 1 0
x x

x y
y y

        
          

        
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Thus the eigenvector 
1

1

 
  
 

v  belongs to the eigenvalue 2 4  . 

(ii) Step 1:

The eigenvectors
2
1

 
  

 
u and

1

1

 
  
 

v  are linearly independent because they are not

multiples of each other. 
Step 2: 

Let  
2 1
1 1

 
   

 
P u v . 

Step 3: 

Then taking the inverse of this matrix P we get 1 1 11
1 23


 

  
 

P . Substituting these into 

1
P AP gives 

1 1 1 2 2 2 11
1 2 1 3 1 13
1 1 2 11
4 8 1 13
3 0 1 01
0 12 0 43


   

    
   

  
   

  

   
    

   

P AP

Again the leading diagonal entries are 1 and 4 which are the eigenvalues of matrix A. 

2. (a) By Proposition (7-14) we have 1m m A PD P and we use this to find 5A . 

(a) We are given
1 0
0 2
 

  
 

A  and from question 1 part (a) we have 1 1 0
0 1

  
   

 
P P I and 

1 0
0 2
 

   
 

D A . Therefore 

55
5 5 1

5 5

1 0 Because 1 11 0
0 320 2 and  2 32


    

       
    

A PD P I I

(b) We are given
1 1
1 1
 

  
 

A  and from question 1 part (b) we have 
1 1
1 1
 

  
 

P , 

1 1 11
1 12


 

  
 

P  and 
0 0
0 2
 

  
 

D . Thus 

5 5 1

51 1 0 0 1 11
1 1 0 2 1 12

1 1 0 0 1 1 Taking the scalar1
1 1 0 32 1 1 1/2 to the front2

0 32 1 1 32 32 16 161 1
0 32 1 1 32 32 16 162 2



     
     
    

      
      

     

      
        

      

A PD P
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(c) We need to find 5A for 
3 0
4 4
 

  
 

A . From question 1 part (c) we have 

1 0
4 1

 
  

 
P , 1 1 0

4 1
  
  
 

P  and 
3 0
0 4
 

  
 

D . Thus 

5 5 1

5

5

5

1 0 3 0 1 0
4 1 0 4 4 1

1 0 243 0 1 0 Because  3 243
4 1 0 1024 4 1 and 4 1024
243 0 1 0 243 0
972 1024 4 1 3124 1024



    
     

    

    
     

      

    
     

    

A PD P

(d) We need to find 5A given that 
2 2
1 3
 

  
 

A . We use 1m m A PD P with 5m  . What is 

P, D and 1P equal to? 

By question 1 part (d) we have 
2 1
1 1

 
  

 
P , 

1 0
0 4
 

  
 

D  and 1 1 11
1 23


 

  
 

P . Thus 

substituting these into 5 5 1A PD P  gives 
5

5

5

5

2 1 1 0 1 11
1 1 0 4 1 23

2 1 1 0 1 1 Because 1 11
1 1 0 1024 1 23 and 4 1024
2 1024 1 11
1 1024 1 23

1026 2046 342 6821
1023 2049 341 6833

    
     

    

     
     

      

  
   

  

   
    

   

A

(b) By the above part (c) we have
1/2 1/2 1

1/2

1/2

1/2

1 0 3 0 1 0
4 1 0 4 4 1

1 0 1 0 Because  3 1/ 31/ 3 0
4 1 4 10 1/ 2 and 4 1/ 2

1/ 3 0 1 0 1/ 3 0
4 14 / 3 1/ 2 2 4 / 3 1/ 2

  









    
     

    

      
      

         

    
             

A PD P

3. (a) (i) What are the eigenvalues of the diagonal matrix 

1 0 0
0 2 0
0 0 3

 
 

  
 
 

A ?
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Since we have a diagonal matrix therefore the eigenvalues are the entries on the leading 
diagonal which is 1 2 31, 2  and  3     . For 1 1  .  
Let u be the eigenvector then 

 

1 1 0 0
0 2 1 0
0 0 3 1

0 0 0 0
0 1 0 0 gives  1, 0  and  0
0 0 2 0

x

y

z

x

y x y z

z

  
  

    
    

    
    

        
    
    

A I u

 

Thus 
1

0

0

 
 

  
 
 

u  is the eigenvector belonging to 1 1  . Let v  be the eigenvector belonging to 

the second eigenvalue 2 2  : 

 

1 2 0 0
2 0 2 2 0

0 0 3 2

1 0 0 0
0 0 0 0 gives  0, 1  and  0
0 0 1 0

x

y

z

x

y x y z

z

  
  

    
    

    
    

        
    
    

A I u

 

Hence the eigenvector 
0
1
0

 
 

  
 
 

v  corresponds to the eigenvalue 2 2  . Let w be the 

eigenvector belonging to 3 3  : 

 

1 3 0 0
3 0 2 3 0

0 0 3 3

2 0 0 0
0 1 0 0 gives  0, 0  and  1
0 0 0 0

x

y

z

x

y x y z

z

  
  

    
    

    
    

         
    
    

A I u

 

The eigenvector 
0

0

1

 
 

  
 
 

w  belongs to the eigenvalue 3 3  . 

Step 1: 

The eigenvectors 
1

0

0

 
 

  
 
 

u , 
0
1
0

 
 

  
 
 

v  and 
0

0

1

 
 

  
 
 

w  are linearly independent. 

Step 2: 
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The invertible (nonsingular) matrix is  

1 0 0

0 1 0

0 0 1

 
 

   
 
 

P u v w I .  

Step 3: 
Hence 1 1  P I I . We have 

1

1 0 0

0 2 0

0 0 3



 
 

    
 
 

D I AI A

Again the eigenvalues 1 1  , 2 2  and 3 3  of the matrix A are along the leading
diagonal.  
(iii) To find 4A we need to use 1m m A PD P  with 4m  : 

4

4 4 1 4 4

4

1 0 0 1 0 0

0 2 0 0 16 0

0 0 3 0 0 81



   
   

      
  
  

A ID I D

(b) (i) What are the eigenvalues of

1 4 0

0 4 3

0 0 5

 
 

  
 
 

A ? 

Since we have an upper triangular matrix therefore by using Proposition (7-3) we have 
1 2 31, 4  and  5      . What else do we need to find? 

The eigenvector for each eigenvalue. Let u be the eigenvector belonging to 1 1   : 

  
 

 

 

1 1 4 0

1 0 4 1 3

0 0 5 1

0 4 0 0

0 5 3 0    gives   1, 0  and  0

0 0 6 0

x

y

z

x

y x y z

z

    
  

      
      

    
    

        
    
    

A I u

Thus 
1

0

0

 
 

  
 
 

u is the eigenvector belonging to 1 1   . Let v  be the eigenvector belonging to 

the second eigenvalue 2 4  . We have 

 

1 4 4 0

4 0 4 4 3

0 0 5 4

5 4 0 0

0 0 3 0    gives   4, 5  and  0

0 0 1 0

x

y

z

x

y x y z

z

   
  

    
    

    
    

        
    
    

A I v
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Thus 
4
5
0

 
 

  
 
 

v . Let w be the eigenvector belonging to 3 5  . We have 

 

1 5 4 0
5 0 4 5 3

0 0 5 5

6 4 0 0
0 1 3 0    gives   2, 3  and  1
0 0 0 0

x

y

z

x

y x y z

z

   
  

    
    

    
    

         
    
    

A I w

 

Thus 
2
3
1

 
 

  
 
 

w . We have the eigenvectors 
1

0

0

 
 

  
 
 

u , 
4
5
0

 
 

  
 
 

v  and 
2
3
1

 
 

  
 
 

w  corresponding to 

the eigenvalues 1 2 31, 4  and  5       respectively.  
(ii) Step 1: 

The eigenvectors 
1

0

0

 
 

  
 
 

u , 
4
5
0

 
 

  
 
 

v  and 
2
3
1

 
 

  
 
 

w  are linearly independent. 

Step 2: 

The invertible (nonsingular) matrix is  

1 4 2
0 5 3
0 0 1

 
 

   
 
 

P u v w . 

Step 3: 
We could check PD AP  to ensure that we have the correct matrices P and D. Since we 
need to find 4A  so we need to find 1P  because 4 4 1A PD P  so we could just check that we 
have 1D P AP .  
The diagonal matrix 1D P AP . We need to find the inverse of P. Using MATLAB or our 

early theory on matrices we have 1

5 4 2
1 0 1 3
5

0 0 5



 
 

  
 
 

P .  

Substituting 1

5 4 2
1 0 1 3
5

0 0 5



 
 

  
 
 

P , 
1 4 0

0 4 3

0 0 5

 
 

  
 
 

A  and 
1 4 2
0 5 3
0 0 1

 
 

  
 
 

P  into 1D P AP  

gives  

1

5 4 2 1 4 0 1 4 2
1 0 1 3 0 4 3 0 5 3
5

0 0 5 0 0 5 0 0 1

5 4 2 1 4 2 5 0 0 1 0 0
1 10 4 12 0 5 3 0 20 0 0 4 0
5 5

0 0 25 0 0 1 0 0 25 0 0 5



    
   

     
   
   

         
      

         
      
      

D P AP
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(iii) To find 4A  we need to use 1m m A PD P with 4m  : 

 

4

4 4 1

4

4 4

1 4 2 1 0 0 5 4 2
1

0 5 3 0 4 0 0 1 3
5

0 0 1 0 0 5 0 0 5

1 4 2 1 0 0 5 4 2
Because 1 11

0 5 3 0 256 0 0 1 3
5 4 256  and  5 625

0 0 1 0 0 625 0 0 5

1 1024 1250
1

0 1280 1875
5



     
    

      
    
    

   
     

      
       

   



A PD P

5 4 2

0 1 3

0 0 625 0 0 5

5 1020 3180 1 204 636 Multiplying by the
1

0 1280 5535 0 256 1107 1
5 scalar 

0 0 3125 0 0 625 5

  
  

  
  
  

     
           
   

    

(c) (i) What are the eigenvalues of

2 0 0

1 5 0

1 2 6

 
 

  
 
 

A ? 

Since we have a lower triangular matrix therefore by using Proposition (7-3) the eigenvalues 
are 1 2 32, 5  and  6     . What else do we need to find? 

The eigenvector for each eigenvalue. Let u be the eigenvector belonging to 1 2  : 

 1

2 2 0 0

1 5 2 0

1 2 6 2

0 0 0 0

1 3 0 0  gives   12, 4  and  1

1 2 4 0

x

y

z

x

y x y z

z



  
  

    
    

    
    

         
    
    

A I u

Thus 
12

4

1

 
 

  
 
 

u is the eigenvector belonging to 1 2  . Let v  be the eigenvector belonging

to the second eigenvalue 2 5  . We have 

 2

2 5 0 0

1 5 5 0

1 2 6 5

3 0 0 0

1 0 0 0  gives   0, 1  and  2

1 2 1 0

x

y

z

x

y x y z

z



  
  

    
    

    
    

         
    
    

A I v

Proposition (7-3). If matrix A is a diagonal or triangular matrix then the eigenvalues of A 

are the entries along the leading diagonal. 
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Thus 
0
1
2

 
 

  
  

v . Let w be the eigenvector belonging to 3 6  . We have 

 3

2 6 0 0
1 5 6 0
1 2 6 6

4 0 0 0
1 1 0 0    gives   0, 0  and  1
1 2 0 0

x

y

z

x

y x y z

z



  
  

    
    

    
    

         
    
    

A I w

 

Thus 
0

0

1

 
 

  
 
 

w . We have the eigenvectors 
12

4

1

 
 

  
 
 

u , 
0
1
2

 
 

  
  

v  and 
0

0

1

 
 

  
 
 

w  corresponding 

to the eigenvalues 1 2 32, 5  and  6      respectively.  
(ii) Step 1: 

The eigenvectors 
12

4

1

 
 

  
 
 

u , 
0
1
2

 
 

  
  

v  and 
0

0

1

 
 

  
 
 

w   are linearly independent. 

Step 2: 

The invertible (nonsingular) matrix is  

12 0 0
4 1 0
1 2 1

 
 

   
  

P u v w . 

Step 3: 
The diagonal matrix 1D P AP . We need to find the inverse of P. Using MATLAB or our 
early theory on matrices we have  

1

1 0 0 1 0 0
Taking in1 14 12 0 4 12 0
negative sign12 12

9 24 12 9 24 12



   
    

         
         

P  

Substituting 1

1 0 0
1 4 12 0

12
9 24 12



 
 

  
 
 

P , 
2 0 0

1 5 0

1 2 6

 
 

  
 
 

A  and 
12 0 0
4 1 0
1 2 1

 
 

  
  

P  into  

1D P AP  gives  
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1

1 0 0 2 0 0 12 0 0
1

4 12 0 1 5 0 4 1 0
12

9 24 12 1 2 6 1 2 1

2 0 0 12 0 0 Multiplying the
1

20 60 0 4 1 0 two Left Hand
12

54 144 72 1 2 1 matrices

24 0 0
1

0 60 0
12

0 0 72



    
   

     
      

     
    

     
        

 
 

  
 
 

D P AP

2 0 0 Multiplying by the

0 5 0 1
scalar  

0 0 6 2

   
   
   
    

Note the entries on the leading diagonal are the eigenvalues of the given matrix A. 
(iii) To find 4A we need to use 1m m A PD P  with 4m  : 

4

4 4 1

12 0 0 2 0 0 1 0 0
1

4 1 0 0 5 0 4 12 0
12

1 2 1 0 0 6 9 24 12

12 0 0 16 0 0 1 0 0
1

4 1 0 0 625 0 4 12 0
12

1 2 1 0 0 1296 9 24 12

192 0 0 1 0 0
1

64 625 0 4 12 0
12

16 1250 1296 9 24



     
    

      
        

    
   

    
      

  
 

  
  

A PD P

12

192 0 0 16 0 0
1

2436 7500 0 203 625 0
12

6648 16104 15552 554 1342 1296

 
 
 
 
 

   
   

    
   
   

(d) 

4. (a) We are given
1 0 0

0 1 0

0 0 1

 
 

  
 
 

A  which is the identity matrix I. Is the identity matrix 

diagonalizable? 

Yes because the invertible matrix P I  gives the result 1   P AP III I D  where D is the 
diagonal  matrix with 1’s as the entries along the leading diagonal. 

(b) Is

1 2 3

0 2 5

0 0 8

 
 

  
 
 

A  diagonalizable? 

Yes because the entries along the leading diagonal are the eigenvalues of this matrix. Thus 
1 2 31, 2  and   8      are the eigenvalues and by Proposition (7-13) we conclude that 

the given matrix is diagonalizable because we have 3 distinct eigenvalues. 

Proposition (7-13). If a n by n matrix A has n distinct eigenvalues then the matrix A 

is diagonalizable. 
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(c) Similar to part (b). Since

2 0 0 0

1 3 0 0

6 7 1/ 2 0

2 9 7 5

 
 
 


 
 
  

A  has distinct eigenvalues 

1 2 3 42, 3, 1/ 2  and  5        therefore by Proposition (7-13) we conclude that 
the matrix A is diagonalizable. 

5. From Example 17 we have
2

1

 
  
 

u and
1

1

 
  
 

v . Therefore 
1 2

1 1

 
  
 

P  and 

1

1
1 2 1 21

1 1 1 13




   

    
   

P

Substituting 1
1 21

1 13

  
  

 
P , 

1 4

2 3

 
  
 

A  and 
1 2

1 1

 
  
 

P  into 1
P AP : 

1
1 2 1 4 1 21

1 1 2 3 1 13

5 10 1 2 Multiplying the two1

1 1 1 1 Left Hand Matrices3

15 0 5 0 Multiplying by the1

0 3 0 1 scalar 1/33


   

    
   

    
     

    

     
      

      

P AP

Note that the eigenvalues have swapped around from the diagonal matrix of Example 17. 

6. Since we have distinct eigenvalues 1 22, 5      and 3 1   therefore by Proposition 
(7-13) we conclude that the matrix A is diagonalizable. The diagonal matrix will have 
the eigenvalues along the leading diagonal of the matrix. The eigenvalues on the leading 
diagonal occur depending on the order of eigenvectors u, v and w in the matrix P. 

2 0 0

0 5 0

0 0 1

 
 

  
  

D

What is the invertible matrix P going to be? 

It will be the eigenvectors u, v and w as the columns of the matrix P provided they are 

linearly independent. Since 
1

2

0

 
 

  
 
 

u ,
5

4

0

 
 

  
 
 

v  and 
0

0

1

 
 

  
 
 

w  are linearly independent 

therefore 

1 5 0

2 4 0

0 0 1

 
 

  
 
 

u v w

P

Proposition (7-13). If a n by n matrix A has n distinct eigenvalues then the matrix A 

is diagonalizable. 
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By MATLAB we have 1

4 5 0
1 2 1 0
6

0 0 6



 
 

   
  

P . How do we find 3A ? 

Substitute 3m   into 1m m A PD P  which gives 3 3 1A PD P .  

Substituting 
1 5 0
2 4 0
0 0 1

 
 

  
 
 

P ,  
2 0 0

0 5 0

0 0 1

 
 

  
  

D  and 1

4 5 0
1 2 1 0
6

0 0 6



 
 

   
  

P  into 

3 3 1A PD P  gives  
3

3 3 1

1 5 0 2 0 0 4 5 0
12 4 0 0 5 0 2 1 0
6

0 0 1 0 0 1 0 0 6

1 5 0 8 0 0 4 5 0
1 2 4 0 0 125 0 2 1 0
6

0 0 1 0 0 1 0 0 6

8 625 0 4 5 0
1 16 500 0 2 1 0
6

0 0 1 0 0 6



     
    

        
         

    
   

      
       

    
  

      
    

A PD P

1218 585 0 203 97.5 0
1 936 420 0 156 70 0
6

0 0 6 0 0 1



    
   

       
      

 

 

7. (a) We are given the matrix 
2 1
1 4

 
  
 

A . The eigenvalues are evaluated by 

 

  

 

2

22

2 1
det det

1 4
2 4 1

8 6 1

6 9 3 0  gives  3






 

 

   

  
   

 

   

   

      

A I

 

The eigenvector corresponding to 3   is given by substituting 3   into   A I u O  
where u is the eigenvector: 

 
2 3 1 0

3
1 4 3 0

1 1 0
1 1 0

x

y

x

y

     
      

    

     
    

    

A I u

 

Placing the 2 by 2 matrix into row echelon form gives 
1 1 0

  yields  1  and  1
0 0 0

x
x y

y

     
       

    
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Thus the eigenvector 
1

1

 
  

 
u corresponds to the eigenvalue 3  . Since there is only one

2 1 1 

3 
non-zero equation and 2 unknowns therefore there are  free variable.  
Thus this is the only independent eigenvector of  because all the other eigenvectors are 
multiples of u.  
Since a 2 by 2 matrix has only one independent eigenvector therefore by Theorem (7-13): 

Theorem (7-13). A n by n  matrix A is diagonalizable  it has n linearly ind  e.vectors. 
We conclude that the given matrix is not diagonalizable. 

(b) We are given the matrix 
2 4

1 6

 
  

  
A . The eigenvalues of this matrix are 

 

  

 

2

22

2 4
det det

1 6

2 6 4

12 8 4

8 16 4 0  gives  4






 

 

   

  
   

   

     

   

       

A I

Let u be the corresponding eigenvector. We have

  
2 4 4 2 4 0

4
1 6 4 1 2 0

x x

y y

        
           

           
A I u

Putting the 2 by 2 matrix into row echelon form gives 
2 4 0

 yields  2  and  1
0 0 0

x
x y

y

    
       

    

The eigenvector 
2

1

 
  
 

u belongs to the eigenvalue 4   . Since there is 1 non-zero

equation with 2 unknowns therefore the number of free variables is 2 1 1  . Hence u is the 
only independent eigenvector.  
For the given 2 by 2 matrix we have 1 independent eigenvector which means that the matrix 
is not diagonalizable because the number of independent eigenvectors (1) does not equal n 
(2) of the square matrix.

(c) We are given
1 2 3

0 1 3

0 0 1

 
 

  
 
 

A  which is a triangular matrix. Thus by Proposition (7-3): 

Proposition (7-3). If matrix A is a diagonal or triangular then the e.values of A are the 
entries along the leading diagonal. 
 The eigenvalue  1  . To find the corresponding eigenvector u we substitute 1   into 
  A I u O : 

 

1 1 2 3

0 1 1 3

0 0 1 1

0 2 3 0

0 0 3 0   gives  1, 0  and  0

0 0 0 0

x

y

z

x

y x y z

z

  
  

    
    

    
    

        
    
    

A I u
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The last matrix is already in row echelon form and there are 2 non-zero equations and 3 
unknowns which means there are 3 2 1   free variable. This means that u is the only 
eigenvector of the given matrix A.  
Since we are given a 3 by 3 matrix therefore 3n   but we have only 1 linearly independent 
eigenvector therefore the given matrix is not diagonalizable. 

8. (a) How do we find 11A given that
4 2
9 5
 

  
 

A ? 

We need to use Proposition (7.19), that is 1m m A PD P with 11m  . To find the matrix P 

we need to find the eigenvectors which means we need the eigenvalues. 
Using  det 0 A I  to find   we have

 

  

  

2

2

1 2

4 2
det det

9 5
4 5 18

20 18
2

1 2 0  gives  1  and  2






 

 

 

   

  
   

  

    

    

  

      

A I

Since we have two distinct eigenvalues, 1 21 and 2    , for a 2 by 2 matrix therefore the 
given matrix A can be diagonalised.  
Let u be the eigenvector belonging to 1 1   then substituting this into  A I u gives

 
4 1 2

9 5 1

3 2 0
  gives  2  and   3

9 6 0

x

y

x
x y

y

   
    

   

    
       

    

A I u

Thus 
2
3
 

  
 

u is the eigenvector belonging to 1 1   . Let 
x

y

 
  
 

v  be the eigenvector 

belonging to the other eigenvalue 2 2  : 

 
4 2 2

2
9 5 2

6 2 0
  gives  1  and   3

9 3 0

x

y

x
x y

y

   
    

   

    
       

    

A I v

Hence 
1
3
 

  
 

v  is the eigenvector belonging to the other eigenvalue 2 2  . What is our 

matrix P equal to? 

 
2 1
3 3
 

   
 

P u v
2 1

Because  and 
3 3

    
     
    

u v

What else do we need to find? 

The inverse of P. Thus 
1

1 2 1 3 1 3 11 1
3 3 3 2 3 26 3 3




      

       
      

P
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We also need to determine the diagonal matrix D to use 1m m A PD P . What is the diagonal 

matrix D equal to in this case? 

It is the diagonal matrix D with the eigenvalues, 1 21 and 2    , as the entries along the 
leading diagonal. (You may check that 1 P AP D ). 

1 0
0 2
 

  
 

D

Now we have all the ingredients to use the formula 1m m A PD P with 11m  , that is 
11 11 1A PD P .  

Substituting 
2 1
3 3
 

  
 

P , 
1 0
0 2
 

  
 

D  and 1 3 11
3 23


 

  
 

P  into 11 11 1A PD P gives 

 

11 11 1

11

11

11

2 1 1 0 3 11
3 3 0 2 3 23

2 1 1 0 3 1 Because 1 11
3 3 0 2048 3 23 and  2 2048

2 2048 3 1 Multiplying the two1
3 6144 3 2 Left Hand Matrices3



     
     

    

        
     

      

     
     

     

A PD P

6150 4098 2050 1366 Multiplying by the 1
18441 12291 6147 4097 scalar 1/ 3 3
      

      
      

Hence 11 2050 1366
6147 4097
 

  
 

A . 

(b) Similarly 1 1 1  A PD P . Evaluating this gives

 

1 1 1

1

1

1

2 1 1 0 3 11
3 3 0 2 3 23

2 1 1 0 3 1 Because 1 11
3 3 0 1/ 2 3 23 and  2 1/ 2

2 1 2 0 3 11 1 1Taking out 
3 3 0 1 3 23 2 2
4 1 3 11
6 3 3 26

  









     
     

    

        
     

      

      
           

  
  

  

A PD P

15 6 5 21 1 1Taking in 
27 12 9 46 2 3
        

                

9. We prove this result by induction.
Proof.

Let 
1 0

0 n

d

d

 
 

  
 
 

D  be a diagonal matrix. Then 1 D D which means all the entries on the 

leading diagonal are to the index 1. 
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Assume the result is true for m k  that is 

1 0

0

k

k

k

n

d

d

 
 

  
 
 

D (*) 

Required to prove the result for 1m k  , that is we need to show 
1

1
1

1

0

0

k

k

k

n

d

d







 
 

  
 
 

D

We have 
1

1 1 1
1 1

1

By (*)

0 0 0

0 0 0

k k

k k k

k k

n n n

d d d

d d d



 



    
    

       
    
    

D D D D

Hence we have our result. 
■ 

10. We need to prove proposition (7-9) which is the following: 
Let A, B and C be square matrices. Then we have the following:
I. Matrix A is similar to matrix A.
II. If matrix B is similar to matrix A then the other way round is also true, that is matrix A

is similar to matrix B.
III. If matrix A is similar to B and B is similar to matrix C then matrix A is similar to

matrix C.
How do we prove these results? 

Use the definition of similar matrices: 
Definition (7-2). A square matrix B is similar to a matrix A if there exists an invertible 
matrix P such that 1 P AP B .

Proof of I. 
Matrix A is similar to matrix A because we have 

1 I AI A
where I is the identity matrix. 

■ 
Proof of II. 
Assume matrix B is similar to matrix A then there is an invertible (nonsingular) matrix P 

such that 1B P AP . Pre-multiply this by P and post multiply this by 1P : 
 

   

1 1 1

1 1

  

 





 

PBP P P AP P

PP A PP

IAI A

We have  
11 1 1

   A PBP P BP because  
11 

 P P . Thus we have 

 
11 1

 A P BP

By Definition (7-2): 
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(7-2). B is similar to A if there exists an invertible matrix P such that 1 P AP B .  
We conclude that matrix A is similar to matrix B. This is our required result. 

■ 
Proof of III. 
Assume matrix A is similar to matrix B. This means that there is an invertible (nonsingular) 
matrix P such that  

1A P BP (*) 
We are also given that matrix B is similar to matrix C. This means that there is an invertible 
(nonsingular) matrix Q such that 

1B Q CQ

Substituting this 1B Q CQ into (*) gives  
 

       

     

1 1

1 1

1 11 1

Using rules of matrices 

Because  

 

 

  



   

  
 

A P Q CQ P

P Q C QP A BC AB C

QP C QP B A AB

By Definition (7-2) we conclude that matrix A is similar to matrix C. 
■ 

11. Need to prove that is A is diagonalizable then T
A is diagonalizable. 

Proof. 
We assume that A is diagonalizable. Thus there exists an invertible matrix P such that 

1 P AP D where D is a diagonal matrix. 
Taking the transpose of both sides of 1 P AP D  gives 

   1 Because  is a diagonal matrix
T

T  P AP D D D

What is the Left Hand Side  1 T
P AP equal to? 

Using our rules on matrix transpose  
T T T TABC C B A we have 

   

     

1 1

1 11Because  

T T
T T

T
T T T T

 

 




  
  

P AP P A P

P A P P P

Since  
11

T T


 
  

P P  therefore 

       
11 1 1 1Because

T
T T T T T T


  

     
      

P A P P A P D P AP D

By Definition (7-3): 
(7-3). A matrix A is diagonalizable if it is similar to a diagonal matrix. 
We conclude that the matrix T

A is diagonalizable. 
■ 

12. We are given the matrix
3 5
0 2
 

  
 

A . The eigenvalues and eigenvectors are 

1 2

1 5
3,   and   2,

0 1
 

   
      

   
u v
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The diagonalizing matrix is the eigenvector matrix 
1 5
0 1

 
  
 

P  and 
3 0
0 2
 

  
 

D . The 

formula for finding higher powers of matrices is: 
1m m A PD P  

We need to find inverse matrix 1P : 
1 1 5

0 1
  
  
 

P    

Substituting 2, 3  and 4m   and the matrices into this formula 1m m A PD P  gives 
2

2 2 1
2

1 5 1 5 1 5 9 0 1 5 9 253 0
0 1 0 1 0 1 0 4 0 1 0 40 2


           

             
          

A PD P  

Similarly we have  
3 1 5 27 0 1 5 27 95

0 1 0 8 0 1 0 8
     

      
     

A  

4 1 5 81 0 1 5 81 325
0 1 0 16 0 1 0 16

     
      
     

A  

Substituting 
3 5
0 2
 

  
 

A , 2 9 25
0 4
 

  
 

A , 3 27 95
0 8

 
  
 

A  and 4 81 325
0 16

 
  
 

A  into  

 
2 3 4

2 3 4

2 3 4

exp
2! 3! 4!

1 0 3 5 9 25 27 95 81 325
0 1 0 2 0 4 0 8 0 162! 3! 4!

t t t
t t

t t t
t

     

         
              

         

A I A A A A
 

 

13. We are given that 
1 1
1 0
 

  
 

F . The eigenvalues are given by 

 

  
2

1 1
det det

1 0
1 0 1

1 0






 

 

 
   

 

   

   

F I

 

Solving the quadratic by using the formula 
2 4

2
b b ac

a


  
  with 1, 1  a b    and 

1c    gives 

     
21 1 4 1 1 1 5
2 2


          

   

The eigevalues are 1
1 5

2



  and 2

1 5
2




 . What are the eigenvectors? 

Let u be the eigenvector belonging to 1
1 5

2



 .  
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2
2 1

1

1 51 11 5 2
2 1 51 0

2
1 5 1

2
1 51

2
1 0 1 5 1 5Because   and  

1 0 2 2

x

y

x

y

x

y


 



 
                      

 

 
 

 
   
   

 
 

       
        

       

F I u

 

Expanding matrices we have 
2

1
1

0
gives    and  1

0
x y

x y
x y






  
 

  
 

Note that this is the solution because 1 2
1 5 1 5 1

2 2
 

   
      
  

. Thus 1

1
 

  
 

u  is the 

eigenvector belonging to 1
1 5

2



 . Let v be the eigenvector belonging to 2

1 5
2




  

1

2

1 51 11 5 2
2 1 51 0

2
1 5 1

2
1 51

2
1 0

1 0

x

y

x

y

x

y





 
                      

 

 
 

 
   
   

 
 

    
     

     

F I v

 

Expanding the matrices we have 
1

2
2

0
gives    and  1

0
x y

x y
x y






  
 

  
 

Thus 2

1
 

  
 

v  is the eigenvector belonging to 2
1 5

2



 .  

Since the eigenvectors u and v are linearly independent therefore the eigenvector matrix P is 

given by   1 2

1 1
  

   
 

P u v .  

The eigenvalue matrix 1

2

0
0




 
  
 

D .  

To ensure that we have the correct matrices P and D we check that PD FP : 
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2 2
11 2 1 2

2 1 2

0
01 1
   

  

   
     
    

PD

1 21 2

1 2

1 11 1
1 0 1 1

  

 

    
     
    

FP

The bottom rows of PD and FP are equal but the top rows seem to be different. Can we show 

that these are equivalent? 
2

2
1

1

1 5 1 2 5 5
2 4

6 2 5 3 5 1 51 1
4 2 2





   
   
 

  
     

Similarly we have 2
2 21   . 

PD FP so we have the correct eigenvector and eigenvalues matrices P and D respectively. 
14. By Question 3 of the last Exercises 7.2 the characteristic polynomial  p   is given by

     2 detp tr    A A

We find   by equating this to zero and solving the resulting quadratic equation by using the 
formula with    1, and deta b tr c   A A

   

     

2

2

2

det 0

4
2

4det
2

tr

b b ac

a

tr tr

 



  

  


   


A A

A A A

Since we are given that    
2

4dettr   A A therefore we have 2 distinct roots of the

quadratic, say 
     

2

1

4det
2

tr tr


   


A A A
 and 

     
2

2

4det
2

tr tr


   


A A A
. 

Since we have a 2 by 2 matrix and 2 distinct eigenvalues therefore by Proposition (7-13): 
Proposition (7-13). If a square n by n matrix A has n distinct eigenvalues then the matrix A 

is diagonalizable. 
We conclude that the matrix A is diagonalizable. 

■ 

15. Required to prove that if A is an invertible and diagonalizable matrix then 1A  is also
diagonalizable.
Proof.
Assuming A is diagonalizable means that there exists matrices P and D where D is a diagonal
matrix such that

1 P AP D
Using our rules of matrices we have 
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 

   

1

1 1

1
1 1

1 11 1 1 1 1 1

Pre-multiplying by  and Post multiplying by 

Applying  



 


 

      



   



  
 

P AP D

A PDP P P

A PDP

P D P ABC C B A

This last result  
1

1 1 1 1


   A P D P means that 1D and 1A are similar matrices because:

Definition (7-2). A square matrix B is similar to a matrix A if there exists an invertible 
matrix P such that 1 P AP B .

1D is a diagonal matrix therefore 1A is diagonalizable. 
■

mA (where m ) is diagonalizable. 16. We need to prove that if A is diagonalizable then 
Proof.
A is diagonalizable therefore by Proposition (7-14):
Proposition (7-14). If a n by n matrix A is diagonalizable with 1 P AP D where D is a 
diagonal matrix then 1m m A PD P

We have 

   
1 1

1 1 1 1Remember  m m m
 

      
  

A PD P P D P P P

mA
m

D and the result of question 9 we have m
D  is a diagonal matrix. By Thus  is similar to 

Definition (7-3): 
Definition (7-3). A n by n matrix A is diagonalizable if it is similar to a diagonal matrix. 
We conclude that the matrix A is diagonalizable. 

■

17. Required to prove that AB  is similar to BA provided A and B are invertible matrices.
Proof.
Let the invertible matrix P A  then 1 1 P A  and 

   

     

1 1

1 Because 

 





   

 

P AB P A AB A

A A BA A BC AB C

IBA BA

Since we have  1 P AB P BA therefore by Definition (7-2) : 

Definition (7-2). A square matrix B is similar to a matrix A if there exists an invertible 
matrix P such that 1 P AP B .
We conclude that AB  is similar to BA. 

■

18.    tr trA B(a) Need to prove that if matrices A and B are similar then  where tr is 
trace.
Proof.
Assume matrices A and B are similar. Then by Proposition (7-10):
 (7-10). Let A and B be similar matrices. The eigenvalues of these matrices are identical. 
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1 2 3, , ,  and n    . We have matrices A and B have the same eigenvalues, call them 
Then by Proposition (7-6) part (b): 
(7-6) (b) Trace of a matrix A is given by sum of eigenvalues,   1 2 3 ntr        A

We have 
   1 2 3 ntr tr        A B

Hence we have our required result, that is    tr trA B .
■ 

(b)    det detA BRequired to prove that if matrices A and B are similar then .
Proof.
Suppose matrices A and B are similar. By Proposition (7-10) matrices A and B have the same
eigenvalues and by (7-6) part (a):
(7-6) (a) The determinant of the matrix A is given by   1 2 3det n       A .

Hence    det detA B .
■ 

19. Let 1 2 3, , ,  and n     be the eigenvalues of matrix A. We are given that 

1 2 31, 1, 1,  and 1n      

We are also told that the matrix A is diagonalizable which means that by Proposition (7-14) 
we have  

1m m A PD P

What is m
D equal to? 

 

 

1 0
0 0

0

0

0

m

m

m

n





 
 

  
  
 

D

By using the hint in the question we know that if 1x  then 0mx  as m . Applying 

this to        1 2 3, , , ,m m m m

n     we have      1 2lim lim , , lim 0m m m

n
m m m

  
  

  . 

 
 

 

1 0 0 0
lim 0 0 0 0

0 00

0 0

00

m

m

m
m

n






   
   

     
    

  

D O

Thus as m  the matrix m
D is the zero matrix. Hence as m we have 

1 1m m    A PD P POP O

This means that as m  the matrix mA is the zero matrix. 

20. We need to prove that the eigevalues of mA are      1 2, , ,m m m

n   providing 
A is diagonalizable with eigenvalues 1 2, , , n   . 
Proof. 
We are told that A is diagonalizable so by Proposition (7-14): 
Proposition (7-14). If A is diagonalizable then 1m m A PD P

We have 
1m m A PD P (*) 
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where D is the diagonal matrix with eigenvalues along the leading diagonal: 

1 0

0 n





 
 

  
 
 

D

What is m
D equal to? 

 

 

1 0

0

m

m

m

n





 
 

  
  
 

D

From (*) we have mA is similar to m
D and by Proposition (7-9)  part (b) the diagonal matrix

m
D is similar to mA . Therefore

1 m m P A P D

The eigenvalues of mA are the entries on the leading diagonal in m
D . Thus 

     1 2, , ,m m m

n    are the eigenvalues of mA . 
21.



Theorem (7-11) is the following:
A n by n  matrix A is diagonalizable  it has n linearly independent eigenvectors. 
How do we prove this theorem?

We have the arrows pointing in both directions therefore we need to prove
1) A is diagonalizable   it has n linearly independent eigenvectors.
2) A has n linearly independent eigenvectors   A is diagonalizable.

Proof. 
  . Assume the matrix A is diagonalizable and the eigenvectors of A are 

 1 2 3, , , , nv v v v

This means there is an invertible matrix P such that 1 P AP D where D is a diagonal 
matrix. Remember eigenvector matrix P contains the eigenvectors of matrix A: 

 1 2 3 nP v v v v

Matrix P is invertible and from chapter 2 result (2-14):
Proposition (2-14) . Let A be the n by n matrix whose columns are given by the vectors

1 2 3, , ,  and  nvv v v : 
 1 2 nA v v v

Then vectors 1 2, , , nv v v are linearly independent  matrix A is invertible.

Hence the eigenvectors are linearly independent. 
  . Assume matrix A has n linearly independent eigenvectors belonging to the eigenvalues 

1 2 3, , , , n     respectively and  

 1 2 3 nP v v v v

Consider the matrix multiplication 1
P AP . We can carry out this matrix multiplication as 

 1 1 P AP P AP : 

 

 

1 2 3

1 2 3

n

n





AP A v v v v

Av Av Av Av

Since 1 2, , , nv v v are eigenvectors of matrix A so by the definition (7.1):
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(7.1)   Au u   
We have 1 1 1 2 2 2 3 3 3, , , , n n n      Av v Av v Av v Av v . Therefore  

 1 1 2 2 3 3 n n   AP v v v v  

We can also evaluate PD where D is a diagonal matrix. Let 
1 0

0 0

0

0

0 n

k

k

 
 

  
 
 

D  then 

   
1

1 2 3 1 1 2 2 3 3

0
0 0

0

0

0
n n n

n

k

k k k k

k

 
 

  
 
 

PD v v v v v v v v  

Let 1 1 2 2, , , n nk k k      then we have  

 1 1 2 2 3 3 n nk k k k PD v v v v AP  
Left multiplying both sides of PD AP  by 1P  gives 

   1 1 1     P PD P P D ID D P AP  

Hence 1 P AP D  means the eigenvector matrix P diagonalizes the given matrix A. Hence 
matrix A is diagonalizable. 

■ 
 
 




